Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Procedures for Slaughter and Muscle Sampling
2.3. Fatty Acid Analysis
2.4. Volatile Compound Analysis
2.5. Sensorial Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Carcass Weight and pH Value of the Meat
3.2. Proximate Composition
3.3. Technological Meat Quality Traits
3.4. Fatty Acid Composition
3.5. Volatile Compounds
3.6. Sensorial Analysis
3.7. Discriminant Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devendra, C. Investments on pro-poor development projects on goats: Ensuring success for improved livelihoods. Asian Australas J. Anim. 2013, 26, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campo, M.M.; Muela, E.; Resconi, V.C.; Barahona, M.; Sañudo, C. Influence of commercial cut on proximate composition and fatty acid profile of Rasa Aragonesa light lamb. J. Food Compost. Anal. 2016, 53, 7–12. [Google Scholar] [CrossRef]
- ARCA. Sistema Nacional de Información de Razas. Gobierno de España. 2021. Available online: https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/default.aspx (accessed on 15 May 2021).
- Cifre, J.; Rigo, A.; Gulías, J.; Rallo, J.; Joy, M.; Joy, S.; Mus, M.; Sánchez, F.; Ramón, J.; Ruiz, M.; et al. Caracterizaciò de Les Pastures de Les Illes Balears, 7th ed.; Quaderns dÍnvestigación: Palma de Mallorca, Spain, 2007. [Google Scholar]
- Mateo, J.; Caro, I.; Carballo, D.E.; Gutiérrez-Méndez, N.; Arranz, J.J.; Gutiérrez-Gil, B. Carcass and meat quality characteristics of Churra and Assaf suckling lambs. Animal 2018, 12, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Horcada, A.; Alcalde, M.J.; Valera, M.; Mullen, A.M.; Molina, A. Estimation of factors influencing fatty acid profiles in light lambs. Meat Sci. 2008, 79, 203–210. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; Fernández-Cabanás, V.M.; Mena, Y.; Delgado-Pertíñez, M. Fatty acid profile and vitamins A and E contents of milk in goat farms under Mediterranean wood pastures as affected by grazing conditions and seasons. J. Food Compos. Anal. 2018, 72, 122–131. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; Joy, M.; Bernués, A. Role of self-sufficiency, productivity and diversification on the economic sustainability of farming systems with autochthonous sheep breeds in less favoured areas in Southern Europe. Animal 2014, 8, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- European Union Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79.
- European Union REGULATION (EC) No 1099/2009 of 24 September 2009 on the protection of European animals at the time of killing. Off. J. Eur. Union 2009, 53, 1–30.
- Association of Official Analytical Chemist (AOAC). Official Methods of Analysis, 17th ed.; Horwitz, W., Latimer, G., Eds.; AOAC: Arlington, TX, USA, 2000. [Google Scholar]
- CIE (Commission Internationale de l’éclairage). Official Recommendations on Uniform Color Spaces. Color Difference Equations and Metric Color Terms; CIE Publication: Paris, France, 1986. [Google Scholar]
- Guzmán, J.L.; Vega, F.; Zarazaga, L.A.; Argüello, A.; Delgado-Pertíñez, M. Carcass characteristics and meat quality of Payoya breed conventionally and organically reared dairy goat suckling kids. Ann. Anim. Sci. 2019, 19, 1143–1159. [Google Scholar] [CrossRef] [Green Version]
- Hornsey, H.C. The color of cooked cured pork. Estimation of the nitric oxide-haem pigments. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; Avilés, C.; Galán-Soldevilla, H.; Polvillo, O.; Ruiz, P.; Guzmán, J.L.; Horcada, A.; Delgado-Pertíñez, M. Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System. Foods 2021, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation and Instrumental Tenderness Measurements of Fresh Meat; National Live Stock and Meat Broad: Chicago, IL, USA, 1995. [Google Scholar]
- Resconi, V.; Campo, M.; Montossi, F.; Ferreira, V.; Sañudo, C.; Escudero, A. Relationship between odour-active compounds and flavour perception in meat from lambs fed different diets. Meat Sci. 2010, 85, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Resconi, V.; Escudero, A.; Campo, M. The Development of Aromas in Ruminant Meat. Molecules 2013, 18, 6748–6781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef]
- Stashenko, E.E.; Martínez, J.R. Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Sci. Chromatogr. 2010, 2, 29–47. [Google Scholar]
- ISO 8586-1; Sensory Analysis—Methodology—General Guidance for the Selection and Training and Monitoring of Assessors. Selected Assessors International Standards Organization Publications: Geneva, Switzerland, 1993. Available online: https://www.iso.org/standard/15875.html (accessed on 7 April 2021).
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Fiori, M.; Scintu, M.F.; Sitzia, M.; Addis, M. Dietary effects on meat chemical traits and fatty acid composition in intramuscular lipids of Sarda x Ile de France heavy lambs. Options Méditerran. 2013, 107, 201–205. [Google Scholar]
- Madruga, M.; De Oliveira, N.; Alves, T.; Menezes, A.; Menezes, K.; Ramos, R.; Malveira, A.; Dantas, I.; Paseto, R.; Pereira, J.; et al. Physicochemical and sensory characterization of meat from lambs subjected to feeding restrictions. Braz. J. Food Technol. 2020, 23. [Google Scholar] [CrossRef]
- Eriksen, M.; Rødbotten, R.; Grøndahl, A.; Friestad, M.; Andersen, I.; Mejdell, C. Mobile abattoir versus conventional slaughterhouse—Impact on stress parameters and meat quality characteristics in Norwegian lambs. Appl. Ani. Behav. Sci. 2013, 149, 21–29. [Google Scholar] [CrossRef]
- Martinez-Cerezo, S.; Sañudo, C.; Panea, B.; Medeo, I.; Delfa, R.; Sierra, I.; Beltran, J.A.; Cepero, R.; Olleta, J.L. Breed, slaughter weight and ageing time effects on physico-chemical characteristics of lamb meat. Meat Sci. 2005, 69, 325–333. [Google Scholar] [CrossRef]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb color and objective measures of color. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Cárdenas, A.R.; Caro, I.; Blanco, C.; Villalobos-Delgado, L.H.; Prieto, N.; Bodas, R.; Giráldez, F.J.; Mateo, J. Effect of vacuum ageing on quality changes of lamb steaks from early fattening lambs during aerobic display. Meat Sci. 2014, 98, 646–651. [Google Scholar] [CrossRef] [PubMed]
- I Furnols, M.F.; San Julián, R.; Guerrero, L.; Sañudo, C.; Campo, M.M.; Olleta, J.L.; Oliver, M.A.; Cañeque, V.; Álvarez, I.; Díaz, M.T.; et al. Acceptability of lamb meat from different producing systems and ageing time to German, Spanish and British consumers. Meat Sci. 2006, 72, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, S.; Panea, B.; Ripoll, G.; Sanz, A.; Joy, M. Influence of feeding systems on cortisol levels, fat color and instrumental meat quality in light lambs. Meat Sci. 2009, 83, 50–56. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Braghieri, A.; Muscio, A.; Sevi, A. Organic farming: Effects of forage to concentrate ratio and ageing time on meat quality of Podolian young bulls. Livest. Sci. 2006, 102, 42–50. [Google Scholar] [CrossRef]
- Frylinck, L.; Strydom, P.E.; Webb, E.C.; du Toit, E. Effect of South African beef production systems on post-mortem muscle energy status and meat quality. Meat Sci. 2013, 93, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Santos Silva, J.; Mendes, I.A.; Bessa, R.J. The effect of genotype, feeding system and slaughter weight on the quality of light lambs. 1. Growth, carcass composition and meat quality. Livest. Sci. 2002, 76, 17–25. [Google Scholar] [CrossRef]
- Kemp, J.D.; Johnson, A.E.; Stewart, D.F.; Ely, D.G.; Fox, J.D. Effect of dietary protein, slaughter weight and sex on carcass composition, organoleptic properties and cooking losses of lamb. J. Anim. Sci. 1976, 42, 575–586. [Google Scholar] [CrossRef]
- Sañudo, C.; Enser, M.E.; Campo, M.M.; Nute, G.R.; Marıa, G.; Sierra, I.; Wood, J.D. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Urrutia, O.; Soret, B.; Insausti, K.; Mendizabal, J.A.; Purroy, A.; Arana, A. The effects of linseed or chia seed dietary supplementation on adipose tissue development, fatty acid composition, and lipogenic gene expression in lambs. Small Rumin. Res. 2015, 123, 204–211. [Google Scholar] [CrossRef]
- Bravo-Lamas, L.; Barron, L.; Kramer, J.; Etaio, I.; Aldai, N. Characterization of the fatty acid composition of lamb commercially available in northern Spain: Emphasis on the trans-18:1 and CLA content and profile. Meat Sci. 2016, 117, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Arana, A.; Mendizabal, J.A.; Alzón, M.; Eguinoa, P.; Beriain, M.J.; Purroy, A. Effect of feeding lambs oleic acid calcium soaps on growth, adipose tissue development and composition. Small Rumin. Res. 2006, 63, 75–83. [Google Scholar] [CrossRef]
- Cherif, M.; Valenti, B.; Abidi, S.; Luciano, G.; Mattioli, S.; Pauselli, M.; Bouzarraa, I.; Priolo, A.; Ben Salem, H. Supplementation of Nigella sativa seeds to Barbarine lambs raised on low- or high-concentrate diets: Effects on meat fatty acid composition and oxidative stability. Meat Sci. 2018, 139, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.; Enser, M.; Fisher, A.; Nute, G.; Sheard, P.; Richardson, R.; Hughes, S.; Whittington, F. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E.; Sheard, P.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Wood, J.; Enser, M. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br. J. Nutr. 1997, 78, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Salter, A.M. Dietary fatty acids and cardiovascular disease. Animal 2013, 7, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Actualisation des Apports Nutritionnels Conseillés Pour les Acides Gras (Updating Recommended Dietary Intakes for Fatty Acids); Anses: Buenos Aires, Argentina, 2011; p. 323.
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Turan, H.; Sönmez, G.; Kaya, Y. Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black Sea. J. Fish. Sci. 2007, 1, 97–103. [Google Scholar] [CrossRef]
- De Sousa, S.; Diogenes, L.; Oliveira, R.; Souza, M.; Mazza, P.; da Silva Júnior, J.; Pereira, E.; Parente, M.; Araújo, M.; de Oliveira, J.; et al. Effect of dietary buriti oil on the quality, fatty acid profile and sensorial attributes of lamb meat. Meat Sci. 2022, 186, 108734. [Google Scholar] [CrossRef]
- Sinanoglou, V.; Batrinou, A.; Mantis, F.; Bizelis, I.; Miniadis-Meimaroglou, S. Lipid quality incices: Differentiation of suckling lamb and kid breeds reared by traditional farming. Small Rumin. Res. 2013, 113, 1–10. [Google Scholar] [CrossRef]
- Stein, S.; Babushok, V.; Brown, R.; Linstrom, P. Estimation of Kova´ts Retention Indices Using Group Contributions. J. Chem. Inf. Model. 2007, 47, 975–980. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Insausti, K.; Murillo-Arbizu, M.; Urrutia, O.; Mendizabal, J.A.; Beriain, M.J.; Colle, M.; Bass, P.; Arana, A. Volatile compounds, odour and flavour attributes of lamb meat from the Navarra breed as affected by ageing. Foods 2021, 10, 493. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Fernández-Diez, A.; Mateo, J.; Bodas, R.; Soto, S.; Manso, T. Effects of addition of different vegetable oils to lactating dairy ewes’ diet on meat quality characteristics of suckling lambs reared on the ewes’ milk. Meat Sci. 2012, 91, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Lamas, L.; Barron, L.J.R.; Farmer, L.; Aldai, N. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain. Meat Sci. 2018, 139, 231–238. [Google Scholar] [CrossRef]
- Lee, J.Y.; Zhao, L.; Youn, H.S.; Weatherill, A.R.; Tapping, R.; Feng, L.; Lee, W.H.; Fitzgerald, K.A.; Hwang, D.H. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J. Biol. Chem. 2004, 279, 16971–16979. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Sañudo, C.; Campo, M.M.; Olleta, J.L.; Muela, E.; Macedo, R.M.; Macedo, F.A. Effect of linseed supplementation level and feeding duration on performance, carcass and meat quality of cull ewes. Small Rumin. Res. 2018, 167, 70–77. [Google Scholar] [CrossRef]
- Resconi, V.C.; Campo, M.M.; Font i Furnols, M.; Montossi, F.; Sañudo, C. Sensory evaluation of castrated lamb finished on different proportions of pasture and concentrate feeding systems. Meat Sci. 2009, 83, 31–37. [Google Scholar] [CrossRef]
- Huff, E.J.; Parrish, F.C., Jr. Bovine longissimus muscle tenderness as affected by post-mortem aging time, animal age and sex. J. Food Sci. 1993, 58, 713–716. [Google Scholar] [CrossRef]
- Sañudo, C.; Macie, E.S.; Olleta, J.L.; Villarroel, M.; Panea, B.; Albertí, P. The effects of slaughter weight, breed type and ageing time on beef meat quality using two different texture devices. Meat Sci. 2004, 66, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Enser, M.; Hallet, K.G.; Hewett, B.; Fursey, G.A.; Wood, J.D.; Harrington, G. Fatty acid content and composition of UK beef and Lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 1998, 49, 329–341. [Google Scholar] [CrossRef]
- Scerra, M.; Caparra, P.; Foti, F.; Galofaro, V.; Sinatra, M.C.; Scerra, V. Influence of ewe feeding systems on fatty acid composition of suckling lambs. Meat Sci. 2007, 76, 390–394. [Google Scholar] [CrossRef]
- Gagaoua, M.; Terlouw, C.; Mullen, A.M.; Franco, D.; Warner, R.D.; Lorenzo, J.M.; Purslow, P.P.; Gerrard, D.; Hopkins, D.L.; Troy, D.; et al. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci. 2021, 172, 108311. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Jin, M.L.; Wang, L.J.; Zhang, A.D.; Zuo, B.; Xu, D.Q.; Ren, Z.Q.; Lei, M.G.; Mo, X.Y.; Li, F.E.; et al. Differential proteome analysis of porcine skeletal muscles between Meishan and Large White. J. Anim. Sci. 2009, 87, 2519–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Composition (%, DM Basis) | |||||
---|---|---|---|---|---|
DM | Raw Protein | Raw Fibre | Ether Extract | Ash | |
Oat grain | 88.95 | 10.40 | 12.13 | 3.92 | 2.86 |
Wheat grain | 88.64 | 9.38 | 2.00 | 2.00 | 1.35 |
Concentrate supplement 1 | 87.78 | 17.00 | 7.35 | 3.82 | 2.51 |
ML (n = 20) | MP (n = 20) | MC (n = 20) | RC (n = 20) | SEM | p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Min. | |||
Live weight (kg) | 12.9 | 15.0 | 12.0 | 13.8 | 16.0 | 10.5 | 20.00 | 20.7 | 16.2 | 22.2 | 24.3 | 17.3 | 0.088 | ≤0.001 |
Carcass weight (kg) | 6.71 c | 8.43 | 5.35 | 7.15 b | 8.11 | 5.82 | 9.31 a | 11.29 | 7.23 | 10.1 a | 13.36 | 6.97 | 0.23 | ≤0.001 |
pH24hours | 5.89 b | 6.40 | 5.44 | 5.64 b | 6.22 | 5.00 | 5.89 b | 6.57 | 5.22 | 6.08 a | 6.59 | 5.78 | 0.04 | ≤0.001 |
Chemical composition (% fresh meat) | ||||||||||||||
Moisture | 75.62 | 76.79 | 74.25 | 75.59 | 77.16 | 74.18 | 75.96 | 77.07 | 74.88 | 76.15 | 77.15 | 74.94 | 0.08 | 0.050 |
Protein | 20.88 a | 22.22 | 19.89 | 20.82 a | 22.36 | 18.85 | 20.62 ab | 21.87 | 19.60 | 20.27 b | 21.04 | 19.51 | 0.09 | 0.046 |
Fat | 1.32 | 2.25 | 0.73 | 1.52 | 3.09 | 0.48 | 1.34 | 2.05 | 0.77 | 1.28 | 2.03 | 0.74 | 0.05 | 0.480 |
Ash | 1.32 | 1.67 | 1.15 | 1.54 | 2.36 | 1.20 | 1.48 | 2.01 | 1.03 | 1.48 | 2.56 | 1.15 | 0.03 | 0.166 |
Colour | ||||||||||||||
Myoglobin content (mg/g fresh meat) | 3.68 | 6.78 | 1.46 | 4.02 | 7.08 | 2.04 | 4.06 | 7.29 | 1.82 | 3.04 | 5.00 | 0.86 | 0.16 | 0.084 |
Lightness (L*) | 39.58 | 43.11 | 36.55 | 39.16 | 42.65 | 36.42 | 38.75 | 43.24 | 35.63 | 38.40 | 43.79 | 34.66 | 0.23 | 0.289 |
Redness (a*) | 11.25 | 12.65 | 8.65 | 11.18 | 13.36 | 8.22 | 11.44 | 14.24 | 8.59 | 11.41 | 12.93 | 8.34 | 0.15 | 0.928 |
Yellowness (b*) | 6.29 | 7.98 | 4.98 | 6.09 | 7.27 | 4.59 | 6.02 | 7.34 | 4.90 | 5.68 | 7.97 | 4.43 | 0.09 | 0.108 |
Chroma (C*) | 12.92 | 14.33 | 9.98 | 12.77 | 14.87 | 10.78 | 12.98 | 15.26 | 10.98 | 12.80 | 13.94 | 10.30 | 0.13 | 0.937 |
Hue angle (H°) | 29.26 | 38.81 | 22.98 | 28.87 | 41.49 | 21.49 | 28.12 | 40.51 | 21.08 | 26.61 | 37.49 | 19.11 | 0.56 | 0.334 |
Shear force (kg/cm2) | 4.94 b | 7.64 | 2.07 | 5.67 a | 7.53 | 2.27 | 3.78 b | 5.30 | 7.27 | 2.87 c | 5.35 | 7.42 | 2.40 | 0.042 |
Water holding capacity | ||||||||||||||
Cooking losses | 24.38 | 30.17 | 14.28 | 24.92 | 32.31 | 15.25 | 24.98 | 29.08 | 18.75 | 23.23 | 31.07 | 13.84 | 0.45 | 0.473 |
Pressure losses | 13.21 b | 15.97 | 9.86 | 13.53 b | 18.37 | 9.49 | 16.38 a | 19.70 | 10.03 | 15.73 a | 19.88 | 12.10 | 0.30 | ≤0.001 |
ML (n = 20) | MP (n = 20) | MC (n = 20) | RC (n = 20) | SEM | p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Min. | |||
SFA | 45.65 b | 52.54 | 40.82 | 49.38 ab | 55.49 | 42.08 | 50.43 a | 53.71 | 46.29 | 46.85 b | 49.96 | 43.58 | 0.450 | ≤0.001 |
C8:0-C13:0 | 1.71 c | 2.98 | 0.75 | 2.66 a | 3.76 | 1.38 | 2.35 ab | 3.49 | 1.49 | 2.02 bc | 3.81 | 0.91 | 0.094 | 0.002 |
C14:0 | 3.98 b | 5.64 | 2.34 | 4.82 a | 5.99 | 3.74 | 3.46 b | 4.78 | 2.57 | 3.95 b | 5.61 | 2.65 | 0.114 | ≤0.001 |
C16:0 | 21.82 c | 25.57 | 18.15 | 24.88 ab | 28.90 | 21.48 | 26.09 a | 27.85 | 24.17 | 22.70 bc | 24.91 | 20.91 | 0.303 | ≤0.001 |
C18:0 | 15.96 a | 19.13 | 13.89 | 14.70 b | 16.12 | 12.10 | 16.33 a | 19.32 | 13.81 | 16.09 a | 19.73 | 13.65 | 0.177 | 0.010 |
Others SFA | 2.18 | 3.51 | 1.45 | 2.14 | 2.74 | 1.47 | 2.19 | 2.87 | 1.691 | 2.09 | 3.05 | 1.73 | 0.044 | 0.851 |
MUFA | 34.61 a | 37.61 | 29.52 | 29.90 b | 36.98 | 22.93 | 33.53 a | 39.17 | 28.5 | 34.64 a | 39.64 | 30.34 | 0.412 | ≤0.001 |
C16:1 | 1.70 | 2.05 | 1.13 | 1.78 | 2.64 | 1.31 | 1.69 | 2.09 | 1.38 | 1.68 | 2.10 | 1.26 | 0.018 | 0.864 |
Total C18:1 | 30.13 a | 32.39 | 24.13 | 25.08 b | 31.44 | 18.80 | 28.83 a | 33.55 | 24.84 | 30.44 a | 35.22 | 26.67 | 0.404 | ≤0.001 |
Others MUFA | 1.647 b | 2.131 | 1.365 | 1.90 a | 2.78 | 1.5 | 1.61 b | 2.47 | 1.132 | 1.74 ab | 1.98 | 1.42 | 0.036 | 0.024 |
PUFA | 19.74 a | 23.54 | 15.08 | 19.59 a | 23.65 | 15.65 | 16.04 c | 19.49 | 13.14 | 17.87 b | 20.05 | 15.08 | 0.335 | ≤0.001 |
Total C18:2 n-6 | 8.89 b | 11.82 | 6.64 | 9.91 a | 12.28 | 8.29 | 8.86 b | 10.39 | 6.947 | 8.56 b | 10.60 | 6.36 | 0.160 | 0.027 |
C18:3 n-3 | 1.61 a | 2.92 | 0.62 | 1.28 a | 2.59 | 0.58 | 0.50 b | 1.00 | 0.254 | 1.41 a | 2.58 | 1.12 | 0.081 | ≤0.001 |
C20:2 | 0.19 b | 0.34 | 0.13 | 0.24 a | 0.32 | 0.21 | 0.18 b | 0.26 | 0.115 | 0.20 ab | 0.34 | 0.08 | 0.003 | 0.030 |
C20:3 n-6 | 0.13 b | 0.20 | 0.07 | 0.16 b | 0.26 | 0.06 | 0.18 ab | 0.61 | 0.083 | 0.24 a | 0.57 | 0.06 | 0.012 | 0.011 |
C20:4 n-6 | 4.25 | 5.96 | 2.58 | 4.31 | 5.85 | 2.94 | 4.18 | 5.90 | 2.943 | 4.15 | 5.48 | 2.59 | 0.098 | 0.948 |
C20:5 n-3 | 1.20 a | 2.13 | 0.46 | 0.87 a | 1.72 | 0.43 | 0.37 b | 0.54 | 0.107 | 0.97 a | 2.07 | 0.51 | 0.057 | ≤0.001 |
C22:5 n-3 | 1.50 a | 2.20 | 0.66 | 1.23 b | 1.77 | 0.70 | 0.75 c | 0.98 | 0.418 | 1.45 a | 2.20 | 1.02 | 0.048 | ≤0.001 |
C22:6 n-3 | 0.97 a | 1.68 | 0.57 | 0.55 b | 0.84 | 0.39 | 0.32 c | 0.47 | 0.094 | 0.64 b | 1.01 | 0.32 | 0.066 | ≤0.001 |
Others PUFA | 2.73 ab | 4.73 | 1.70 | 2.98 a | 3.98 | 2.19 | 2.46 ab | 3.66 | 1.429 | 2.23 b | 3.20 | 1.63 | 0.093 | 0.022 |
n-6/n-3 | 2.71 b | 5.28 | 1.45 | 4.16 b | 5.85 | 1.91 | 7.11 a | 13.00 | 4.189 | 2.94 b | 3.76 | 1.71 | 0.280 | ≤0.001 |
AI | 0.73 c | 0.94 | 0.50 | 0.93 a | 1.08 | 0.72 | 0.83 b | 1.01 | 0.694 | 0.74 c | 0.88 | 0.50 | 0.027 | ≤0.001 |
EM | RI | LRI | ML (n = 20) | MP (n = 20) | MC (n = 20) | RC (n = 20) | SEM | p-Values | |
---|---|---|---|---|---|---|---|---|---|
Aliphatic aldehydes | |||||||||
3-Methylbutanal | + | + | 923 | 7.30 ab | 9.43 b | 4.20 b | 17.81 a | 0.256 | 0.005 |
Pentanal | + | + | 985 | 2.04 | 2.47 | 2.42 | 2.84 | 0.135 | 0.205 |
Hexanal | + | + | 1.088 | 46.82 ab | 53.44 a | 60.98 a | 37.01 b | 2.625 | 0.006 |
Heptanal | + | + | 1.193 | 3.97 | 3.76 | 3.42 | 3.40 | 0.174 | 0.560 |
Octanal | + | + | 1.297 | 1.80 a | 1.37 b | 1.60 ab | 1.26 b | 0.078 | 0.053 |
Nonanal | + | + | 1.403 | 6.31 a | 4.04 b | 4.34 b | 3.99 b | 0.008 | ≤0.001 |
Octenal | + | + | 1441 | 0.09 a | 0.08 a | 0.07 a | 0.04 b | 0.005 | 0.004 |
Decanal | + | + | 1508 | 0.11 b | 0.10 b | 0.08 b | 0.20 a | 0.015 | 0.025 |
(Z)-2-nonenal | + | + | 1549 | 0.14 a | 0.14 a | 0.08 b | 0.16 a | 0.010 | 0.025 |
2(E),4(Z)-undecadienal | + | 1781 | 0.22 | 0.17 | 0.14 | 0.25 | 0.022 | 0.314 | |
2(E),4(Z)-dodecadienal | + | 1824 | 0.03 | 0.04 | 0.04 | 0.03 | 0.047 | 0.333 | |
Aliphatic ketones | |||||||||
2-Butanone | + | + | 906 | 0.57 b | 0.45 b | 0.46 b | 1.18 a | 0.101 | 0.021 |
2,3-pentanedione | + | 704 | 1.16 | 0.86 | 1.0 | 1.79 | 0.109 | 0.136 | |
2-Heptanone | + | + | 1.190 | 0.35 | 0.59 | 0.43 | 0.48 | 0.071 | 0.701 |
2-Octanone | + | + | 1.292 | 0.07 ab | 0.09 ab | 0.03 b | 0.11 a | 0.147 | 0.020 |
3-Hydroxy-2-butanone | + | + | 1.301 | 2.05 a | 0.40 c | 1.24 b | 1.30 b | 0.179 | 0.021 |
1-Octen-3-one | + | + | 1310 | 0.15 | 0.13 | 0.12 | 0.10 | 0.008 | 0.146 |
2-Hydroxy-2-propanone | + | + | 1.320 | 0.21 ab | 0.17 ab | 0.11 b | 0.27 a | 0.022 | 0.057 |
2,3-Octanedione | + | + | 1.333 | 2.75 a | 2.43 a | 2.57 a | 0.72 b | 0.071 | ≤0.001 |
2-Nonanone | + | + | 1.397 | 0.07 ab | 0.09 ab | 0.05 b | 0.30 a | 0.229 | 0.040 |
2-Propanone | + | 1.479 | 0.09 | 0.08 | 0.06 | 0.10 | 0.010 | 0.505 | |
2-Decanone | + | + | 1.504 | 0.03 b | 0.05 ab | 0.03 b | 0.11 a | 0.258 | 0.025 |
2-Undecanone | + | + | 1.626 | 0.01 | 0.02 | 0.01 | 0.01 | 0.002 | 0.332 |
Butyrolactone | + | + | 1.657 | 0.93 | 0.49 | 0.59 | 1.08 | 0.111 | 0.198 |
Aromatic hydrocarbons | |||||||||
Toluene | + | + | 1.046 | 0.11 b | 0.11 b | 0.08 b | 0.22 a | 0.015 | ≤0.001 |
P-Xylene | + | + | 1.149 | 0.13 | 0.17 | 0.15 | 0.29 | 0.017 | 0.003 |
Benzaldehyde | + | + | 1.544 | 1.24 ab | 1.02 b | 0.72 b | 1.80 a | 0.109 | 0.002 |
Benzeneacetaldehyde | + | + | 1.666 | 0.14 | 0.11 | 0.09 | 0.15 | 0.013 | 0.295 |
1,3-Benzenediol, 4-ethyl | + | 1.695 | 0.08 | 0.06 | 0.05 | 0.06 | 0.005 | 0.272 | |
Aliphatic alcohols | |||||||||
1-Penten-3-ol | + | + | 1.167 | 0.22 a | 0.16 b | 0.07c | 0.09 bc | 0.108 | ≤0.001 |
1-Pentanol | + | + | 1.258 | 1.13 | 1.05 | 1.23 | 1.13 | 0.070 | 0.859 |
1-Hexanol | + | + | 1.361 | 2.02 | 0.78 | 0.83 | 0.95 | 0.072 | 0.800 |
2-Ethyl-1-hexanol | + | + | 1.498 | 0.37 b | 0.30 b | 0.27 b | 1.30 a | 0.136 | ≤0.001 |
1-Octen-3-ol | + | + | 1.458 | 2.03 a | 1.57 a | 1.62 a | 1.06 b | 0.031 | ≤0.001 |
Heptanol | + | 1.464 | 0.26 | 0.17 | 0.20 | 0.18 | 0.055 | 0.140 | |
1-Octanol | + | + | 1.567 | 0.35 a | 0.22 b | 0.22 b | 0.26 ab | 0.018 | 0.025 |
2-Octen-3-ol | + | + | 1458 | 0.13 a | 0.12 a | 0.12 a | 0.07 b | 0.007 | 0.015 |
2,3-Butanediol | + | + | 1592 | 0.78 a | 0.06 b | 0.74 a | 0.17 a | 0.244 | 0.044 |
Furans | |||||||||
2-Pentylfuran | + | + | 1.239 | 0.57 a | 0.71 a | 0.40 ab | 0.35 b | 0.079 | 0.019 |
Furfural | + | + | 1.482 | 0.03 b | 0.03 ab | 0.03 b | 0.06 a | 0.152 | 0.030 |
2-Acethylfuran | + | + | 1.524 | 0.04 | 0.05 | 0.04 | 0.08 | 0.008 | 0.242 |
2-Furanmethanol | + | + | 1.679 | 0.05 | 0.08 | 0.07 | 0.11 | 0.154 | 0.190 |
Sulphur compounds | |||||||||
Dimethyl disulphyde | + | + | 1.081 | 0.72 b | 0.20 b | 0.21 b | 1.31 a | 0.211 | 0.351 |
1-Propene-1-thiol | + | 1.201 | 3.54 a | 4.02 a | 1.96 b | 3.95 a | 0.283 | 0.032 | |
Dimethyl sulfone | + | + | 1.914 | 0.15 b | 0.13 b | 0.06 b | 0.26 a | 0.160 | ≤0.001 |
Pyrazines | |||||||||
Methylpyrazine | + | + | 1.276 | 0.40 b | 0.51 ab | 0.29 b | 0.84 a | 0.074 | 0.038 |
2,5-Dimethylpyrazine | + | + | 1.332 | 1.45 | 1.44 | 1.26 | 2.37 | 0.234 | 0.307 |
2,6-Dimethylpyrazine | + | + | 1.338 | 0.42 | 0.56 | 0.46 | 0.87 | 0.095 | 0.308 |
2,3-Dimethylpyrazine | + | + | 1.357 | 0.18 | 0.18 | 0.13 | 0.31 | 0.030 | 0.170 |
2-Ethyl-6-methylpyrazine | + | + | 1.395 | 0.21 a | 0.31 a | 0.08 b | 0.29 a | 0.186 | 0.022 |
Trimethylpyrazine | + | + | 1.413 | 1.24 | 1.18 | 1.13 | 1.90 | 0.151 | 0.120 |
2-Ethyl-3-methylpyrazine | + | + | 1.418 | 0.32 | 0.29 | 0.15 | 0.21 | 0.085 | 0.207 |
3-Ethyl-2,5-dimethylpyrazine | + | + | 1.454 | 0. 50 b | 0.59 ab | 0.38 b | 1.04 a | 0.086 | 0.025 |
2-Ethil-3,5-dimethylpyrazine | + | + | 1.471 | 0.18 | 0.22 | 0.16 | 0.33 | 0.029 | 0.148 |
2-Methyl-3,5-diethylpyrazine | + | + | 1.504 | 0.08 | 0.09 | 0.07 | 0.13 | 0.018 | 0.706 |
Pyrroles | |||||||||
Pyrrole | + | 1.536 | 0.10 b | 0.14 b | 0.12 b | 0.26 a | 0.024 | 0.004 | |
3-Methyl-pyrrole | + | 1.592 | 0.29 | 0.01 | traces | 0.15 | 0.066 | 0.141 | |
2-Acethylpyrrole | + | + | 1.967 | 0.22 | 0.18 | 0.18 | 0.35 | 0.027 | 0.061 |
Carboxylic acids | |||||||||
Acetic acid | + | + | 1.486 | 0.90 | 0.55 | 0.68 | 1.02 | 0.098 | 0.336 |
2-Hydroxy-propanoic acid | + | 1.556 | 0.07 | 0.05 | 0.04 | 0.08 | 0.010 | 0.636 | |
Propionic acid | + | + | 1.570 | 0.06 | 0.05 | 0.04 | 0.13 | 0.024 | 0.567 |
Hexanoic acid | + | + | 1.862 | 0.21 | 0.17 | 0.15 | 0.20 | 0.017 | 0.543 |
2-Ethylhexanoic acid | + | + | 1.944 | 0.01 | 0.01 | traces | 0.01 | 0.003 | 0.900 |
Heptanoic acid | + | + | 1.949 | 0.02 b | 0.02 b | 0.02 b | 0.05 a | 0.167 | 0.033 |
Octanoic acid | + | + | 2.031 | 0.05 b | 0.03 b | 0.06 b | 0.10 a | 0.123 | 0.017 |
Decanoic acid | + | 2.105 | 0.13 | 0.14 | 0.12 | 0.25 | 0.135 | 0.065 |
ML (n = 20) | MP (n = 20) | MC (n = 20) | RC (n = 20) | SEM | p-Values | |
---|---|---|---|---|---|---|
Lamb odour | 5.96 | 5.99 | 6.19 | 6.04 | 0.099 | 0.852 |
Milk odour | 6.97 | 6.34 | 6.52 | 6.76 | 0.125 | 0.323 |
Lactic acid flavour | 5.89 a | 4.95 b | 5.58 ab | 5.95 a | 0.130 | 0.030 |
Lamb flavour | 6.03 b | 6.94 a | 6.28 b | 6.38 b | 0.099 | 0.014 |
Liver flavour | 1.29 b | 2.10 a | 2.05 ab | 1.28 b | 0.138 | 0.041 |
Global flavour persistence | 4.86 c | 6.04 a | 4.66 c | 5.05 b | 0.123 | ≤0.001 |
Hardness | 3.64 | 3.44 | 3.78 | 3.68 | 0.096 | 0.682 |
Initial juiciness | 5.94 | 6.31 | 5.98 | 6.22 | 0.072 | 0.218 |
Final juiciness | 6.75 b | 7.31 a | 7.10 a | 7.23 a | 0.078 | 0.049 |
Friability | 7.39 b | 7.93 a | 7.27 b | 7.32 b | 0.087 | 0.035 |
Chewiness | 7.69 | 8.01 | 7.44 | 7.63 | 0.085 | 0.139 |
F-Values | p-Values | |
---|---|---|
∑ Polyunsaturated fatty acids | 24.987 | ≤0.001 |
C18:2n-6t | 23.379 | ≤0.001 |
C18:2n-6c | 20.502 | ≤0.001 |
Conjugated linoleic acid | 16.395 | ≤0.001 |
C18:1n-9c | 16.133 | ≤0.001 |
C17:1 | 12.280 | ≤0.001 |
Carcass weight | 11.715 | ≤0.001 |
Trans-vaccenic acid | 9.487 | ≤0.001 |
C10:0 | 7.460 | ≤0.001 |
Water holding capacity | 7.072 | ≤0.001 |
Aromatic hydrocarbons | 6.406 | 0.009 |
C16:1 | 5.998 | ≤0.001 |
C18:0 | 5.928 | ≤0.001 |
C12:0 | 5.097 | 0.003 |
Final juiciness | 4.846 | 0.005 |
C22:1 n-9 | 4.550 | 0.007 |
C23:0 | 4.235 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Peña, R.; García-Infante, M.; Delgado-Pertíñez, M.; Guzmán, J.L.; Zarazaga, L.Á.; Simal, S.; Horcada, A. Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System. Foods 2022, 11, 1312. https://doi.org/10.3390/foods11091312
Gutiérrez-Peña R, García-Infante M, Delgado-Pertíñez M, Guzmán JL, Zarazaga LÁ, Simal S, Horcada A. Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System. Foods. 2022; 11(9):1312. https://doi.org/10.3390/foods11091312
Chicago/Turabian StyleGutiérrez-Peña, Rosario, Manuel García-Infante, Manuel Delgado-Pertíñez, José Luis Guzmán, Luis Ángel Zarazaga, Susana Simal, and Alberto Horcada. 2022. "Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System" Foods 11, no. 9: 1312. https://doi.org/10.3390/foods11091312
APA StyleGutiérrez-Peña, R., García-Infante, M., Delgado-Pertíñez, M., Guzmán, J. L., Zarazaga, L. Á., Simal, S., & Horcada, A. (2022). Organoleptic and Nutritional Traits of Lambs from Spanish Mediterranean Islands Raised under a Traditional Production System. Foods, 11(9), 1312. https://doi.org/10.3390/foods11091312