A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagent
2.2. Animals
2.3. Ethical Approval
2.4. Experiment Design
2.4.1. Establishment and Evaluation of Cadmium-Induced Liver Injury Model
2.4.2. Time–Effect Relationship Exploration
2.4.3. Dose–Effect Relationship Exploration
2.4.4. Analysis of Physiological and Pathological Indexes
2.5. Statistics and Analyses
3. Results and Discussion
3.1. Impact on General Trait Indicators
3.2. Impact on Viscera Index
3.3. Impact on Hepatic Function Index
3.4. Impact on Blood Indicators
3.5. Impact on Pathological Morphology
3.6. Multivariate Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Matić, D.; Vlahović, M.; Ilijin, L.; Grčić, A.; Filipović, A.; Todorović, D.; Perić-Mataruga, V. Implications of Long-Term Exposure of a Lymantria Dispar L. Population to Pollution for the Response of Larval Midgut Proteases and Acid Phosphatases to Chronic Cadmium Treatment. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 250, 109172. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Chen, N.; Wan Mahari, W.A.; Xu, C.; Feng, H.; Ji, X.; Yin, Q.; Chen, P.; Zhu, S.; Liu, H.; et al. Biochar for Cadmium Pollution Mitigation and Stress Resistance in Tobacco Growth. Environ. Res. 2021, 192, 110273. [Google Scholar] [CrossRef] [PubMed]
- Suhani, I.; Sahab, S.; Srivastava, V.; Singh, R.P. Impact of Cadmium Pollution on Food Safety and Human Health. Curr. Opin. Toxicol. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Mahajan, M.; Gupta, P.K.; Singh, A.; Vaish, B.; Singh, P.; Kothari, R.; Singh, R.P. A Comprehensive Study on Aquatic Chemistry, Health Risk and Remediation Techniques of Cadmium in Groundwater. Sci. Total Environ. 2022, 818, 151784. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A.S.; El-Kott, A.F.; El-Kenawy, A.E.; Khalifa, H.S.; AlRamlawy, A.M. Cadmium Chloride Induces Non-Alcoholic Fatty Liver Disease in Rats by Stimulating MiR-34a/SIRT1/FXR/P53 Axis. Sci. Total Environ. 2021, 784, 147182. [Google Scholar] [CrossRef]
- Cui, Z.-G.; Ahmed, K.; Zaidi, S.F.; Muhammad, J.S. Ins and Outs of Cadmium-Induced Carcinogenesis: Mechanism and Prevention. Cancer Treat. Res. Commun. 2021, 27, 100372. [Google Scholar] [CrossRef]
- Salama, S.A.; Arab, H.H.; Hassan, M.H.; Al Robaian, M.M.; Maghrabi, I.A. Cadmium-Induced Hepatocellular Injury: Modulatory Effects of γ-Glutamyl Cysteine on the Biomarkers of Inflammation, DNA Damage, and Apoptotic Cell Death. J. Trace. Elem. Med. Biol. 2019, 52, 74–82. [Google Scholar] [CrossRef]
- Luo, W.; Long, Y.; Feng, Z.; Li, R.; Huang, X.; Zhong, J.; Liu, D.; Zhao, H. A γ-Glutamylcysteine Ligase AcGCL Alleviates Cadmium-Inhibited Fructooligosaccharides Metabolism by Modulating Glutathione Level in Allium Cepa L. J. Hazard Mater. 2021, 419, 126255. [Google Scholar] [CrossRef]
- Filippini, T.; Wise, L.A.; Vinceti, M. Cadmium Exposure and Risk of Diabetes and Prediabetes: A Systematic Review and Dose-Response Meta-Analysis. Environ. Int. 2022, 158, 106920. [Google Scholar] [CrossRef]
- Siddeeg, S.E.; Amari, A.; Tahoon, M.A.; Alsaiari, N.S.; Rebah, F.B. Removal of Meloxicam, Piroxicam and Cd+2 by Fe3O4 /SiO2 /Glycidyl Methacrylate-S-SH Nanocomposite Loaded with Laccase. AEJ—Alex. Eng. J. 2020, 59, 905–914. [Google Scholar] [CrossRef]
- Horiguchi, H.; Oguma, E.; Kayama, F.; Sato, M.; Fukushima, M. Dexamethasone Prevents Acute Cadmium-Induced Hepatic Injury but Exacerbates Kidney Dysfunction in Rabbits. Toxicol. Appl. Pharmacol. 2001, 174, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, U.; Ali, M.; Pervaiz, E. An Inclusive Review on Recent Advancements of Cadmium Sulfide Nanostructures and Its Hybrids for Photocatalytic and Electrocatalytic Applications. Mol. Catal. 2021, 508, 111575. [Google Scholar] [CrossRef]
- Kim, S.C.; Byun, S.H.; Yang, C.H.; Kim, C.Y.; Kim, J.W.; Kim, S.G. Cytoprotective Effects of Glycyrrhizae Radix Extract and Its Active Component Liquiritigenin against Cadmium-Induced Toxicity (Effects on Bad Translocation and Cytochrome c-Mediated PARP Cleavage). Toxicology 2004, 197, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, D.; Wei, B.; Wang, S.; Sun, H.; Li, X.; Zhang, F.; Zhang, C.; Xin, Y. Anti-Tumor Effect of Cactus Polysaccharides on Lung Squamous Carcinoma Cells (SK-MES-1). Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, R.; Song, Y.; Li, T.; Ge, M. Protective Effect of Ganoderma Triterpenoids on Cadmium-Induced Testicular Toxicity in Chickens. Biol. Trace. Elem. Res. 2019, 187, 281–290. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Zhu, Z.; Yu, L.; Yang, W.; Ren, X.; Liu, X. Characterization of Selenium-Containing Polysaccharide from Spirulina Platensis and Its Protective Role against Cd-Induced Toxicity. Int. J. Biol. Macromol. 2020, 164, 2465–2476. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ji, J.; Di, L.; Li, J.; Hu, L.; Qiao, H.; Wang, L.; Feng, Y. Resource, Chemical Structure and Activity of Natural Polysaccharides against Alcoholic Liver Damages. Carbohydr. Polym. 2020, 241, 116355. [Google Scholar] [CrossRef] [PubMed]
- Rehioui, M.; Abbout, S.; Benzidia, B.; Hammouch, H.; Erramli, H.; Daoud, N.A.; Badrane, N.; Hajjaji, N. Corrosion Inhibiting Effect of a Green Formulation Based on Opuntia Dillenii Seed Oil for Iron in Acid Rain Solution. Heliyon 2021, 7, e06674. [Google Scholar] [CrossRef]
- Katanić, J.; Yousfi, F.; Caruso, M.C.; Matić, S.; Monti, D.M.; Loukili, E.H.; Boroja, T.; Mihailović, V.; Galgano, F.; Imbimbo, P. Characterization of Bioactivity and Phytochemical Composition with Toxicity Studies of Different Opuntia Dillenii Extracts from Morocco. Food Biosci. 2019, 30, 100410. [Google Scholar] [CrossRef]
- Wu, S. Effect of Opuntia Dillenii Polysaccharide on Gelling Properties of Trichiurus Lepturus Myobrilar Protein. Int. J. Biol. Macromol. 2019, 130, 636–639. [Google Scholar] [CrossRef]
- Bouhrim, M.; Ouassou, H.; Choukri, M.; Mekhfi, C.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Hepatoprotective effect of Opuntia dillenii seed oil on CCl4 induced acute liver damage in rat. Asian Pac. J. Trop. Biomed. 2018, 8, 254–260. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, H.; Zhou, X.; Zhang, J. Optimum Extraction of Polysaccharides from Opuntia Dillenii and Evaluation of Its Antioxidant Activities. Carbohydr. Polym. 2013, 97, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Q.; Li, H.; Guo, L. Neuroprotective and Antioxidative Effect of Cactus Polysaccharides in Vivo and in Vitro. Cell. Mol. Neurobiol. 2009, 29, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Ahmad, K.R.; Aziz, N.; Rahim, S.; Kanwal, M.A. Hepatoprotective Activity of Opuntia Dillenii (Ker Gawl.) Haw. Fruit Pulp Extract against Cadmium Induced Toxicity in Mice. J. Anim. Plant Sci. 2016, 26, 1471–1478. [Google Scholar]
- Siddiqui, F.; Farooq, A.D.; Mudassar; Kabir, N.; Fatima, N.; Abidi, L.; Lubna; Faizi, S. Toxicological Assessment of Opuntia Dillenii (Ker Gawl.) Haw. Cladode Methanol Extract, Fractions and Its Alpha Pyrones: Opuntiol and Opuntioside. J. Ethnopharmacol. 2021, 280, 114409. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yan, J.; Zhang, H.; Wei, Y.; Zhang, M.; Rao, Z.; Zhang, M.; Wang, H.; Wang, Y.; Li, X. Screening and Validation of Biomarkers for Cadmium-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Environ. Pollut. 2022, 300, 118837. [Google Scholar] [CrossRef]
- Duan, Y.; Duan, J.; Feng, Y.; Huang, X.; Fan, W.; Wang, K.; Ouyang, P.; Deng, Y.; Du, Z.; Chen, D.; et al. Hepatoprotective Activity of Vitamin E and Metallothionein in Cadmium-Induced Liver Injury in Ctenopharyngodon Idellus. Oxid. Med. Cell. Longev. 2018, 2018, 9506543. [Google Scholar] [CrossRef] [Green Version]
- Medrano-Padial, C.; Prieto, A.I.; Puerto, M.; Pichardo, S. Toxicological Evaluation of Piceatannol, Pterostilbene, and ε-Viniferin for Their Potential Use in the Food Industry: A Review. Foods 2021, 10, 592. [Google Scholar] [CrossRef]
- Preece, K.; Glávits, R.; Foster, J.R.; Murbach, T.; Endres, J.R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I.P. A Toxicological Evaluation of Geranylgeraniol. Regul. Toxicol. Pharmacol. 2021, 124, 104975. [Google Scholar] [CrossRef]
- Zha, M.; Yang, J.; Zhou, L.; Wang, H.; Pan, X.; Deng, Z.; Yang, Y.; Li, W.; Wang, B.; Li, M. Preparation of Mouse Anti-Human Rotavirus VP7 Monoclonal Antibody and Its Protective Effect on Rotavirus Infection. Exp. Ther. Med. 2019, 18, 1384–1390. [Google Scholar] [CrossRef]
- Xu, Z.; Kang, Q.; Yu, Z.; Tian, L.; Zhang, J.; Wang, T. Research on the Species Difference of the Hepatotoxicity of Medicine Based on Transcriptome. Front. Pharmacol. 2021, 12, 647084. [Google Scholar] [CrossRef] [PubMed]
- Nation, J.R.; Frye, G.D.; Von Stultz, J.; Bratton, G.R. Effects of Combined Lead and Cadmium Exposure: Changes in Schedule-Controlled Responding and in Dopamine, Serotonin, and Their Metabolites. Behav. Neurosci. 1989, 103, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Das, D.; Andler, R.; Bandopadhyay, R. Green Synthesis of Silver Nanoparticles Using Exopolysaccharides Produced by Bacillus Anthracis PFAB2 and Its Biocidal Property. J. Polym. Environ. 2021, 29, 2701–2709. [Google Scholar] [CrossRef]
- Oh, J.-H.; Chung, J.-O.; Lee, C.-Y.; Yun, Y.; Park, M.-Y.; Hong, Y.-D.; Kim, W.-G.; Cha, H.-Y.; Shin, K.-S.; Hong, G.-P.; et al. Characterized Polysaccharides from Green Tea Inhibited Starch Hydrolysis and Glucose Intestinal Uptake by Inducing Microstructural Changes of Wheat Starch. J. Agric. Food Chem. 2021, 69, 14075–14085. [Google Scholar] [CrossRef]
- Chen, F.-H.; Yu, C.-F.; Yang, C.-L.; Lin, Y.-C.; Lin, G.; Wang, C.-C.; Yu, H.-P.; Fang, J.; Chang, N.-F.; Hong, J.-H. Multimodal Imaging Reveals Transient Liver Metabolic Disturbance and Sinusoidal Circulation Obstruction after a Single Administration of Ketamine/Xylazine Mixture. Sci. Rep. 2020, 10, 3657. [Google Scholar] [CrossRef] [PubMed]
- Pravdivtseva, M.S.; Shevelev, O.B.; Yanshole, V.V.; Moshkin, M.P.; Koptyug, I.V.; Akulov, A.E. In Vitro 1H NMR Metabolic Profiles of Liver, Brain, and Serum in Rats After Chronic Consumption of Alcohol. Appl. Magn. Reson. 2021, 52, 661–675. [Google Scholar] [CrossRef]
- Solhi, R.; Lotfinia, M.; Gramignoli, R.; Najimi, M.; Vosough, M. Metabolic Hallmarks of Liver Regeneration. Trends Endocrinol. Metab. 2021, 32, 731–745. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, R.; Zhao, J.; Sun, J.; Zhang, Q.; Chen, Z. Using Overlapping Low-Profile Visualized Intraluminal Support Stent-Assisted Coil Embolization for Treating Blood Blister-like Aneurysms of the Internal Carotid Artery. Neurosurg. Rev. 2021, 44, 1053–1060. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Y.; Li, Y.; Liu, R.; Zeng, M. Mediation of the Microbiome-Gut Axis by Oyster (Crassostrea Gigas) Polysaccharides: A Possible Protective Role in Alcoholic Liver Injury. Int. J. Biol. Macromol. 2021, 182, 968–976. [Google Scholar] [CrossRef]
- Hayaza, S.; Wahyuningsih, S.P.A.; Susilo, R.J.K.; Husen, S.A.; Winarni, D.; Doong, R.-A.; Darmanto, W. Dual Role of Immunomodulation by Crude Polysaccharide from Okra against Carcinogenic Liver Injury in Mice. Heliyon 2021, 7, e06183. [Google Scholar] [CrossRef]
- Bargougui, K.; Athmouni, K.; Chaieb, M. Optimization, Characterization and Hepatoprotective Effect of Polysaccharides Isolated from Stipa Parviflora Desf. against CCl4 Induced Liver Injury in Rats Using Surface Response Methodology (RSM). Int. J. Biol. Macromol. 2019, 132, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Athmouni, K.; Belhaj, D.; El Feki, A.; Ayadi, H. Optimization, Antioxidant Properties and GC-MS Analysis of Periploca Angustifolia Polysaccharides and Chelation Therapy on Cadmium-Induced Toxicity in Human HepG2 Cells Line and Rat Liver. Int. J. Biol. Macromol. 2018, 108, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, D.; Athmouni, K.; Ahmed, M.B.; Aoiadni, N.; El Feki, A.; Zhou, J.L.; Ayadi, H. Polysaccharides from Phormidium Versicolor (NCC466) Protecting HepG2 Human Hepatocellular Carcinoma Cells and Rat Liver Tissues from Cadmium Toxicity: Evidence from in Vitro and in Vivo Tests. Int. J. Biol. Macromol. 2018, 113, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, S.R.; Tucker, E.I.; Latour, R.A. Blood Coagulation and Blood–Material Interactions. In Biomaterials Science, 4th ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 801–812. [Google Scholar] [CrossRef]
- Huang, C.; Yong, Z. Association of Peripheral Blood Dendritic Cells with Recurrent Pregnany Loss. Am. J. Reprod. Immunol. 2020, 76, 326–332. [Google Scholar] [CrossRef]
- Jhony, J.K.; Pg, B.; Patil, S.; Mk, S.; George, N.A. A Prospective Observational Study to Determine the Correlation of Clinical, Ultrasonography, and Pathological Examination of Cervical Lymph Nodal Staging in Oral Squamous Cell Carcinoma. Indian J. Surg. Oncol. 2021, 12, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Ben Saad, A.; Dalel, B.; Rjeibi, I.; Smida, A.; Ncib, S.; Zouari, N.; Zourgui, L. Phytochemical, Antioxidant and Protective Effect of Cactus Cladodes Extract against Lithium-Induced Liver Injury in Rats. Pharm. Biol. 2017, 55, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, R.; Xie, Y.; Wang, H.; Ge, M. The Protective Effects of Polysaccharides from Agaricus Blazei Murill Against Cadmium-Induced Oxidant Stress and Inflammatory Damage in Chicken Livers. Biol. Trace Elem. Res. 2017, 178, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, G.; Kumar, R. Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis. J. Vib. Eng. Technol. 2021, 10, 335–349. [Google Scholar] [CrossRef]
- Nfj, A.; Rla, B.; Gs, C.; St, D. Principal Component Analysis and K-Means Clustering as Tools during Exploration for Zn Skarn Deposits and Industrial Carbonates, Sala Area, Sweden. J. Geochem. Explor. 2021, 33, 106909. [Google Scholar] [CrossRef]
- Hua, D.A.; Wc, A.; Yl, A.; Fl, A.; Hl, A.; Wei, D.B.; Gja, B. Discrimination of Authenticity of Fritillariae Cirrhosae Bulbus Based on Terahertz Spectroscopy and Chemometric Analysis. Microchem. J. 2021, 168, 106440. [Google Scholar] [CrossRef]
Group/Index | AST(U/L) | ALT(U/L) | ALP(U/L) |
---|---|---|---|
NC | 48.56 ± 5.36 | 46.24 ± 4.36 | 4.79 ± 0.39 |
MC | 61.48 ± 6.32 ** | 67.33 ± 7.41 ** | 6.62 ± 0.47 ** |
Group/Time | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | |
---|---|---|---|---|---|---|
AST (U/L) | NC | 42.51 ± 3.78 | 42.80 ± 1.52 | 48.56 ± 5.36 | 44.97 ± 6.99 | 47.94 ± 3.98 |
MC | 47.07 ± 5.16 | 49.31 ± 6.31 * | 61.48 ± 6.32 ** | 53.87 ± 8.98 ** | 57.20 ± 3.61 ** | |
YC | 45.45 ± 4.75 | 45.14 ± 4.64 | 58.05 ± 6.46 # | 50.73 ± 5.96 # | 48.63 ± 4.85 ## | |
ODPC | 45.07 ± 3.57 | 42.57 ± 6.91 | 57.28 ± 4.19 # | 45.81 ± 2.98 ## | 49.49 ± 5.99 ## | |
ALT (U/L) | NC | 47.45 ± 3.2 | 50.21 ± 3.36 | 46.24 ± 4.36 | 44.18 ± 3.01 | 45.92 ± 2.62 |
MC | 53.76 ± 2.19 * | 56.04 ± 8.91 * | 67.33 ± 7.41 ** | 62.53 ± 4.13 ** | 63.84 ± 5.73 ** | |
YC | 50.91 ± 4.93 | 52.35 ± 6.33 | 52.73 ± 6.44 # | 52.93 ± 2.23 # | 49.74 ± 6.86 ## | |
ODPC | 50.49 ± 7.91 | 52.07 ± 5.43 | 51.45 ± 8.80 # | 45.58 ± 6.85 ## | 47.17 ± 3.82 ## | |
ALP (U/L) | NC | 5.22 ± 0.64 | 5.1 ± 0.38 | 4.79 ± 0.39 | 5.55 ± 0.25 | 4.80 ± 0.55 |
MC | 5.50 ± 1.42 | 6.13 ± 0.76 ** | 6.62 ± 0.47 ** | 6.74 ± 1.19 ** | 6.38 ± 0.52 ** | |
YC | 5.37 ± 1.05 | 5.30 ± 0.55 # | 5.62 ± 0.64 # | 5.85 ± 0.31 # | 5.57 ± 0.58 # | |
ODPC | 5.30 ± 0.91 | 5.34 ± 0.31 # | 5.55 ± 0.92 # | 5.40 ± 0.40 ## | 5.02 ± 0.33 ## |
Group/Index | AST(U/L) | ALT(U/L) | ALP(U/L) |
---|---|---|---|
NC | 38.46 ± 6.65 | 71.88 ± 6.72 | 5.67 ± 1.00 |
MC | 57.7 ± 3.38 ** | 101.29 ± 12.25 ** | 9.09 ± 1.54 ** |
YC | 41.52 ± 5.46 ## | 76.59 ± 8.11 # | 6.52 ± 1.09 ## |
ODP1 (50 mg/kg) | 46.26 ± 5.82 ## | 86.23 ± 6.03 | 7.63 ± 0.91 # |
ODP2 (100 mg/kg) | 46.93 ± 9.31 ## | 85.90 ± 10.94 | 7.64 ± 0.88 # |
ODP3 (200 mg/kg) | 43.06 ± 4.31 ## | 71.55 ± 5.95 ## | 6.96 ± 0.50 ## |
ODP4 (400 mg/kg) | 44.10 ± 5.02 ## | 71.85 ± 8.24 ## | 6.60 ± 0.51 ## |
ODP5 (600 mg/kg) | 50.41 ± 2.18 ## | 81.34 ± 15.41 | 6.85 ± 1.31 ## |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Li, B.; Zhou, X.; Chen, H. A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022, 11, 1340. https://doi.org/10.3390/foods11091340
Liu T, Li B, Zhou X, Chen H. A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods. 2022; 11(9):1340. https://doi.org/10.3390/foods11091340
Chicago/Turabian StyleLiu, Ting, Bianli Li, Xin Zhou, and Huaguo Chen. 2022. "A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice" Foods 11, no. 9: 1340. https://doi.org/10.3390/foods11091340
APA StyleLiu, T., Li, B., Zhou, X., & Chen, H. (2022). A Study on the Time–Effect and Dose–Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods, 11(9), 1340. https://doi.org/10.3390/foods11091340