Comparison of Workflows for Milk Lipid Analysis: Phospholipids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Source and Chemicals
2.2. Lipid Standard Preparation and Lipid Extraction from Milk Samples
2.3. Phospholipid Analysis
2.4. Mass Spectrometry Settings
2.5. Quantification of Phospholipids
2.6. Statistical Analysis
3. Results
3.1. Analysis of Milk Phospholipids by RP-LC-MS
3.1.1. Ammonium Acetate vs. Ammonium Formate as Mobile Phase Additive
3.1.2. One-Phase Extraction vs. the Folch Method
3.1.3. Matrix Effects
3.1.4. Phospholipid Quantification as Influenced by LC Elution Programmes
3.1.5. Type 1 Isotopic Correction Effect
3.2. Analysis of Milk Phospholipids by Hilic-MS
3.2.1. One-Phase Extraction vs. the Folch Method
3.2.2. Type 1 Isotope Correction
3.2.3. Type 2 Isotope Correction (M+2 Isotope Interference)
3.2.4. Elution Programme Comparison
3.2.5. Comparison of RP-LC-MS and Hilic-MS for the Quantification of Phospholipids
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewetinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis. 2012, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [Green Version]
- Hernell, O.; Timby, N.; Domellöf, M.; Lönnerdal, B. Clinical benefits of milk fat globule membranes for infants and children. J. Pediatr. 2016, 73, S60–S65. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ezernieks, V.; Wang, J.; Arachchillage, N.W.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, C.; Briard-Bion, V.; Menard, O.; Rousseau, F.; Pradel, P.; Besle, J.-M. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 2008, 56, 5226–5236. [Google Scholar] [CrossRef]
- Wei, W.; Li, D.; Jiang, C.; Zhang, X.; Zhang, X.; Jin, Q.; Zhang, X.; Wang, X. Phospholipid composition and fat globule structure II: Comparison of mammalian milk from five different species. Food Chem. 2022, 388, 132939. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B. Milk lipidomics: What we know and what we don’t. Prog. Lipid Res. 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Rombaut, R.; Dewettinck, K.; van Camp, J. Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC-ELSD). J. Food Comp. Anal. 2007, 20, 308–312. [Google Scholar] [CrossRef]
- Wei, W.; Yang, J.; Yang, D.; Wang, X.; Yang, Z.; Jin, Q.; Wang, M.; Lai, J.; Wang, X. Phospholipid composition and fat globule structure I: Comparison of human milk fat from different gestational ages, lactation stages, and infant formulas. J. Agric. Food Chem. 2019, 67, 13922–13928. [Google Scholar] [CrossRef]
- Zhu, D.; Hay, A.; Kebede, B.; Stewart, I.; Chen, G.; Frew, R. 31P NMR phospholipid fingerprinting of powdered infant formula. J. Agric. Food Chem. 2019, 67, 10265–10272. [Google Scholar] [CrossRef]
- Lagutin, K.; MacKenzie, A.; Bloor, S.; Scott, D.; Vyssotski, M. HPLC-MS, GC, NMR profiling of bioactive lipids of human milk and milk of dairy animals (cow, sheep, goat, buffalo, camel, red deer). Separations 2022, 9, 145. [Google Scholar] [CrossRef]
- Han, X.; Gross, R.W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal. Biochem. 2001, 295, 88–100. [Google Scholar] [CrossRef]
- Simons, B.; Kauhanen, D.; Sylvänne, T.; Tarasov, K.; Duchoslav, E.; Ekroos, K. Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Metabolites 2012, 2, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Bielow, C.; Mastrobuoni, G.; Orioli, M.; Kempa, S. On mass ambiguities in high-resolution shotgun lipidomics. Anal. Chem. 2017, 89, 2986–2994. [Google Scholar] [CrossRef]
- Furse, S.; Billing, G.; Snowden, S.G.; Smith, J.; Goldberg, G.; Koulman, A. Relationship between the lipid composition of maternal plasma and infant plasma through breast milk. Metabolomics 2019, 15, 129. [Google Scholar] [CrossRef] [Green Version]
- Fabritius, M.; Linderborg, K.M.; Tarvainen, M.; Kalpio, M.; Zhang, Y.; Yang, B. Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas. Food Chem. 2020, 328, 126991. [Google Scholar] [CrossRef]
- Bukowski, M.; Picklo, M.J. Simple, rapid lipidomic analysis of triacylglycerols in bovine milk by infusion-electrospray mass spectrometry. Lipids 2021, 56, 243–255. [Google Scholar] [CrossRef]
- Magnuson, A.D.; Bukowski, M.R.; Rosenberg, T.A.; Picklo, M.J. Quantifying sphingomyelin in dairy through infusion-based shotgun mass spectrometry with lithium-ion-induced fragmentation. J. Agric. Food Chem. 2022, 70, 13808–13817. [Google Scholar] [CrossRef]
- Holcapek, M.; Liebisch, G.; Ekroos, K. Lipidomic analysis. Anal. Chem. 2018, 90, 4249–4257. [Google Scholar] [CrossRef]
- Han, X.; Ye, H. An overview of lipidomic analysis of triglyceride molecular species in biological lipid extracts. J. Agric. Food Chem. 2021, 69, 8895–8909. [Google Scholar] [CrossRef]
- Weir, J.M.; Wong, G.; Barlow, C.K.; Greeve, M.A.; Kowalczyk, A.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Jowett, J.B.; Shaw, J. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 2013, 54, 2898–2908. [Google Scholar] [CrossRef] [Green Version]
- Donato, P.; Cacciola, F.; Cichello, F.; Russo, M.; Dugo, P.; Mondello, L. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. J. Chromatogr. A 2011, 1218, 6476–6482. [Google Scholar] [CrossRef]
- Russo, M.; Cichello, F.; Ragonese, C.; Donato, P.; Cacciola, F.; Dugo, P.; Mondello, L. Profiling and quantifying polar lipids in milk by hydrophilic interaction liquid chromatography coupled with evaporative light-scattering and mass spectrometry detection. Anal. Bioanal. Chem. 2013, 405, 4617–4626. [Google Scholar] [CrossRef]
- Trenerry, C.V.; Akbaridoust, G.; Plozza, T.; Rochfort, S.; Wales, W.J.; Auldist, M.; Ajlouni, S. Ultra-high-performance liquid chromatography–ion trap mass spectrometry characterisation of milk polar lipids from dairy cows fed different diets. Food Chem. 2013, 141, 1451–1460. [Google Scholar] [CrossRef]
- Liu, Z.; Moate, P.; Cocks, B.; Rochfort, S. Comprehensive polar lipid identification and quantification in milk by liquid chromatography-mass spectrometry. J. Chromatogr. B 2015, 978–979, 95–102. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Pryce, J.; Rochfort, S. Comprehensive characterization of bovine milk lipids: Phospholipids, sphingolipids, glycolipids, and ceramides. J. Agric. Food Chem. 2020, 68, 6726–6738. [Google Scholar] [CrossRef]
- Koivusalo, M.; Haimi, P.; Heikinheimo, L.; Kostiainen, R.; Somerharju, P. Quantitative determination of phospholipid compositions by ESI-MS: Effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 2001, 42, 663–672. [Google Scholar] [CrossRef]
- Fong, B.; Ma, L.; Norris, C. Analysis of phospholipids in infant formulas using high performance liquqid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2013, 61, 858–865. [Google Scholar] [CrossRef]
- Munjoma, N.; Isaac, G.; Muazzam, A.; Cexus, O.; Azhar, F.; Pandha, H.; Whetton, A.D.; Townsend, P.A.; Wilson, I.D.; Gethings, L.A.; et al. High throughput LC-MS platform for large scale screening of bioactive polar lipids in human plasma and serum. J Proteome Res. 2022, 21, 2596–2608. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, B.; Zhang, X.; Xu, Y.; Shi, H.; Yu, L. Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time-of-flight mass spectrometry. Food Chem. 2014, 143, 199–204. [Google Scholar] [CrossRef]
- Huynh, K.; Barlow, C.K.; Jayawardana, K.S.; Weir, J.M.; Mellett, N.A.; Cinel, M.; Magliano, D.J.; Shaw, J.E.; Drew, B.G.; Meikle, P.J. High-throughput plasma lipidomics: Detailed mapping of the associations with cardiometabolic risk factors. Cell Chem. Biol. 2019, 26, 71–84. [Google Scholar] [CrossRef]
- Koelmel, J.P.; Cochran, J.A.; Ulmer, C.Z.; Levy, A.J.; Patterson, R.E.; Olsen, B.C.; Yost, R.A.; Bowden, J.A.; Garrett, T.J. Software tool for internal standard based normalization of lipids, and effect of data-processing strategies on resulting values. BMC Bioinform. 2019, 20, 217. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.J.; Codreanu, S.G.; Goyal, S.; Wages, P.A.; Gorti, S.K.K.; Pearson, M.J.; Uribe, I.; Sherrod, S.D.; MaLean, J.A.; Porter, N.A.; et al. Evaluating a targeted multiple reaction monitoring approach to global untargeted lipidomic analyses of human plasma. Rapid Commun. Mass Spectrom. 2020, 34, e8911. [Google Scholar] [CrossRef]
- Yang, K.; Han, X. Accurate quantification of lipid species by electrospray ionization mass spectrometry-meets a key challenge in lipidomics. Metabolites 2011, 1, 21–40. [Google Scholar] [CrossRef]
- Liebisch, G.; Lieser, B.; Rathenberg, J.; Drobnik, W.; Schmitz, G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta 2004, 1686, 108–117. [Google Scholar] [CrossRef]
- Scherer, M.; Leuthäuser-Jaschinski, K.; Ecker, J.; Schmitz, G.; Liebisch, G. A rapid and quantitative LC-MS/MS method to profile sphingolipids. J. Lipid Res. 2010, 51, 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Liu, Z.; Rochfort, S.; Cocks, B.G. Optimization of a single-phase method for lipid extraction from milk. J. Chromatogr. A 2016, 1458, 145–149. [Google Scholar] [CrossRef]
- Hu, C.; van Dommelen, J.; van der Heijden, R.; Spijksma, G.; Reijmers, T.H.; Wang, M.; Slee, E.; Lu, X.; Xu, G.; van der Greef, J.; et al. RPLC-ion-trap-FTMS method for lipid profiling of plasma: Method validation and application to p53 mutant mouse model. J. Proteome Res. 2008, 7, 4982–4991. [Google Scholar] [CrossRef]
- Bird, S.S.; Marur, V.R.; Sniatynski, M.J.; Greenberg, H.K.; Kristal, B.S. Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: Focus on triglyceride detection and characterization. Anal. Chem. 2011, 83, 6648–6657. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, Y.; Zhu, D.; Pang, X.; Liu, Y.; Frew, R.; Chen, G. Lipidomic profiling of goat milk, soymilk and bobine milk by UPLC-Q-Exactive Orbitrap mass spectrometry. Food Chem. 2017, 224, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Wong, G.; Barlow, C.K.; Weir, J.M.; Greeve, M.A.; MacIntosh, G.L.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Kowalczyk, A.; et al. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS ONE 2013, 8, e74341. [Google Scholar] [CrossRef]
Lipid | Milk-11 | Milk-12 | ||||||
---|---|---|---|---|---|---|---|---|
Linear | Multistep | Linear | Multistep | |||||
One-Phase | Folch | One-Phase | Folch | One-Phase | Folch | One-Phase | Folch | |
PC | 89 ± 2.7 | 84 ± 3.7 | 95 ± 0.3 | 92 ± 4.3 | 90 ± 2.4 | 82 ± 3.4 | 95 ± 2.5 | 89 ± 3.7 |
SM | 109 ± 1.3 | 102 ± 3.7 | 112 ± 3.2 | 108 ± 4.1 | 109 ± 3.5 | 98 ± 3.5 | 111 ± 1.8 | 103 ± 5.3 |
PE | 112 ± 1.6 | 102 ± 4.2 | 112 ± 3.5 | 106 ± 5.7 | 110 ± 4.7 | 99 ± 2.4 | 108 ± 0.6 | 106 ± 4.3 |
PS | 112 ± 7.8 | 95 ± 4.0 | 116 ± 1.4 | 100 ± 3.8 | 110 ± 6.2 | 95 ± 7.4 | 109 ± 0.9 | 104 ± 4.7 |
PI | 105 ± 5.5 | 95 ± 5.5 | 103 ± 1.6 | 93 ± 6.0 | 105 ± 0 | 94 ± 10.4 | 102 ± 1.6 | 96 ± 10.9 |
Major Species | Multistep Gradient | Linear Gradient |
---|---|---|
PC 30:0 | 8.76 ± 0 | 9.34 ± 0.03 * |
PC 32:1 | 4.42 ± 0.05 | 5.00 ± 0.12 * |
PC 32:0 | 10.39 ± 0.27 | 9.07 ± 0.15 * |
PC 34:2 | 5.31 ± 0.03 | 5.29 ± 0.01 |
PC 34:1 | 18.54 ± 0.46 | 16.98 ± 0.49 |
PC 36:3 | 3.74 ± 0.02 | 3.72 ± 0.09 |
PC 36:2 | 7.73 ± 0.05 | 6.80 ± 0.25 * |
PC 36:1 | 4.26 ± 0.05 | 2.48 ± 0.06 * |
PC sum | 63.16 ± 0.73 | 58.68 ± 0.72 * |
PE 32:1 | 1.53 ± 0.07 | 1.35 ± 0.06 |
PE 34:2 | 6.68 ± 0.24 | 6.61 ± 0.08 |
PE 34:1 | 13.35 ± 0.24 | 12.89 ± 0.44 |
PE 36:4 | 3.55 ± 0.05 | 3.44 ± 0.05 |
PE 36:3 | 14.54 ± 0.31 | 14.24 ± 0.11 |
PE 36:2 | 43.69 ± 0.56 | 40.77 ± 0.93 |
PE 36:1 | 20.87 ± 0.05 | 16.26 ± 0.01 * |
PE sum | 104.19 ± 1.28 | 95.56 ± 1.68 * |
PC Class | Correction Factor | SM Class | Correction Factor | PE Class | Correction Factor |
---|---|---|---|---|---|
IS | 1.6223 | IS | 1.6196 | IS | 1.5686 |
PC 30:0 | 1.5689 | SM 32:1 | 1.5486 | PE 32:1 | 1.5511 |
PC 32:1 | 1.6042 | SM 34:1 | 1.5837 | PE 34:2 | 1.5860 |
PC 32:0 | 1.6045 | SM 38:1 | 1.6563 | PE 34:1 | 1.5863 |
PC 34:2 | 1.6403 | SM 39:1 | 1.6750 | PE 36:4 | 1.6214 |
PC 34:1 | 1.6406 | SM 40:1 | 1.6938 | PE 36:3 | 1.6217 |
PC 36:3 | 1.6771 | SM 41:1 | 1.7129 | PE 36:2 | 1.6220 |
PC 36:2 | 1.6774 | SM 42:1 | 1.7322 | PE 36:1 | 1.6223 |
PC 36:1 | 1.6777 | ||||
Ratio to IS | 0.967–1.034 | 0.956–1.070 | 0.989–1.034 |
Lipids | Milk-11 | Milk-12 | ||
---|---|---|---|---|
One-Phase | Folch | One-Phase | Folch | |
PC | 97 ± 0.3 | 90 ± 8.7 | 98 ± 1.5 | 89 ± 9.0 |
SM | 117 ± 3.9 | 104 ± 8.4 | 117 ± 2.9 | 103 ± 10.5 |
PE | 91 ± 2.9 | 78 ± 3.0 | 89 ± 5.8 | 80 ± 5.0 |
PS | 109 ± 5.0 | 96 ± 8.3 | 107 ± 1.7 | 92 ± 3.9 |
PI | 93 ± 5.0 | 79 ± 0.2 | 90 ± 2.4 | 85 ± 0.2 |
Lipid Class and Species | Hilic-M4 | Hilic-M5 | Hilic-M6 |
---|---|---|---|
PC 30:0 | 15.9 ± 0.11 | 15.4 ± 0.29 | 15.1 ± 0.29 |
PC 32:1 | 6.4 ± 0.12 | 6.1 ± 0.04 | 6.4 ± 0.17 |
PC 32:0 | 15.8 ± 0.26 | 15.1 ± 0.19 | 15.5 ± 0.44 |
PC 34:2 | 8.1 ± 0.10 | 8.2 ± 0.17 | 8.2 ± 0.22 |
PC 34:1 | 26.9 ± 0.18 | 27.1 ± 0.50 | 27.1 ± 0.47 |
PC 36:3 | 6.4 ± 0.12 | 6.6 ± 0.05 | 6.4 ± 0.10 |
PC 36:2 | 13.5 ± 0.19 | 14.0 ± 0.18 | 14.0 ± 0.25 |
PC 36:1 | 7.0 ± 0.21 | 7.5 ± 0.11 | 7.3 ± 0.13 |
PC sum conc (µg/mL) | 71.8 ± 1.7 | 73.4 ± 1.1 | 73.0 ± 0.8 |
SM 34:1 | 28.4 ± 0.48 | 28.7 ± 1.05 | 28.8 ± 1.68 |
SM 38:1 | 9.0 ± 0.12 | 8.8 ± 0.47 | 8.9 ± 0.23 |
SM 39:1 | 13.7 ± 0.13 | 13.6 ± 0.27 | 13.6 ± 0.21 |
SM 40:1 | 21.6 ± 0.19 | 21.5 ± 0.13 | 21.6 ± 0.58 |
SM 41:1 | 16.5 ± 0.28 | 16.6 ± 0.24 | 16.4 ± 0.49 |
SM 42:1 | 10.7 ± 0.18 | 10.9 ± 0.21 | 10.6 ± 0.23 |
SM sum conc (µg/mL) | 44.5 ± 0.7 | 46.3 ± 1.8 | 44.7 ± 0.3 |
PE 32:1 | 2.4 ± 0.24 | 2.3 ± 0.24 | 2.1 ± 0.13 |
PE 34:2 | 8.2 ± 0.27 | 8.5 ± 0.15 | 8.6 ± 0.53 |
PE 34:1 | 12.4 ± 0.27 | 12.6 ± 0.24 | 12.9 ± 0.79 |
PE 36:4 | 5.5 ± 0.34 | 5.2 ± 0.22 | 5.2 ± 0.43 |
PE 36:3 | 18.3 ± 0.80 | 17.6 ± 0.17 | 17.5 ± 0.21 |
PE 36:2 | 42.1 ± 2.19 | 42.8 ± 0.64 | 42.5 ± 0.77 |
PE 36:1 | 11.1 ± 0.52 | 11.1 ± 0.12 | 11.2 ± 0.16 |
PE sum conc (µg/mL) | 83.9 ± 4.2 | 81.4 ± 1.7 | 80.1 ± 5.7 |
PS 34:1 | 5.0 ± 0.31 | 5.3 ± 0.13 | 5.1 ± 0.29 |
PS 36:3 | 7.9 ± 0.34 | 7.3 ± 0.41 | 7.5 ± 0.22 |
PS 36:2 | 29.4 ± 0.66 | 28.6 ± 0.24 | 29.6 ± 0.92 |
PS 36:1 | 39.5 ± 1.06 | 40.2 ± 0.55 | 37.9 ± 1.07 |
PS 38:5 | 5.1 ± 0.33 | 5.2 ± 0.39 | 5.5 ± 0.86 |
PS 38:4 | 6.9 ± 0.22 | 7.5 ± 0.31 | 8.4 ± 1.05 |
PS 40:5 | 6.2 ± 0.18 | 5.9 ± 0.14 | 5.9 ± 0.31 |
PS sum conc (µg/mL) | 35.9 ± 2.1 | 36.1 ± 0.5 | 36.8 ± 0.5 |
PI 34:1 | 6.2 ± 1.27 | 8.3 ± 0.60 | 8.2 ± 0.69 |
PI 36:2 | 35.5 ± 0.32 | 33.9 ± 1.11 | 35.2 ± 1.64 |
PI 36:1 | 32.2 ± 1.30 | 30.0 ± 0.52 | 30.9 ± 1.11 |
PI 38:5 | 8.7 ± 0.54 | 9.5 ± 1.27 | 8.8 ± 0.49 |
PI 38:4 | 10.7 ± 0.04 | 11.3 ± 0.60 | 11.0 ± 1.10 |
PI 38:3 | 6.7 ± 0.17 | 7.1 ± 0.31 | 6.0 ± 0.35 |
PI sum conc (µg/mL) | 20.0 ± 2.8 | 19.6 ± 1.6 | 20.7 ± 1.8 |
Lipid Class and Species | Hilic-M4 | C8 |
---|---|---|
PC 30:0 | 11.4 ± 0.1 | 8.8 ± 0 * |
PC 32:1 | 4.6 ± 0.1 | 4.4 ± 0.05 |
PC 32:0 | 11.3 ± 0.3 | 10.4 ± 0.27 |
PC 34:2 | 5.8 ± 0.1 | 5.3 ± 0.03 |
PC 34:1 | 19.3 ± 0.3 | 18.5 ± 0.46 |
PC 36:3 | 4.6 ± 0.2 | 3.7 ± 0.02 * |
PC 36:2 | 9.7 ± 0.3 | 7.7 ± 0.05 * |
PC 36:1 | 5.0 ± 0.3 | 4.3 ± 0.05 * |
PC sum conc (µg/mL) | 71.8 ± 1.7 | 63.2 ± 0.73 * |
SM 34:1 | 12.6 ± 0.3 | 12.2 ± 0.1 |
SM 38:1 | 4.0 ± 0.1 | 4.6 ± 0.2 * |
SM 39:1 | 6.1 ± 0.1 | 7.4 ± 0.2 * |
SM 40:1 | 9.6 ± 0.1 | 16.3 ± 1.3 * |
SM 41:1 | 7.3 ± 0.2 | 9.8 ± 0.5 * |
SM 42:1 | 4.8 ± 0.1 | 5.9 ± 0.2 * |
SM sum conc (µg/mL) | 44.5 ± 0.7 | 56.0 ± 2.4 * |
PE 32:1 | 2.0 ± 0.1 | 1.5 ± 0.07 * |
PE 34:2 | 6.9 ± 0.6 | 6.7 ± 0.24 |
PE 34:1 | 10.4 ± 0.7 | 13.4 ± 0.24 * |
PE 36:4 | 4.6 ± 0.5 | 3.5 ± 0.05 * |
PE 36:3 | 15.3 ± 1.4 | 14.5 ± 0.31 |
PE 36:2 | 35.3 ± 1.5 | 43.7 ± 0.56 * |
PE 36:1 | 9.3 ± 0.8 | 20.9 ± 0.05 * |
PE sum conc (µg/mL) | 83.9 ± 4.2 | 104.2 ± 1.28 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Liu, Z.; Marett, L.; Pryce, J.; Rochfort, S. Comparison of Workflows for Milk Lipid Analysis: Phospholipids. Foods 2023, 12, 163. https://doi.org/10.3390/foods12010163
Li C, Liu Z, Marett L, Pryce J, Rochfort S. Comparison of Workflows for Milk Lipid Analysis: Phospholipids. Foods. 2023; 12(1):163. https://doi.org/10.3390/foods12010163
Chicago/Turabian StyleLi, Cheng, Zhiqian Liu, Leah Marett, Jennie Pryce, and Simone Rochfort. 2023. "Comparison of Workflows for Milk Lipid Analysis: Phospholipids" Foods 12, no. 1: 163. https://doi.org/10.3390/foods12010163
APA StyleLi, C., Liu, Z., Marett, L., Pryce, J., & Rochfort, S. (2023). Comparison of Workflows for Milk Lipid Analysis: Phospholipids. Foods, 12(1), 163. https://doi.org/10.3390/foods12010163