Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Materials
2.2. Methods
2.2.1. Immobilization of L. lactis LL16 on Raisins
2.2.2. Manufacture of Experimental Curd Cheese
2.2.3. Physicochemical Analysis
2.2.4. Microbiological Analysis
2.2.5. Sugar Profile, Organic Acids, Glycerol, and Ethanol
2.2.6. Volatile by-Products
2.2.7. Preliminary Sensory Evaluation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of Immobilization on Raisins
3.2. Physicochemical and Microbiological Changes
3.3. Sugars and Organic Acids
3.4. Volatiles in Cheese during Storage
3.5. Preliminary Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Yerlikaya, O. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. J. Dairy Sci. 2019, 102, 124–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, M.; Shukla, P. Efficient engineered probiotics using synthetic biology approaches: A review. Biotechnol. Appl. Biochem. 2020, 67, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Nero, L.A.; Todorov, S.D. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Brazilian J. Microbiol. 2020, 51, 787–795. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; O’Connor, P.M.; Ross, R.P.; Stanton, C.; Silva, C.C.G. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int. Dairy J. 2016, 63, 18–28. [Google Scholar] [CrossRef]
- Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol. 2018, 102, 9949–9958. [Google Scholar] [CrossRef]
- Kumar Verma, D.; Thyab Gddoa Al-Sahlany, S.; Kareem Niamah, A.; Thakur, M.; Shah, N.; Singh, S.; Baranwal, D.; Patel, A.R.; Lara Utama, G.; Noe Aguilar, C. Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi J. Biol. Sci. 2022, 29, 1565–1576. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Serniene, L.; Sekmokiene, D.; Malakauskas, M. Safety Assessment and Preliminary In Vitro Evaluation of Probiotic Potential of Lactococcus lactis Strains Naturally Present in Raw and Fermented Milk. Curr. Microbiol. 2020, 1, 3. [Google Scholar] [CrossRef]
- Eş, I.; Mousavi Khaneghah, A.; Barba, F.J.; Saraiva, J.A.; Sant’Ana, A.S.; Hashemi, S.M.B. Recent advancements in lactic acid production—A review. Food Res. Int. 2018, 107, 763–770. [Google Scholar] [CrossRef]
- Terpou, A.; Bosnea, L.; Kanellaki, M.; Plessas, S.; Bekatorou, A.; Bezirtzoglou, E.; Koutinas, A.A. Growth Capacity of a Novel Potential Probiotic Lactobacillus paracasei K5 Strain Incorporated in Industrial White Brined Cheese as an Adjunct Culture. J. Food Sci. 2018, 83, 723–731. [Google Scholar] [CrossRef]
- Terpou, A.; Mantzourani, I.; Galanis, A.; Kanellaki, M.; Bezirtzoglou, E.; Bekatorou, A.; Koutinas, A.; Plessas, S. Employment of L. paracasei K5 as a Novel Potentially Probiotic Freeze-Dried Starter for Feta-Type Cheese Production. Microorganisms 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, A.; Tsakiris, A.; Kanellaki, M.; Bezirtzoglou, E.; Akrida-Demertzi, K.; Kourkoutas, Y. Wine production using free and immobilized kefir culture on natural supports. Food Chem. 2019, 272, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.J.; Wang, X.; Hawkins, T.; Painter, J.E. A Comprehensive review of raisins and raisin components and their relationship to human health. J. Nutr. Heal. 2017, 50, 203. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.; Carughi, A. Polyphenol content and health benefits of raisins. Nutr. Res. 2010, 30, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Story, J.A.; Lodics, T.A.; Pollack, M.; Monyan, S.; Butterfield, G.; Spiller, M. Effect of Sun-Dried Raisins on Bile Acid Excretion, Intestinal Transit Time, and Fecal Weight: A Dose–Response Study. J. Med. Food 2003, 6, 87–91. [Google Scholar] [CrossRef]
- Mandalari, G.; Chessa, S.; Bisignano, C.; Chan, L.; Carughi, A. The effect of sun-dried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota. Food Funct. 2016, 7, 4048–4060. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Sangiovanni, E.; Fumagalli, M.; Colombo, E.; Frigerio, G.; Colombo, F.; de Sousa, L.P.; Altindisli, A.; Restani, P.; Dell ’ Agli, M. Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in human gastric epithelial cells: A comparative study. Int. J. Mol. Sci. 2016, 17, 1156. [Google Scholar] [CrossRef] [Green Version]
- Wijayabahu, A.T.; Waugh, S.G.; Ukhanova, M.; Mai, V. Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutr. J. 2019, 18, 14. [Google Scholar] [CrossRef]
- Kondrotiene, K.; Kasnauskyte, N.; Serniene, L.; Gölz, G.; Alter, T.; Kaskoniene, V.; Maruska, A.S.; Malakauskas, M. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT-Food Sci. Technol. 2018, 87, 507–514. [Google Scholar] [CrossRef]
- Nikolidaki, E.K.; Chiou, A.; Christea, M.; Gkegka, A.P.; Karvelas, M.; Karathanos, V.T. Sun dried Corinthian currant (Vitis Vinifera L., var. Apyrena) simple sugar profile and macronutrient characterization. Food Chem. 2017, 221, 365–372. [Google Scholar] [CrossRef]
- Bosnea, L.A.; Kopsahelis, N.; Kokkali, V.; Terpou, A.; Kanellaki, M. Production of a novel probiotic yogurt by incorporation of L. casei enriched fresh apple pieces, dried raisins and wheat grains. Food Bioprod. Process. 2017, 102, 62–71. [Google Scholar] [CrossRef]
- ISO 5534:2004; Cheese and Processed Cheese. Determination of the Total Solids Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO Standards Catalogue 07.100.30; Food Microbiology. International Organization for Standardization: Geneva, Switzerland, 2011.
- Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk. Int. Dairy J. 2012, 23, 36–44. [Google Scholar] [CrossRef]
- Sidira, M.; Santarmaki, V.; Kiourtzidis, M.; Argyri, A.A.; Papadopoulou, O.S.; Chorianopoulos, N.; Tassou, C.; Kaloutsas, S.; Galanis, A.; Kourkoutas, Y. Evaluation of immobilized Lactobacillus plantarum 2035 on whey protein as adjunct probiotic culture in yoghurt production. LWT-Food Sci. Technol. 2017, 75, 137–146. [Google Scholar] [CrossRef]
- ISO 11136:2014; Sensory Analysis-Methodology-General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area. International Organization for Standardization: Geneva, Switzerland, 2014.
- Pastorino, A.J.; Hansen, C.L.; McMahon, D.J. Effect of pH on the Chemical Composition and Structure-Function Relationships of Cheddar Cheese. J. Dairy Sci. 2003, 86, 2751–2760. [Google Scholar] [CrossRef] [Green Version]
- Sidira, M.; Kourkoutas, Y.; Kanellaki, M.; Charalampopoulos, D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res. Int. 2015, 76, 532–539. [Google Scholar] [CrossRef]
- Langa, S.; van den Bulck, E.; Peirotén, A.; Gaya, P.; Schols, H.A.; Arqués, J.L. Application of lactobacilli and prebiotic oligosaccharides for the development of a synbiotic semi-hard cheese. LWT 2019, 114, 108361. [Google Scholar] [CrossRef]
- Speranza, B.; Campaniello, D.; Monacis, N.; Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiol. 2018, 72, 16–22. [Google Scholar] [CrossRef]
- Rosa, M.C.; Carmo, M.R.S.; Balthazar, C.F.; Guimarães, J.T.; Esmerino, E.A.; Freitas, M.Q.; Silva, M.C.; Pimentel, T.C.; Cruz, A.G. Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. Int. Dairy J. 2021, 117, 105009. [Google Scholar] [CrossRef]
- Amiri, S.; Aghamirzaei, M.; Mostashari, P.; Sarbazi, M.; Tizchang, S.; Madahi, H. The impact of biotechnology on dairy industry. Microb. Biotechnol. Food Health 2021, 51–57. [Google Scholar] [CrossRef]
- Liu, S.Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 2003, 83, 115–131. [Google Scholar] [CrossRef]
- Sgarbi, E.; Lazzi, C.; Tabanelli, G.; Gatti, M.; Neviani, E.; Gardini, F. Nonstarter lactic acid bacteria volatilomes produced using cheese components. J. Dairy Sci. 2013, 96, 4223–4234. [Google Scholar] [CrossRef] [Green Version]
- Picciotti, U.; Massaro, A.; Galiano, A.; Garganese, F. Cheese Fortification: Review and Possible Improvements. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Javed, H.U.; Wang, D.; Wu, G.F.; Kaleem, Q.M.; Duan, C.Q.; Shi, Y. Post-storage changes of volatile compounds in air- and sun-dried raisins with different packaging materials using HS-SPME with GC/MS. Food Res. Int. 2019, 119, 23–33. [Google Scholar] [CrossRef]
- Nájera-Domínguez, C.; Gutiérrez-Méndez, N.; Nevárez-Moorillon, G.; Caro-Canales, I. Comparison of volatile compounds produced by wild Lactococcus lactis in miniature Chihuahua-type cheeses. Dairy Sci. Technol. 2014, 94, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Kasetiene, N.; Sekmokiene, D.; Andruleviciute, V.; Malakauskas, M. Quality and nutritional characteristics of traditional curd cheese enriched with thermo-coagulated acid whey protein and indigenous Lactococcus lactis strain. Int. J. Food Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Sekmokiene, D.; Malakauskas, M. Effect of Indigenous Lactococcus lactis on physicochemical and sensory properties of thermo-coagulated acid whey protein. J. Food Process. Preserv. 2021, 45, e15420. [Google Scholar] [CrossRef]
- Kotowska, U.; Zalikowski, M.; Isidorov, V.A. HS-SPME/GC–MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environ. Monit. Assess. 2012, 184, 2893–2907. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, A.; Galanis, A.; Kanellaki, M.; Tassou, C.; Akrida-Demertzi, K.; Kourkoutas, Y. Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations. LWT 2017, 76, 67–78. [Google Scholar] [CrossRef]
- Pino, J.A.; Marquez, E.; Quijano, C.E.; Castro, D. Volatile compounds in noni (Morinda citrifolia L.) at two ripening stages. Food Sci Technol. Campinas 2010, 30, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agr. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef]
- Bonaıti, C.; Irlinger, F.; Spinnler, H.E.; Engel, E. An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: Application to the construction of a cheese model. J. Dairy Sci. 2005, 88, 1671–1684. [Google Scholar] [CrossRef]
- Alissandrakis, E.; Kibaris, A.C.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Flavour compounds of Greek cotton honey. J. Sci. Food Agric. 2005, 85, 1444–1452. [Google Scholar] [CrossRef]
- Iraqi, R.; Vermeulen, C.; Benzekri, A.; Bouseta, A.; Collin, S. Screening for Key Odorants in Moroccan Green Olives by Gas Chromatography−Olfactometry/Aroma Extract Dilution Analysis. J. Agr. Food Chem. 2005, 53, 1179–1184. [Google Scholar]
Day | Sample 1 | pH | aw | Moisture | TBC | Lactococci |
---|---|---|---|---|---|---|
1 | C | 5.93 ± 0.01 1Aa | 0.93 ± 0.00 a | 62.38 ± 0.13 Aa | 5.79 ± 0.46 Aa | 3.10 ± 0.71 a |
C + FC | 5.94 ± 0.02 Aa | 0.93 ± 0.01 a | 64.28 ± 0.28 Ab | 9.34 ± 0.04 Ab | 8.79 ± 0.13 Ab | |
C + R | 5.54 ± 0.05 b | 0.89 ± 0.00 b | 57.13 ± 0.28 Ac | 4.99 ± 0.12 ac | 3.02 ± 0.03 ad | |
C + RW | 5.74 ± 0.01 c | 0.90 ± 0.00 c | 63.99 ± 0.13 Ad | 6.39 ± 0.08 Ad | 5.99 ± 0.13 Acd | |
C + RTD | 5.71 ± 0.04 c | 0.91 ± 0.00 d | 57.04 ± 0.24 Ac | 5.42 ± 0.12 Aa | 4.04 ± 0.062 Aad | |
C + RFD | 5.72 ± 0.01 Ac | 0.91± 0.00 d | 57.17 ± 0.21 Ac | 5.69 ± 0.08 Aa | 5.00 ± 0.01 Ad | |
7 | C | 6.01 ± 0.01 Ba | 0.90 ± 0.04 a | 62.40 ± 0.09 A | 3.22 ± 0.59 Ba | 2.69 ± 0.55 a |
C + FC | 5.89 ± 0.03 Ab | 0.89 ± 0.04 b | 64.29 ± 0.07 A | 9.40 ± 0.09 Ab | 10.28 ± 0.01 Bb | |
C + R | 5.40 ± 0.06 c | 0.86 ± 0.05 ce | 55.93 ± 0.21 B | 4.53 ± 0.55 a | 3.33 ± 0.74 Ba | |
C + RW | 5.74 ± 0.01 d | 0.89 ± 0.05 b | 64.77 ± 0.13 B | 6.18 ± 0.02 Ac | 6.31 ± 0.01 Ac | |
C + RTD | 5.76 ± 0.01 d | 0.88 ± 0.05 d | 61.16 ± 0.15 B | 5.12 ± 0.03 Aac | 5.09 ± 0.09 ABc | |
C + RFD | 5.63 ± 0.01 Be | 0.87 ± 0.06 ec | 56.21 ± 0.16 B | 6.40 ± 0.24 Ac | 6.51 ± 0.27 Bc | |
14 | C | 5.89 ± 0.03 Aa | 0.89 ± 0.05 | 64.76 ± 0.01 Ba | 4.87 ± 0.02 ABa | 3.63 ± 0.10 a |
C + FC | 5.66 ± 0.03 Bab | 0.87 ± 0.07 | 61.79 ± 0.01 Bb | 10.43 ± 0.01 Bb | 9.50 ± 0.03 Cb | |
C + R | 5.48 ± 0.16 b | 0.89 ± 0.03 | 58.37 ± 0.01 Cc | 6.03 ± 0.78 ac | 3.78 ± 0.68 a | |
C + RW | 5.68 ± 0.03 ab | 0.89 ± 0.04 | 63.27 ± 0.03 Cd | 8.53 ± 0.53 Bd | 7.82 ± 0.30 Bc | |
C + RTD | 5.60 ± 0.08 ab | 0.88 ± 0.03 | 58.19 ± 0.01 Ce | 7.41 ± 0.16 Bdc | 6.36 ± 0.06 Bd | |
C + RFD | 5.54 ± 0.01 Ca | 0.90 ± 0.01 | 59.12 ± 0.01 Cf | 8.56 ± 0.47 Bd | 7.90 ± 0.4 Cc | |
Significance of factors 2 and their interactions | ||||||
FC/IC | 0.000 | ns | 0.031 | 0.000 | 0.000 | |
Day | 0.000 | ns | ns | 0.000 | 0.005 | |
Day × FC/IC | 0.041 | ns | ns | ns | 0.052 | |
R/RIC | 0.0001 | ns | 0.054 | 0.0001 | 0.0001 | |
Day | ns | ns | ns | 0.0001 | 0.010 | |
Day × R/RIC | ns | ns | ns | ns | ns | |
RW/RD | 0.027 | ns | 0.0001 | 0.051 | 0.027 | |
Day | 0.012 | ns | ns | 0.0001 | 0.001 | |
Day × RW/RD | ns | ns | ns | ns | ns |
Sugars (g/100 g) | Organic Acids and Metabolites of Sugar Conversion (g/100 g) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Sample 1 | Lactose | Galactose | Glucose | Fructose | Total sugars | Citric | Lactic | Acetic | Tartaric | Butyric | Glycerol | Ethanol |
1 | C | 6.29 Aa | 0.39 A | 0.00 | 0.00 | 6.69 Aa | 0.69 Aa | 0.69 Aa | 0.07 Aa | 0.00 a | 0.04 A | 0.08 Aa | 0.06 Aa |
C + FC | 6.99 Ab | 0.59 A | 0.00 | 0.00 | 7.59 Ab | 0.99 Ab | 0.89 Ab | 0.14 Ab | 0.00 a | 0.03 A | 0.16 b | 0.08 Aa | |
C + R | 6.89 Ac | 0.49 A | 11.30 A | 12.90 A | 31.19 Ac | 0.79 Ac | 0.99 Ac | 0.13 Ab | 1.10 Ab | 0.00 | 0.60 Ac | 0.07 Aa | |
C + RW | 3.99 Ad | 0.00 | 6.19 A | 6.89 A | 17.09 Ad | 0.59 Ad | 0.39 Ad | 0.02 Ad | 0.60 Ac | 0.00 | 0.16 Ab | 0.03 b | |
C + RTD | 5.59 Ae | 0.00 | 11.40 A | 13.30 A | 30.49 Ae | 0.79 Ac | 0.79 Ae | 0.06 Aa | 1.20 b | 0.00 | 0.28 Ad | 0.09 Ab | |
C + RFD | 4.39 Af | 0.00 | 11.70 A | 13.50 A | 29.79 Af | 0.59 Ad | 0.59 Af | 0.05 Aa | 1.60 Ad | 0.00 A | 0.23 Ae | 0.07 Ac | |
SD | 1.27 | 0.28 | 5.63 | 6.50 | 11.57 | 0.15 | 0.22 | 0.05 | 0.66 | 0.02 | 0.18 | 0.02 | |
7 | C | 5.69 Ba | 0.49 B | 0.00 | 0.00 | 6.09 Ba | 0.79 Ba | 0.79 Ba | 0.14 a | 0.00 | 0.02 | 0.13 Ba | 0.05 Aa |
C + FC | 6.09 Bb | 0.49 B | 0.00 | 0.00 | 6.59 Bb | 0.89 Bb | 0.79 Ba | 0.12 a | 0.00 | 0.02 | 0.11 Ba | 0.07 ABa | |
C + R | 4.69 Bc | 0.29 B | 10.10 B | 11.50 B | 26.49 Bc | 0.59 Bc | 0.69 Bb | 0.08 Bb | 1.20 AB | 0.00 | 0.36 Bb | 0.02 Bb | |
C + RW | 4.19 Bd | 0.00 | 6.39 B | 7.29 B | 17.99 Bd | 0.49 Bd | 0.39 Bc | 0.05 Bb | 0.90 B | 0.00 | 0.17 Bc | 0.02 b | |
C + RTD | 4.69 Bc | 0.00 | 4.09 B | 4.79 BB | 13.59 Be | 0.49 Bd | 0.39 Bc | 0.03 Bd | 0.50 | 0.00 | 0.13 Ba | 0.04 Ba | |
C + RFD | 5.49 Be | 0.00 | 10.40 B | 12.20 B | 28.29 Bf | 0.69 Be | 0.69 Bd | 0.06 b | 1.20 B | 0.35 B | 0.26 Bd | 0.04 Ba | |
SD | 0.73 | 0.25 | 4.64 | 5.36 | 9.55 | 0.16 | 0.19 | 0.04 | 0.55 | 0.14 | 0.10 | 0.02 | |
14 | C | 5.39 Ca | 0.29 C | 0.00 | 0.00 | 5.69 Ca | 0.59 Ca | 0.49 Ca | 0.02 Ca | 0.00 | 0.00 B | 0.04 Ca | 0.01 Ba |
C + FC | 5.49 Cb | 0.39 C | 0.00 | 0.00 | 5.79 Cb | 0.59 Ca | 0.69 Cb | 0.07 Bb | 0.00 | 0.00 B | 0.05 Ca | 0.03 Ba | |
C + R | 4.79 Cc | 0.00 C | 7.59 C | 8.59 C | 20.99 Cc | 0.49 Cb | 0.49 Ca | 0.03 Ca | 0.60 B | 0.00 | 0.26 Cb | 0.04 ABb | |
C + RW | 4.59 Cd | 0.00 | 4.09 C | 4.89 C | 13.59 Cd | 0.59 Aa | 0.29 Ac | 0.03 ABa | 0.50 A | 0.00 | 0.12 Ac | 0.01 a | |
C + RTD | 5.49 Cb | 0.00 | 4.99 CC | 5.89 | 16.39 Ce | 0.49 Bb | 0.39 Bd | 0.03 Ba | 0.50 | 0.00 | 0.13 Bc | 0.00 Ca | |
C + RFD | 4.49 Ce | 0.00 | 6.89 C | 7.99 C | 19.29 Cf | 0.49 Cb | 0.39 Cd | 0.04 Ca | 0.40 C | 0.00 A | 0.14 Cc | 0.00 Ca | |
SD | 0.47 | 0.18 | 3.29 | 3.78 | 6.61 | 0.05 | 0.14 | 0.02 | 0.27 | 0.01 | 0.08 | 0.02 | |
Significance of factors 2 | |||||||||||||
FC/IC | 0.021 | 0.006 | 0.007 | 0.016 | 0.010 | 0.024 | 0.001 | 0.013 | ns | ns | ns | ||
Day | ns | ns | ns | ns | 0.045 | ns | 0.041 | ns | ns | ns | 0.033 | ||
Day × FC/IC | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ||
R/RIC | ns | ns | ns | ns | ns | ns | 0.009 | ns | ns | 0.001 | ns | ||
Day | ns | ns | ns | ns | ns | ns | 0.013 | ns | ns | 0.006 | ns | ||
Day × R/RIC | ns | ns | ns | ns | ns | ns | 0.031 | ns | ns | ns | 0.05 | ||
RW/RD | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.041 | ||
Day | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.013 | ||
Day × RW/RD | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mileriene, J.; Serniene, L.; Kondrotiene, K.; Santarmaki, V.; Kourkoutas, Y.; Vasiliauskaite, A.; Lauciene, L.; Malakauskas, M. Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese. Foods 2022, 11, 1311. https://doi.org/10.3390/foods11091311
Mileriene J, Serniene L, Kondrotiene K, Santarmaki V, Kourkoutas Y, Vasiliauskaite A, Lauciene L, Malakauskas M. Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese. Foods. 2022; 11(9):1311. https://doi.org/10.3390/foods11091311
Chicago/Turabian StyleMileriene, Justina, Loreta Serniene, Kristina Kondrotiene, Valentini Santarmaki, Yiannis Kourkoutas, Agne Vasiliauskaite, Lina Lauciene, and Mindaugas Malakauskas. 2022. "Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese" Foods 11, no. 9: 1311. https://doi.org/10.3390/foods11091311
APA StyleMileriene, J., Serniene, L., Kondrotiene, K., Santarmaki, V., Kourkoutas, Y., Vasiliauskaite, A., Lauciene, L., & Malakauskas, M. (2022). Indigenous Lactococcus lactis with Probiotic Properties: Evaluation of Wet, Thermally- and Freeze-Dried Raisins as Supports for Cell Immobilization, Viability and Aromatic Profile in Fresh Curd Cheese. Foods, 11(9), 1311. https://doi.org/10.3390/foods11091311