The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Samples
2.2. Heat Treatments
2.3. Sous Vide (SV)
2.4. Stewing (S)
2.5. Microwave Cooking (M)
2.6. Basic Chemical Composition and Energy Value
2.7. Total Cholesterol Content
2.8. Mineral Analysis
2.9. Determination of Retention Coefficients
2.10. Statistical Analysis
3. Results
3.1. Basic Chemical Composition and Energy Value
3.2. Total Cholesterol Content
3.3. Mineral Concentration
3.4. Retention Coefficients
4. Discussion
4.1. Basic Chemical Composition and Energy Value
4.2. Total Cholesterol Content
4.3. Mineral Concentration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Oz, F.; Kızıl, M.; Çelık, T. Effects of Different Cooking Methods on the Formation of Heterocyclic Aromatic Amines in Goose Meat. J. Food Process. Preserv. 2016, 40, 1047–1053. [Google Scholar] [CrossRef]
- Pathare, P.B.; Roskilly, A.P. Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of Sous Vide and Steam Cooking on Mineral Contents, Fatty Acid Composition and Tenderness of Semimembranosus Muscle from Holstein-Friesian Bulls. Meat Sci. 2019, 157, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Suleman, R.; Hui, T.; Wang, Z.; Liu, H.; Zhang, D. Comparative Analysis of Charcoal Grilling, Infrared Grilling and Superheated Steam Roasting on the Colour, Textural Quality and Heterocyclic Aromatic Amines of Lamb Patties. Int. J. Food Sci. Technol. 2019, 55, 1057–1068. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Wereńska, M.; Goluch, Z.; Haraf, G.; Okruszek, A.; Teleszko, M.; Król, B. The Selected Goose Meat Quality Traits in Relation to Various Types of Heat Treatment. Pollut. Sci. 2020, 99, 7214–7224. [Google Scholar] [CrossRef]
- Goluch, Z.; Król, B.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 1–14. [Google Scholar] [CrossRef]
- Wereńska, M.; Haraf, G.; Wołoszyn, J.; Goluch, Z.; Okruszek, A.; Teleszko, M. Fatty Acid Profile and Health Lipid Indicies of Goose Meat in Relation to Various Types of Heat Treatment. Poult. Sci. 2021, 100, 1–12. [Google Scholar] [CrossRef]
- Bıyıklı, M.; Akoğlu, A.; Kurhan, Ş.; Turan, İ. Effect of Different Sous Vide Cooking Temperature-Time Combinations on the Physicochemical, Microbiological, and Sensory Properties of Turkey Cutlet. Int. J. Gastron. Food Sci. 2020, 20, 4. [Google Scholar] [CrossRef]
- Kato, H.C.A.; Lourenço, L.F.H.; Araújo, E.A.F.; Sousa, C.L.; Peixoto Joele, M.R.S.; Ribeiro, S.C.A. Change in Physical and Chemical Characteristics Related to the Binomial Time-Temperature Used in Sous Pasteurization See Tambaqui (Colossoma macropomum). Arq. Bras. Med. Vet. Zootec. 2016, 68, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, D.E. Sous Vide Cooking: A Review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M.; Santamaria, P. Quality Evaluation of Cook-Chilled Chicory Stems (Cichorium intybus L., Catalogna Group) by Conventional and Sous Vide Cooking Methods. J. Sci. Food Agric. 2014, 94, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, J.; Gázquez, A.; Ruiz-carrascal, J. Physico-Chemical, Textural and Structural Characteristics of Sous-Vide Cooked Pork Cheeks as Affected by Vacuum, Cooking Temperature, and Cooking Time. MESC 2012, 90, 828–835. [Google Scholar] [CrossRef]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Effect of Cooking Method on Mechanical Properties, Color and Structure of Beef Muscle (M. Pectoralis). J. Food Eng. 2007, 80, 813–821. [Google Scholar] [CrossRef]
- Nowicka Variability in Nutritional Value of Traditional Goose Meat Product. Anim. Sci. Pap. Rep. 2018, 36, 405–420.
- Boz, M.A.; Oz, F.; Yamak, U.S.; Sarica, M.; Cilavdaroglu, E. The Carcass Traits, Carcass Nutrient Composition, Amino Acid, Fatty Acid, and Cholesterol Contents of Local Turkish Goose Varieties Reared in an Extensive Production System. Poult. Sci. 2019, 98, 3067–3080. [Google Scholar] [CrossRef]
- Maraschielio, C.; Diaz, I.; Josc, A.; Regueiro, G. Determination of Cholesterol in Fat and Muscle of Pig by HPLC and Capillary Gas Chromatography with Solvent Venting Injection. J. High Resolut. Chromatogr. 1996, 19, 165–168. [Google Scholar] [CrossRef]
- Zielbauer, B.I.; Franz, J.; Viezens, B.; Vilgis, T.A. Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophys. 2016, 11, 34–42. [Google Scholar] [CrossRef]
- Falowo, A.B.; Muchenje, V.; Hugo, A. Effect of Sous-Vide Technique on Fatty Acid and Mineral Compositions of Beef and Liver from Bonsmara and Non-Descript Cattle. Ann. Anim. Sci. 2017, 17, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Vaudagna, S.R.; Sánchez, G.; Neira, M.S.; Insani, E.M.; Picallo, A.B.; Gallinger, M.M.; Lasta, J.A. Sous Vide Cooked Beef Muscles: Effects of Low Temperature-Long Time (LT-LT) Treatments on Their Quality Characteristics and Storage Stability. Int. J. Food Sci. Technol. 2002, 37, 425–441. [Google Scholar] [CrossRef]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of Different Temperature-Time Combinations on Physicochemical, Microbiological, Textural and Structural Features of Sous-Vide Cooked Lamb Loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef]
- Roldan, M.; Loebner, J.; Degen, J.; Henle, T.; Antequera, T.; Ruiz-carrascal, J. Advanced Glycation End Products, Physico-Chemical and Sensory Characteristics of Cooked Lamb Loins Affected by Cooking Method and Addition of Flavour Precursors. Food Chem. 2015, 168, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Karpińska-Tymoszczyk, M.; Draszanowska, A.; Danowska-Oziewicz, M.; Kurp, L. The Effect of Low-Temperature Thermal Processing on the Quality of Chicken Breast Fillets. Food Sci. Technol. Int. 2020, 26, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Suleman, R.; Wang, Z.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016; ISBN 13: 978-0935584875. [Google Scholar]
- Badiani, A.; Montellato, L.; Bochicchio, D.; Anfossi, P.; Zanardi, E.; Maranesi, M. Selected Nutrient Contents, Fatty Acid Composition, Including Conjugated Linoleic Acid, and Retention Values in Separable Lean from Lamb Rib Loins as Affected by External Fat and Cooking Method. J. Agric. Food Chem. 2004, 52, 5187–5194. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloan, S. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Cunha, S.S.; Fernandes, O.; Oliveira, M.B.P.P. Quantification of Free and Esterified Sterols in Portuguese Olive Oils by Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2006, 1128, 220–227. [Google Scholar] [CrossRef]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Goluch, Z.; Wereńska, M.; Teleszko, M. The Protein and Fat Quality of Thigh Muscles from Polish Goose Varieties. Poult. Sci. 2021, 100, 1–9. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2005; ISBN 0935584544. [Google Scholar]
- Maranesi, M.; Bochicchio, D.; Montellato, L.; Zaghini, A.; Pagliuca, G.; Badiani, A. Effect of Microwave Cooking or Broiling on Selected Nutrient Contents, Fatty Acid Patterns and True Retention Values in Separable Lean from Lamb Rib-Loins, with Emphasis on Conjugated Linoleic Acid. Food Chem. 2005, 90, 207–218. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA (Data Analysis Software System); StatSoft Inc.: Tulsa, OK, USA, 2019. [Google Scholar]
- Tornberg, E. MEAT Effects of Heat on Meat Proteins–Implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Duma-Kocan, P.; Gil, M.; Stanisławczyk, R.; Rudy, M. The Effect of Selected Methods of Heat Treatment on the Chemical Composition, Colour and Texture Parameters of Longissimus Dorsi Muscle of Wild Boars Colour and Texture Parameters of Longissimus Dorsi Muscle of Wild Boars. CyTA-J. Food 2019, 17, 472–478. [Google Scholar] [CrossRef]
- Yu, T.; Morton, J.D.; Clerens, S.; Dyer, J.M. Cooking-Induced Protein Modifications in Meat. Compr. Rev. Food Sci. Food Saf. 2016, 16, 141–159. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.F.; Alfaia, C.M.M.; Partidário, A.M.C.P.C.; Lemos, J.P.C.; Prates, J.A.M. Influence of Household Cooking Methods on Aminoacids and Minerals of Barrosã-PDO Veal. MESC 2015, 99, 38–43. [Google Scholar] [CrossRef]
- Oz, F.; Celik, T. Proximate Composition, Color and Nutritional Profile of Raw and Cooked Goose Meat with Different Methods. J. Food Process. Preserv. 2015, 39, 2442–2454. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Ibrahim, K.; Zaki, H.M.B.A. Effect of Different Cooking Methods of Rabbit Meat on Topographical Changes, Physicochemical Characteristics, Fatty Acids Profile, Microbial Quality and Sensory Attributes. Meat Sci. 2021, 181, 108612. [Google Scholar] [CrossRef] [PubMed]
- Belinsky, D.L.; Kuhnlein, H. Macronutrient, Mineral, and Fatty Acid Composition of Canada Goose (Branta Canadensis): An Important Traditional Food Resource of the Eastern James Bay Cree of Quebec. J. Food Compos. Anal. 2000, 13, 101–115. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Buła, M. The Use of the Sous-Vide Method in the Preparation of Poultry at Home and in Catering—Protection of Nutrition Value Whether High Energy Consumption. Sustainability 2020, 12, 7606. [Google Scholar] [CrossRef]
- Ramane, K.; Strautniece, E.; Galoburda, R. Chemical and Sensory Parameters of Heat-Treated Vacuum-Packaged Broiler and Hen Fillet Products. Sciendo 2012, 27, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Rasinska, E.; Rutkowska, J.; Czarniecka-skubina, E.; Tambor, K. Effects of Cooking Methods on Changes in Fatty Acids Contents, Lipid Oxidation and Volatile Compounds of Rabbit Meat. LWT-Food Sci. Technol. 2019, 110, 64–70. [Google Scholar] [CrossRef]
- Macharáčková, B.; Saláková, A.; Bogdanovičová, K.; Haruštiaková, D.; Kameník, J. Changes in the Concentrations of Selected Mineral Elements in Pork Meat after Sous-Vide Cooking. J. Food Compos. Anal. 2021, 96, 1–8. [Google Scholar] [CrossRef]
- Choi, Y.; Hwang, K.; Jeong, T.; Kim, Y.; Jeon, K.; Kim, E.; Sung, J.; Kim, H.; Kim, C. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak. Korean J. Food Sci. Anim. Resour. 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Echarte, M.; Ansorena, D.; Astiasarán, I. Consequences of Microwave Heating and Frying on the Lipid Fraction of Chicken and Beef Patties. J. Agric. Food Chem. 2003, 51, 5941–5945. [Google Scholar] [CrossRef] [PubMed]
- Alfaia, C.M.M.; Alves, S.P.; Lopes, A.F.; Fernandes, M.J.E.; Costa, A.S.H.; Fontes, C.M.G.A.; Castro, M.L.F.; Bessa, R.J.B.; Prates, J.A.M. Effect of Cooking Methods on Fatty Acids, Conjugated Isomers of Linoleic Acid and Nutritional Quality of Beef Intramuscular Fat. Meat Sci. 2010, 84, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.M.; Beasley, L.C.; Harris, K.B.; Savell, J.W. Evaluating the Cooking and Chemical Characteristics of Low-Fat Ground Beef Patties. J. Food Compos. Anal. 2000, 13, 253–264. [Google Scholar] [CrossRef]
- Serrano, A.; Librelotto, J.; Cofrades, S.; Sánchez-Muniz, F.J.; Jiménez-Colmenero, F. Composition and Physicochemical Characteristics of Restructured Beef Steaks Containing Walnuts as Affected by Cooking Method. Meat Sci. 2007, 77, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Nudda, A.; Battacone, G.; Boe, R.; Manca, M.G.; Giacomo Rassu, S.P.; Pulina, G. Influence of Outdoor and Indoor Rearing System of Suckling Lambs on Fatty Acid Profile and Lipid Oxidation of Raw and Cooked Meat. Ital. J. Anim. Sci. 2013, 12, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.M.; Muela, E.; Olleta, J.L.; Moreno, L.A.; Santaliestra-Pasías, A.M.; Mesana, M.I.; Sañudo, C. Influence of Cooking Method on the Nutrient Composition of Spanish Light Lamb. J. Food Compos. Anal. 2013, 31, 185–190. [Google Scholar] [CrossRef]
- Slover, H.T.; Thompson, R.H.; Dams, C.S.; Merola, G.v. The Lipid Composition of Raw and Cooked Fresh Pork. J. Food Compos. Anal. 1987, 1, 38–52. [Google Scholar] [CrossRef]
- Rodriguez-Estrada, M.T.; Penazzi, G.; Caboni, M.F.; Bertacco, G.; Lercker, G. Effect of Different Cooking Methods on Some Lipid and Protein Components of Hamburgers. Meat Sci. 1997, 45, 365–375. [Google Scholar] [CrossRef]
- Gerber, N.; Scheeder, M.R.L.; Wenk, C. The Influence of Cooking and Fat Trimming on the Actual Nutrient Intake from Meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef]
- Nikmaram, P.; Yarmand, M.S.; Emamjomeh, Z. Effect of Cooking Methods on Chemical Composition, Quality and Cook Loss of Camel Muscle (Longissimus Dorsi) in Comparison with Veal. Afr. J. Biotechnol. 2011, 10, 10478–10483. [Google Scholar] [CrossRef] [Green Version]
- Yong, W.; Amin, L.; Dongpo, C. Status and Prospects of Nutritional Cooking. Food Qual. Saf. 2019, 3, 137–143. [Google Scholar] [CrossRef]
Parameters | Meat | Raw Meat (R) | Heat Treatment | Total | p-Value (p ≤ 0.05) | ||||
---|---|---|---|---|---|---|---|---|---|
Microwave (M) Cooking | Sous Vide (SV) Cooking | Stewing (S) | Meat (Mt) | Heat Treatment (T) | Mt x T | ||||
Energy value (MJ/100 g) | Without skin | y0.54d ± 0.02 | y0.75b ± 0.02 | y0.69c ± 0.03 | y0.79a ± 0.02 | y0.69 ± 0.10 | 0.001 | 0.001 | 0.001 |
With skin | x1.01a ± 0.02 | x0.95b ± 0.03 | x0.91c ± 0.03 | x0.90c ± 0.02 | x0.94 ± 0.05 | ||||
Total | 0.78 ± 0.24 | 0.85 ± 0.10 | 0.80 ± 0.12 | 0.85 ± 0.09 | |||||
Protein (%) | Without skin | x21.97d ± 0.56 | x31.35b ± 0.47 | x28.78c ± 0.69 | x34.81a ± 0.53 | x29.23 ± 4.81 | 0.001 | 0.001 | 0.001 |
With skin | y16.94d ± 0.40 | y28.29b ± 0.76 | y26.99c ± 0.59 | y33.03a ± 0.47 | y26.31 ± 5.97 | ||||
Total | 19.46d ± 2.64 | 29.82b ± 1.69 | 27.89c ±1.11 | 33.92a ±1.04 | |||||
Cholesterol (mg/100g) | Without skin | x68.58d ± 0.58 | x89.89c ± 0.53 | x98.80b ± 0.80 | x101.33a ± 0.63 | x89.90 ± 13.11 | 0.001 | 0.001 | 0.001 |
With skin | y54.08d ± 0.96 | y87.24b ± 0.62 | y84.08c ±0.45 | y93.77a ± 0.62 | y79.79 ± 15.51 | ||||
Total | 61.32c ± 7.53 | 88.87b ± 1.48 | 91.44ab ± 6.63 | 97.55a ± 3.95 | |||||
Ash (%) | Without skin | x1.21d ± 0.05 | x1.64a ± 0.29 | x1.58b ± 0.18 | 1.38c ±0.25 | x1.45 ± 0.27 | 0.001 | 0.001 | 0.001 |
With skin | y0.88b ± 0.04 | y1.20a ± 0.02 | y1.18a ± 0.05 | 1.20a ± 0.11 | y1.12 ± 0.18 | ||||
Total | 1.05b ± 0.18 | 1.42a ± 0.32 | 1.38a ± 0.27 | 1.29a ± 0.20 | |||||
Water content (%) | Without skin | x73.08a ± 0.62 | x59.32c ± 0.20 | x60.53b ± 0.23 | x58.69d ± 0.48 | x62.91 ± 6.02 | 0.001 | 0.001 | 0.001 |
With skin | y61.55a ± 0.32 | y57.91c ± 0.62 | y59.41b ± 0.44 | y56.88d ± 0.67 | y58.94 ± 1.85 | ||||
Total | 67.31a ± 5.98 | 58.62c ± 0.85 | 59.97b ± 0.67 | 57.78d ± 1.09 | |||||
Fat (%) | Without skin | y4.46b ± 0.40 | y5.76a ± 0.60 | y5.40a ± 0.80 | y5.42a ± 0.50 | y5.26 ± 0.75 | 0.001 | 0.001 | 0.001 |
With skin | x19.50a ± 0.41 | x12.59b ±0.74 | x12.14b ± 0.93 | x9.19c ± 0.62 | x13.36 ±3.90 | ||||
Total | 11.98a ± 7.77 | 9.18ab ± 3.59 | 8.77ab ± 3.58 | 7.31b ± 2.02 |
Parameters | Meat | Raw Meat (R) | Heat Treatment | Total | p-Value (p ≤ 0.05) | ||||
---|---|---|---|---|---|---|---|---|---|
Microwave (M) Cooking | Sous Vide (SV) Cooking | Stewing (S) | Meat (Mt) | Heat Treatment (T) | Mt x T | ||||
Zinc (Zn) | Without skin | y3.56d ± 0.11 | 8.07b ± 0.30 | y7.19c ± 0.19 | 9.25a ± 0.24 | 7.02 ± 2.18 | 0.001 | 0.025 | 0.001 |
With skin | x3.85d ± 0.12 | 7.87b ± 0.14 | x7.41c ± 0.18 | 9.15a ± 0.22 | 7.07 ± 2.00 | ||||
Total | 3.70d ± 0.19 | 7.97b ± 0.25 | 7.30c ± 0.21 | 9.20a ± 0.23 | |||||
Phosphorus (P) | Without skin | x639.50c ± 10.16 | x1142.38a ± 14.28 | x1041.75b ± 12.42 | 1035.88b ± 17.44 | x964.88 ± 196.12 | 0.001 | 0.001 | 0.001 |
With skin | y568.17c ± 4.83 | y1030.43a ± 19.04 | y950.48b ± 11.50 | 1041.58a ± 6.01 | y897.66 ± 196.86 | ||||
Total | 603.80d ± 37.58 | 1086.41a ± 60.05 | 996.12c ± 48.53 | 1038.73b ± 12.94 | |||||
Magnesium (Mg) | Without skin | y71.67c ± 0.88 | x116.19a ± 1.63 | x106.67b ± 1.70 | 114.64a ± 2.14 | x102.29 ± 18.40 | 0.001 | 0.001 | 0.001 |
With skin | x76.53d ± 1.59 | y108.79b ± 1.37 | y96.80c ± 1.15 | 114.50a ± 1.93 | y99.15 ± 14.85 | ||||
Total | 74.10d ± 2.80 | 112.49b ± 4.08 | 101.74c ± 5.29 | 114.57a ± 1.97 | |||||
Sodium (Na) | Without skin | x364.66a ± 2.11 | x160.01c ± 2.68 | x185.09b ± 2.04 | y157.19c ± 4.08 | x216.74 ± 87.51 | 0.001 | 0.001 | 0.001 |
With skin | y257.70a ± 1.66 | y154.23d ± 2.99 | y175.82b ± 3.27 | x147.10c ± 2.44 | y183.71 ± 41.29 | ||||
Total | 311.18a ± 55.27 | 157.12c ± 4.06 | 180.46b ± 5.46 | 152.15c ± 6.05 | |||||
Calcium (Ca) | Without skin | y20.89d ± 0.44 | y43.86a ± 0.69 | y27.67b ± 0.70 | y22.80c ± 0.33 | y28.81 ± 9.20 | 0.001 | 0.001 | 0.001 |
With skin | x27.13c ± 0.68 | x45.83a ± 0.87 | x33.71b ± 0.28 | x26.12d ± 0.45 | x33.20 ± 8.00 | ||||
Total | 24.01c ± 3.27 | 44.85a ± 1.27 | 30.69b ± 3.16 | 24.46c ± 1.75 | |||||
Iron (Fe) | Without skin | x16.41d ± 0.15 | x24.18b ± 0.29 | x18.09c ± 0.26 | x24.94a ± 0.33 | x20.91 ± 3.78 | 0.001 | 0.001 | 0.001 |
With skin | y12.24d ± 0.33 | y21.32b ± 0.33 | y17.41c ± 0.20 | y23.89a ± 0.21 | y18.72 ± 4.47 | ||||
Total | 14.32d ± 2.16 | 22.75b ± 1.51 | 17.75c ± 0.42 | 24.42a ± 0.61 | |||||
Potassium (K) | Without skin | x1472.63a ± 7.75 | x1057.41c ± 9.47 | x1169.78b ± 10.34 | x964.51d ± 17.20 | x1166.08 ± 194.71 | 0.001 | 0.001 | 0.001 |
With skin | y825.30a ± 14.00 | y739.56b ± 13.16 | y750.39b ± 5.23 | y710.86c ± 7.45 | y756.53 ± 44.10 | ||||
Total | 1148.97a ± 334.46 | 898.49bc ± 164.49 | 960.09b ± 216.72 | 837.69c ± 131.61 |
Parameters | Meat | Heat Treatment | Total | p-Value (p ≤ 0.05) | ||||
---|---|---|---|---|---|---|---|---|
Microwave (M) Cooking | Sous Vide (SV) Cooking | Stewing (S) | Meat (Mt) | Heat Treatment (T) | Mt x T | |||
Protein retention | Without skin | y95.68a ± 0.54 | y96.26a ± 3.14 | y92.55b ± 2.38 | y94.83 ± 2.75 | 0.001 | 0.001 | 0.001 |
With skin | x109.01a ± 2.66 | x108.93a ± 5.50 | x96.83b ± 2.03 | x104.92 ± 6.84 | ||||
Total | 102.35a ± 7.13 | 102.60a ± 7.85 | 94.69b ± 3.07 | |||||
Fat retention | Without skin | y86.66b ± 1.61 | x88.98a ± 1.41 | x70.92c ± 0.88 | x82.19 ± 8.29 | 0.001 | 0.001 | 0.001 |
With skin | x42.15a ± 0.89 | y42.50a ± 0.70 | y23.41b ± 0.64 | y36.02 ± 9.14 | ||||
Total | 64.40a ± 23.02 | 65.74a ± 24.02 | 47.16c ± 24.54 | |||||
Ash retention | Without skin | 91.14b ± 3.33 | x95.89a ± 2.51 | 66.62c ± 2.14 | 84.53 ± 13.34 | 0.074 | 0.001 | 0.058 |
With skin | 88.90a ± 3.27 | y91.20a ± 3.36 | 67.69b ± 3.56 | 82.59 ± 11.28 | ||||
Total | 89.97b ± 3.38 | 93.55a ± 3.75 | 67.16c ± 2.89 | |||||
Cholesterol retention | Without skin | y87.89b ± 0.40 | 105.85a ± 0.76 | 86.27c ± 0.81 | y93.34 ± 9.08 | 0.001 | 0.001 | 0.001 |
With skin | x105.26b ± 0.74 | 106.17a ± 0.86 | 86.07c ± 0.57 | x99.17 ± 9.49 | ||||
Total | 96.58b ± 8.99 | 106.01a ± 0.80 | 86.17c ± 0.68 |
Retention (%) | Meat | Heat Treatment | Total | p-Value (p ≤ 0.05) | ||||
---|---|---|---|---|---|---|---|---|
Microwave (M) Cooking | Sous Vide (SV) Cooking | Stewing (S) | Meat (Mt) | Heat Treatment (T) | Mt x T | |||
Zinc (Zn) | Without skin | x152.15 ± 6.33 | x148.36 ± 3.21 | x151.98 ± 4.06 | x150.83 ± 5.00 | 0.001 | 0.001 | 0.001 |
With skin | y118.03b ± 4.53 | y131.70a ± 7.81 | y133.42a ± 4.83 | y127.72 ± 9.02 | ||||
Total | 135.09 ± 18.41 | 140.03 ± 10.36 | 142.70 ± 10.62 | |||||
Phosphorus (P) | Without skin | 119.81a ± 2.45 | x119.70a ± 2.10 | x94.66b ± 3.72 | x111.39 ± 12.39 | 0.001 | 0.001 | 0.097 |
With skin | 118.46a ± 4.84 | y114.39a ± 5.24 | y91.06b ± 2.64 | y107.97 ± 13.03 | ||||
Total | 119.14a ± 3.77 | 117.05a ± 4.73 | 92.86b ± 3.63 | |||||
Magnesium (Mg) | Without skin | x108.73a ± 2.41 | x109.39a ± 3.23 | x93.47b ± 3.59 | x103.86 ± 8.07 | 0.001 | 0.001 | 0.001 |
With skin | y92.84a ± 3.17 | y86.47b ± 3.54 | y74.31c ± 2.43 | y84.54 ± 8.39 | ||||
Total | 100.79a ± 8.64 | 93.43a ± 12.28 | 83.89c ± 10.33 | |||||
Sodium (Na) | Without skin | y34.04a ± 0.54 | y32.25b ± 0.97 | y25.20c ± 1.22 | y30.50 ± 4.00 | 0.001 | 0.001 | 0.001 |
With skin | x44.57a ± 2.03 | x40.93b ± 2.04 | x32.21c ± 0.86 | x39.23 ± 5.55 | ||||
Total | 39.31a ± 5.62 | 36.59a ± 4.74 | 28.70b ± 3.76 | |||||
Calcium (Ca) | Without skin | x88.83b ± 2.82 | x122.69a ± 4.14 | x80.21c ± 1.95 | x97.24 ± 18.96 | 0.001 | 0.001 | 0.001 |
With skin | y81.16b ± 3.02 | y108.97a ± 3.26 | y65.81c ± 2.69 | y85.32 ± 18.47 | ||||
Total | 85.00b ± 4.86 | 115.83a ± 7.94 | 73.01c ± 7.77 | |||||
Iron (Fe) | Without skin | y98.84a ± 1.93 | y81.03c ± 2.09 | y88.82b ± 3.12 | y89.56 ± 7.80 | 0.001 | 0.001 | 0.001 |
With skin | x113.75a ± 3.31 | x97.22b ± 3.74 | x96.95b ± 2.93 | x102.6 ± 8.64 | ||||
Total | 106.30a ± 8.13 | 89.13b ± 8.86 | 92.89b ± 5.12 | |||||
Potassium (K) | Without skin | y48.16b ± 1.07 | y58.38a ± 1.49 | y38.27c ± 1.23 | y48.27 ± 8.48 | 0.001 | 0.001 | 0.001 |
With skin | x58.51b ± 1.51 | x62.16a ± 2.55 | x42.77c ± 0.88 | x54.48 ± 8.76 | ||||
Total | 53.34b ± 5.49 | 60.27a ± 2.81 | 40.52c ± 2.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wereńska, M.; Haraf, G.; Okruszek, A.; Marcinkowska, W.; Wołoszyn, J. The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat. Foods 2023, 12, 129. https://doi.org/10.3390/foods12010129
Wereńska M, Haraf G, Okruszek A, Marcinkowska W, Wołoszyn J. The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat. Foods. 2023; 12(1):129. https://doi.org/10.3390/foods12010129
Chicago/Turabian StyleWereńska, Monika, Gabriela Haraf, Andrzej Okruszek, Weronika Marcinkowska, and Janina Wołoszyn. 2023. "The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat" Foods 12, no. 1: 129. https://doi.org/10.3390/foods12010129
APA StyleWereńska, M., Haraf, G., Okruszek, A., Marcinkowska, W., & Wołoszyn, J. (2023). The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat. Foods, 12(1), 129. https://doi.org/10.3390/foods12010129