Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Food Adulteration
3. Adulteration to Improve Physical and Sensory Properties
3.1. Artificial Ripening Agents
3.2. Growth Hormones
3.3. Artificial Sweetening Agents
3.4. Artificial Coloring Agents
3.5. Adulteration to Improve Food Consistency
3.6. Preservatives
4. Food Substitution
4.1. Substitution of Species and Tissue
4.1.1. Fishery Substitution:
4.1.2. Substitution in Meat Products
4.1.3. Substitution in Milk Products
4.1.4. Coffee Substitution
4.2. Substitution of Protein Content
4.2.1. Protein Substitution in Meat
4.2.2. Protein Substitution in Milk
4.2.3. Protein Substitution in Egg and Egg-Derived Foods
4.2.4. Protein Substitution in Staple Foods
4.3. Substitution of Fat Content
4.3.1. Fat Substitution in Milk
4.3.2. Substitution of Oil and Fat Content in Oil and Fat
4.4. Food Dilution
5. Organic and Synthetic Adulterants
5.1. Adulteration with Soymilk
5.2. Adulteration with Organic Acids
5.3. Adulteration with Synthetic Acetic Acids
5.4. Adulteration with Artificial Wine
5.5. Adulteration with Unrecorded and Surrogate Alcohol
5.6. Synthetic Pharmaceutical Adulterants
6. Fraud and Mislabeling
7. Health Impact
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, J. Food Adulteration and Food Fraud; Reaktion Books: Chicago, IL, USA, 2020. [Google Scholar]
- Choudhary, A.; Gupta, N.; Hameed, F.; Choton, S. An overview of food adulteration: Concept, sources, impact, challenges and detection. Int. J. Chem. Stud. 2020, 8, 2564–2573. [Google Scholar] [CrossRef] [Green Version]
- Ayza, A.; Belete, E. Food adulteration: Its challenges and impacts. Food Sci. Qual. Manag. 2015, 41, 50–56. [Google Scholar]
- Ayza, A.; Yilma, Z. Patterns of milk and milk products adulteration in Boditti town and its surrounding, South Ethiopia. J. Agric. Sci. 2014, 4, 512–516. [Google Scholar]
- El-Loly, M.M.; Mansour, A.; Ahmed, R. Evaluation of raw milk for common commercial additives and heat treatments. Internet J. Food Saf. 2013, 15, 7–10. [Google Scholar]
- Everstine, K.; Spink, J.; Kennedy, S. Economically motivated adulteration (EMA) of food: Common characteristics of EMA incidents. J. Food Protection. 2013, 76, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Abbas, O.; Zadravec, M.; Baeten, V.; Mikuš, T.; Lešić, T.; Vulić, A.; Prpić, J.; Jemeršić, L.; Pleadin, J. Analytical methods used for the authentication of food of animal origin. Food Chem. 2018, 246, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, G.M.; Garino, C.; Arlorio, M.; Logrieco, A.F.; Losito, I.; Monaci, L. Overview on untargeted methods to combat food frauds: A focus on fishery products. J. Food Qual. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Galvin-King, P.; Haughey, S.; Elliott, C. Herb and spice fraud; the drivers, challenges and detection. Food Control. 2018, 88, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Silvis, I.; van Ruth, S.; van der Fels-Klerx, H.; Luning, P. Assessment of food fraud vulnerability in the spices chain: An explorative study. Food Control. 2017, 81, 80–87. [Google Scholar] [CrossRef]
- Rinke, P. Tradition Meets High Tech for Authenticity Testing of Fruit Juices, in Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 625–665. [Google Scholar]
- Ríos-Reina, R.; Callejón, R.M.; Oliver-Pozo, C.; Amigo, J.M.; García-González, D.L. ATR-FTIR as a potential tool for controlling high quality vinegar categories. Food Control. 2017, 78, 230–237. [Google Scholar] [CrossRef]
- Elliott, C. Elliott Review into the Integrity and Assurance of Food Supply Networks–Final Report: A National Food Crime Prevention Framework. HM Government: London, UK, 2014. [Google Scholar]
- Fox, M.; Mitchell, M.; Dean, M.; Elliott, C.; Campbell, K. The seafood supply chain from a fraudulent perspective. Food Secur. 2018, 10, 939–963. [Google Scholar] [CrossRef] [Green Version]
- Azad, T.; Ahmed, S. Common milk adulteration and their detection techniques. Int. J. Food Contam. 2016, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Kamthania, M.; Saxena, J.; Saxena, K.; Sharma, D.K. Milk Adultration: Methods of Detection &Remedial Measures. Int. J. Eng. Tech. Res. 2014, 1, 15–20. [Google Scholar]
- Visciano, P.; Schirone, M. Food frauds: Global incidents and misleading situations. Trends Food Sci. Technol. 2021, 114, 424–442. [Google Scholar] [CrossRef]
- Kamruzzaman, M. Food Adulteration and Authenticity, in Food Safety; Springer: Berlin/Heidelberg, Germany, 2016; pp. 127–148. [Google Scholar]
- Johnson, R. Food Fraud and “Economically Motivated Adulteration" of Food and Food Ingredients; Congressional Research Service: Washington, DC, USA, 2018.
- Brooks, C.; Parr, L.; Smith, J.M.; Buchanan, D.; Snioch, D.; Hebishy, E. A review of food fraud and food authenticity across the food supply chain, with an examination of the impact of the COVID-19 pandemic and Brexit on food industry. Food Control. 2021, 130, 108171. [Google Scholar] [CrossRef]
- González-Pereira, A.; Otero, P.; Fraga-Corral, M.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.; Simal-Gandara, J. State-of-the-art of analytical techniques to determine food fraud in olive oils. Foods 2021, 10, 484. [Google Scholar] [CrossRef]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- He, Y.; Bai, X.; Xiao, Q.; Liu, F.; Zhou, L.; Zhang, C. Detection of adulteration in food based on nondestructive analysis techniques: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2351–2371. [Google Scholar] [CrossRef]
- Pastor, K.; Ačanski, M.; Vujić, D.; Kojić, P. A rapid dicrimination of wheat, walnut and hazelnut flour samples using chemometric algorithms on GC/MS data. J. Food Meas. Charact. 2019, 13, 2961–2969. [Google Scholar] [CrossRef]
- Goonatilake, R. Effects of diluted ethylene glycol as a fruit-ripening agent. Glob. J. Biotechnol. Biochem. 2008, 3, 8–13. [Google Scholar]
- Islam, M.N.; Imtiaz, M.Y.; Alam, S.S.; Nowshad, F.; Shadman, S.A.; Khan, M.S. Artificial ripening on banana (Musa Spp.) samples: Analyzing ripening agents and change in nutritional parameters. Cogent Food Agric. 2018, 4, 1477232. [Google Scholar] [CrossRef]
- Maduwanthi, S.; Marapana, R. Induced ripening agents and their effect on fruit quality of banana. Int. J. Food Sci. 2019, 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Mursalat, M.; Rony, A.H.; Rahman, A.H.M.S.; Islam, M.N.; Khan, M.S. A critical analysis of artificial fruit ripening: Scientific, legislative and socio-economic aspects. Che Thoughts 2013, 3, 1–7. [Google Scholar]
- Panghal, A.; Yadav, D.; Khatkar, B.S.; Sharma, H.; Kumar, V.; Chhikara, N. Post-harvest malpractices in fresh fruits and vegetables: Food safety and health issues in India. Nutr. Food Sci. 2018, 48, 561–578. [Google Scholar] [CrossRef]
- Kathirvelan, J.; Vijayaraghavan, R. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening. Infrared Phys. Technol. 2017, 85, 403–409. [Google Scholar] [CrossRef]
- Reyes-Díaz, M.; Lobos, T.; Cardemil, L.; Nunes-Nesi, A.; Retamales, J.; Jaakola, L.; Alberdi, M.; Ribera-Fonseca, A. Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 2016, 21, 567. [Google Scholar] [CrossRef]
- Ur-Rahman, A.; Chowdhury, F.; Alam, M. Artificial ripening: What we are eating. J. Med. 2008, 9, 42–44. [Google Scholar] [CrossRef]
- Janssen, S.; Schmitt, K.; Blanke, M.; Bauersfeld, M.L.; Wöllenstein, J.; Lang, W. Ethylene detection in fruit supply chains. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2014, 372, 20130311. [Google Scholar] [CrossRef]
- Bhattarai, U.K.; Shrestha, K. Use of calcium carbide for artificial ripening of fruits: Its application and hazards. J. Food Sci. Technol. Nepal. 2005, 1, 3–6. [Google Scholar]
- Shaon, S.M.; Zaman, P.; Mahmud, S.M.N.; Shanzana, P.; Rajib, R.I.; Rahman, T.; Islam, M.-A.; Sardar, M.-R.; Kabir, M.-H.; Lira, S.A. Detection of many health hazardous chemicals used in tomato marketing in Bangladesh. Br. Biotechnol. J. 2016, 15, 1–12. [Google Scholar] [CrossRef]
- Silva, B.M.; Seabra, R.M.; Andrade, P.B.; Oliveira, M.B.; Ferreira, M.A. Adulteração por adição de açúcares a sumos de frutos: Uma revisão adulteration of fruit juice by addition of sugars: A review adulteración por adición de azúcares a zumos de frutas: Una revisión. CYTA-J. Food 1999, 2, 184–191. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Heyden, Y.V.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey—A challenge. TrAC Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Naila, A.; Flint, S.H.; Sulaiman, A.; Ajit, A.; Weeds, Z. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control. 2018, 90, 152–165. [Google Scholar] [CrossRef]
- Bogdanov, S.; Imdorf, A.; Charriere, J.; Fluri, P.; & Kilchenmann, V. The Contaminants of the Bee Colony; Swiss Bee Research Centre: Bern, Switzerland, 2003; p. 12. [Google Scholar]
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno. 2015, 83, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.J.; Musharraf, S.; Choudhary, M. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners—A review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, C.R.; Boullata, J.; McCauley, L. The potential toxicity of artificial sweeteners. Aaohn J. 2008, 56, 251–261. [Google Scholar] [CrossRef]
- Sagandykova, G.N.; Alimzhanova, M.B.; Nurzhanova, Y.T.; Kenessov, B. Determination of semi-volatile additives in wines using SPME and GC–MS. Food Chem. 2017, 220, 162–167. [Google Scholar] [CrossRef]
- Lachenmeier, D. Advances in the Detection of the Adulteration of Alcoholic Beverages including Unrecorded Alcohol, in Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 565–584. [Google Scholar]
- Lachenmeier, D.W.; Sohnius, E.M.; Attig, R.; López, M.G. Quantification of selected volatile constituents and anions in Mexican Agave spirits (Tequila, Mezcal, Sotol, Bacanora). J. Agric. Food Chem. 2006, 54, 3911–3915. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, A.C.; Ayyıldız, S. Food additives: Colorants. In Science within Food: Up-to-Date Advances on Research and Educational Ideas; Formatex Research Center: Badajoz, Spain, 2017. [Google Scholar]
- Akramzadeh, N.; Hosseini, H.; Pilevar, Z.; Khosroshahi, N.K.; Khosravi-Darani, K.; Komeyli, R.; Barba, F.J.; Pugliese, A.; Poojary, M.M.; Khaneghah, A.M. Physicochemical properties of novel non-meat sausages containing natural colorants and preservatives. J. Food Process. Preserv. 2018, 42, e13660. [Google Scholar] [CrossRef]
- He, L.; Su, Y.; Shen, X.; Zeng, Z.; Liu, Y. Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography-mass spectrometry. Anal. Chim. Acta. 2007, 594, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.N.; Jaiswal, P.; Grewal, M.K.; Gupta, M.; Bhardwaj, R. Detection of adulterants and contaminants in liquid foods—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1662–1684. [Google Scholar] [CrossRef] [PubMed]
- Barui, A.K.; Sharma, R.; Rajput, Y.S.; Singh, S. A rapid paper chromatographic method for detection of anionic detergent in milk. J. Food Sci. Technol. 2013, 50, 826–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubis, H.N.; Mohd-Naim, N.F.; Alizul, N.N.; Ahmed, M.U. From market to food plate: Current trusted technology and innovations in halal food analysis. Trends Food Sci. Technol. 2016, 58, 55–68. [Google Scholar] [CrossRef]
- Nowshad, F.; Islam, M.; Khan, M. Concentration and formation behavior of naturally occurring formaldehyde in foods. Agric. Food Secur. 2018, 7, 17. [Google Scholar] [CrossRef]
- Jinadasa, B.; Elliott, C.; Jayasinghe, G. A review of the presence of formaldehyde in fish and seafood. Food Control. 2022, 1136, 108882. [Google Scholar] [CrossRef]
- Nasreen, S.; Ahmed, T. Food adulteration and consumer awareness in Dhaka City 1995-2011. J. Health Popul. Nutr. 2014, 32, 452. [Google Scholar]
- Rahman, M.M.; Ahmed, S.; Hosen, M.M.; Talukder, A.K. Detection of formalin and quality characteristics of selected fish from wet markets at Sylhet city in Bangladesh. Bangladesh Res. Publ. J. 2012, 7, 161–169. [Google Scholar]
- Mohanty, B.P.; Mahanty, A.; Parida, P.; Parija, S.; Das, B. Formaldehyde adulteration in fish as a public health concern and need for mass awarness. J. Inland Fish. Soc. India. 2018, 50, 71–74. [Google Scholar]
- Singh, P.; Gandhi, N. Milk preservatives and adulterants: Processing, regulatory and safety issues. Food Rev. Int. 2015, 31, 236–261. [Google Scholar] [CrossRef]
- Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R. Recent advances on determination of milk adulterants. Food Chem. 2017, 221, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Amit, S.K.; Uddin, M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6, 1–22. [Google Scholar] [CrossRef]
- Panda, H. Aloe Vera Handbook Cultivation, Research Finding, Products, Formulations, Extraction & Processing; Niir Project Consultancy Services: Delhi, India, 2003. [Google Scholar]
- Ghidini, S.; Varrà, M.; Zanardi, E. Approaching authenticity issues in fish and seafood products by qualitative spectroscopy and chemometrics. Molecules 2019, 24, 1812. [Google Scholar] [CrossRef] [Green Version]
- Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; et al. Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish and Fisheries. 2016, 17, 893–938. [Google Scholar] [CrossRef] [Green Version]
- Ortea, I.; Pascoal, A.; Cañas, B.; Gallardo, J.M.; Barros-Velázquez, J.; Calo-Mata, P. Food authentication of commercially-relevant shrimp and prawn species: From classical methods to foodomics. Electrophoresis 2012, 33, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.A. PCR-based methods for fish and fishery products authentication. Trends Food Sci. Technol. 2007, 18, 558–566. [Google Scholar]
- Nakyinsige, K.; Man, Y.; Sazili, A. Halal authenticity issues in meat and meat products. Meat Sci. 2012, 91, 207–214. [Google Scholar] [CrossRef]
- Park, B.; Yoon, S.-C.; Windham, W.R.; Lawrence, K.C.; Kim, M.S.; Chao, K. Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sens. Instrum. Food Qual. Saf. 2011, 5, 25–32. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Non-invasive analytical technology for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish: A review. Anal. Chim. Acta. 2015, 853, 19–29. [Google Scholar] [CrossRef]
- Zhao, M.; Downey, G.; O’Donnell, C. Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Sci. 2014, 96, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Ballin, N.Z. Authentication of meat and meat products. Meat Sci. 2010, 86, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, B.S.; Chen, B. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J. Food Drug Anal. 2016, 24, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.E.; Hashim, U.; Mustafa, S.; Man, Y.B.C.; Islam, K.N. Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J. Nanomater. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sampson, H.A. 9. Food allergy. J. Allergy Clin. Immunol. 2003, 111, S540–S547. [Google Scholar] [CrossRef] [PubMed]
- Hurley, I.P.; Ireland, H.E.; Coleman, R.C.; Williams, J.H.H. Application of immunological methods for the detection of species adulteration in dairy products. Int. J. Food Sci. Technol. 2004, 39, 873–878. [Google Scholar] [CrossRef]
- Poonia, A.; Jha, A.; Sharma, R.; Singh, H.B.; Rai, A.K.; Sharma, N. Detection of adulteration in milk: A review. Int. J. Dairy Technol. 2017, 70, 23–42. [Google Scholar] [CrossRef]
- Zachar, P.; Šoltés, M.; Kasarda, R.; Novotný, J.; Novikmecová, M.; Marcinčáková, D. Analytical methods for the species identification of milk and milk products. Mljekarstvo Časopis Za Unaprjeđenje Proizv. I Prerade Mlijeka. 2011, 61, 199–207. [Google Scholar]
- Nikolaou, P.; Deskoulidis, E.; Topoglidis, E.; Kakoulidou, A.T.; Tsopelas, F. Application of chemometrics for detection and modeling of adulteration of fresh cow milk with reconstituted skim milk powder using voltammetric fingerpriting on a graphite/SiO2 hybrid electrode. Talanta 2020, 206, 120223. [Google Scholar] [CrossRef]
- Arbin, D.F.; de Souza Madureira Felicio, A.L.; Sun, D.-W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Burns, D.T.; Walker, M. Critical review of analytical and bioanalytical verification of the authenticity of coffee. J. AOAC Int. 2020, 103, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; Farah, A.; Pezza, H.R.; Pezza, L. Coffee adulteration: More than two decades of research. Crit. Rev. Anal. Chem. 2016, 46, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Herrero, A.; Cambero, M.; Ordóñez, J.; de la Hoz, L.; Carmona, P. Plasma powder as cold-set binding agent for meat system: Rheological and Raman spectroscopy study. Food Chem. 2009, 113, 493–499. [Google Scholar] [CrossRef]
- Saguer, E.; Dàvila, E.; Toldrà, M.; Fort, N.; Baixas, S.; Carretero, C.; Parés, D. Effectiveness of high pressure processing on the hygienic and technological quality of porcine plasma from biopreserved blood. Meat Sci. 2007, 76, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guillén, M.; Giménez, B.; López-Caballero, M.; Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef] [Green Version]
- Barai, B.; Nayak, R.; Singhal, R.; Kulkarni, P. Approaches to the detection of meat adulteration. Trends Food Sci. Technol. 1992, 3, 69–72. [Google Scholar] [CrossRef]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control. 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Ebringer, L.; Ferenčík, M.; Krajčovič, J. Beneficial health effects of milk and fermented dairy products. Folia Microbiol. 2008, 53, 378–394. [Google Scholar] [CrossRef]
- Domingo, E.; Tirelli, A.A.; Nunes, C.A.; Guerreiro, M.C.; Pinto, S.M. Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: A review. Food Res. Int. 2014, 60, 131–139. [Google Scholar] [CrossRef]
- Hau, A.K.-C.; Kwan, T.; Li, P.-T. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 2009, 20, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.I.M.I. Determination of Urea in COW’S Milk Sold in Damietta GOVERNORATE. J. Egypt. Vet. Med. Assoc. 2008, 69. [Google Scholar]
- Martín-Hernández, C.; Muñoz, M.; Daury, C.; Weymuth, H.; Kemmers-Voncken, A.E.; Corbatón, V.; Toribio, T.; Bremer, M.G. Immunochromatographic lateral-flow test strip for the rapid detection of added bovine rennet whey in milk and milk powder. Int. Dairy J. 2009, 19, 205–208. [Google Scholar] [CrossRef]
- Sharma, R.; Rajput, Y.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar]
- Scholl, P.F.; Farris, S.; Mossoba, M.M. Rapid turbidimetric detection of milk powder adulteration with plant proteins. J. Agric. Food Chem. 2014, 62, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.M.R.; Desmarchelier, A.; Konings, E.; Acheson-Shalom, R.; Delatour, T. Liquid chromatography—Tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products. J. Agric. Food Chem. 2010, 58, 11574–11579. [Google Scholar] [CrossRef] [PubMed]
- Pastor, K.; Ačanski, M.; Vujić, D. A review of adulteration versus authentication of flour. Flour Breads Fortif. Health Dis. Prev. 2019, 2019, 21–35. [Google Scholar]
- Delwiche, S. Advances in the Identification of Adulterated Cereals and Cereal Products. In Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016; p. 491518. [Google Scholar]
- Colgrave, M.L.; Byrne, K.; Blundell, M.; Howitt, C. Identification of barley-specific peptide markers that persist in processed foods and are capable of detecting barley contamination by LC-MS/MS. J. Proteom. 2016, 147, 169–176. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, P.; Mohamad, S.N.H.; de Santos, R.M.; Iglesias, B.D.; Elorza, P.B. Discrimination of peanuts from bulk cereals and nuts by near infrared reflectance spectroscopy. Biosyst. Eng. 2016, 151, 178–186. [Google Scholar] [CrossRef]
- Scarafoni, A.; Ronchi, A.; Duranti, M. A real-time PCR method for the detection and quantification of lupin flour in wheat flour-based matrices. Food Chem. 2009, 115, 1088–1093. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Nagai, T.; Mizobe, H.; Kojima, K.; Gotoh, N. Simple method for the quantification of milk fat content in foods by LC-APCI-MS/MS using 1, 2-dipalmitoyl-3-butyroyl-glycerol as an indicator. J. Oleo Sci. 2013, 62, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Azadmard-Damirchi, S.; Torbati, M. Adulterations in some edible oils and fats and their detection methods. J. Food Qual. Hazards Control. 2015, 2, 38–44. [Google Scholar]
- Huang, C.L.; Sumpio, B. Olive oil, the mediterranean diet, and cardiovascular health. J. Am. Coll. Surg. 2008, 207, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Rohman, A.; Man, Y. Application of Fourier transform infrared spectroscopy for authentication of functional food oils. Appl. Spectrosc. Rev. 2012, 47, 1–13. [Google Scholar] [CrossRef]
- Dais, P.; Hatzakis, E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Anal. Chim. Acta. 2013, 765, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S. Edible oil adulterations: Current issues, detection techniques, and health hazards. IJCS 2018, 6, 1393–1397. [Google Scholar]
- Nunes, C.A. Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 2014, 60, 255–261. [Google Scholar] [CrossRef]
- Shukla, A.; Dixit, A.; Singh, R. Detection of adulteration in edible oils. J. Oleo Sci. 2005, 54, 317–324. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Calín-Sánchez, Á.; Hernández, F.; Carbonell-Barrachina, Á.A. Pomegranate juice adulteration by addition of grape or peach juices. J. Sci. Food Agric. 2014, 94, 646–655. [Google Scholar] [CrossRef]
- Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern analytical methods for the detection of food fraud and adulteration by food category. J. Sci. Food Agric. 2017, 97, 3877–3896. [Google Scholar] [CrossRef]
- Włodarska, K.; Khmelinskii, I.; Sikorska, E. Authentication of apple juice categories based on multivariate analysis of the synchronous fluorescence spectra. Food Control. 2018, 86, 42–49. [Google Scholar] [CrossRef]
- Boffo, E.F.; Tavares, L.A.; Ferreira, M.M.; Ferreira, A.G. Classification of Brazilian vinegars according to their 1H NMR spectra by pattern recognition analysis. LWT-Food Sci. Technol. 2009, 42, 1455–1460. [Google Scholar] [CrossRef]
- Mazáč, A.G.H.Č.J.; Voldřich, M. Authenticity and quality of spirit vinegar: Methods for detection of synthetic acetic acid addition. J. Food Nutr. Res. 2012, 51, 123–131. [Google Scholar]
- Zapotoczny, P. Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single Kernel Texture. J. Cereal Sci. 2011, 54, 60–68. [Google Scholar]
- Ambrose, A.; Cho, B.-K. A review of technologies for detection and measurement of adulterants in cereals and cereal products. J. Biosyst. Eng. 2014, 39, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Su, W.-H.; Sun, D.-W. Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic Avatar wheat (Triticum spp.) flour. J. Food Eng. 2017, 200, 59–69. [Google Scholar] [CrossRef]
- Kuo, T.-Y.; Chung, C.-L.; Chen, S.-Y.; Lin, H.-A.; Kuo, Y.-F. Identifying rice grains using image analysis and sparse-representation-based classification. Comput. Electron. Agric. 2016, 127, 716–725. [Google Scholar] [CrossRef]
- Vemireddy, L.R.; Satyavathi, V.V.; Siddiq, E.A.; Nagaraju, J. Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study. J. Food Sci. Technol. 2015, 52, 3187–3202. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Beltrán, A.; Mellinas, C.; Jiménez, A.; Garrigós, M.C. Analytical methods combined with multivariate analysis for authentication of animal and vegetable food products with high fat content. Trends Food Sci. Technol. 2018, 77, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Melini, V.; Melini, F. Asian grain-based food products and the European scheme for food protected designations of origin: A critical analysis. Trends Food Sci. Technol. 2019, 91, 83–94. [Google Scholar] [CrossRef]
- Dhanya, K.; Sasikumar, B. Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Curr. Trends Biotechnol. Pharm. 2010, 4, 454–489. [Google Scholar]
- Kuballa, T.; Brunner, T.S.; Thongpanchang, T.; Walch, S.G.; Lachenmeier, D.W. Application of NMR for authentication of honey, beer and spices. Curr. Opin. Food Sci. 2018, 19, 57–62. [Google Scholar] [CrossRef]
- Ravindran, P.N.; Kallupurackal, J.A. Black Pepper, in Handbook of Herbs and Spices; Elsevier: Amsterdam, The Netherlands, 2012; pp. 86–115. [Google Scholar]
- Moatsou, G.; Anifantakis, E. Recent developments in antibody-based analytical methods for the differentiation of milk from different species. Int. J. Dairy Technol. 2003, 56, 133–138. [Google Scholar] [CrossRef]
- Rani, A.; Sharma, V.; Arora, S.; Lal, D.; Kumar, A. A rapid reversed-phase thin layer chromatographic protocol for detection of adulteration in ghee (clarified milk fat) with vegetable oils. J. Food Sci. Technol. 2015, 52, 2434–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, N.; Kumar, A.; Rathod, G.; Goyal, A.; Lal, D. Development of a method employing reversed-phase thin-layer chromatography for establishing milk fat purity with respect to adulteration with vegetable oils. Int. J. Dairy Technol. 2015, 68, 207–217. [Google Scholar] [CrossRef]
- Sharma, R.; Rajput, Y.S.; Poonam; Dogra, G.; Tomar, S.K. Estimation of sugars in milk by HPLC and its application in detection of adulteration of milk with soymilk. Int. J. Dairy Technol. 2009, 62, 514–519. [Google Scholar] [CrossRef]
- Hsieh, C.; Li, P.-H.; Cheng, J.-Y.; Ma, J.-T. Using SNIF-NMR method to identify the adulteration of molasses spirit vinegar by synthetic acetic acid in rice vinegar. Ind. Crops Prod. 2013, 50, 904–908. [Google Scholar] [CrossRef]
- Thomas, F.; Jamin, E. 2H NMR and 13C-IRMS analyses of acetic acid from vinegar, 18O-IRMS analysis of water in vinegar: International collaborative study report. Anal. Chim. Acta. 2009, 649, 98–105. [Google Scholar] [CrossRef]
- Haneef, J.; Shaharyar, M.; Husain, A.; Rashid, M.; Mishra, R.; Siddique, N.A.; Pal, M. Analytical methods for the detection of undeclared synthetic drugs in traditional herbal medicines as adulterants. Drug Test. Anal. 2013, 5, 607–613. [Google Scholar] [CrossRef]
- Vaclavik, L.; Krynitsky, A.; Rader, J. Mass spectrometric analysis of pharmaceutical adulterants in products labeled as botanical dietary supplements or herbal remedies: A review. Anal. Bioanal. Chem. 2014, 406, 6767–6790. [Google Scholar] [CrossRef]
- Patel, D.N.; Li, L.; Kee, C.L.; Ge, X.; Low, M.Y.; Koh, H.L. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: Analytical techniques and challenges. J. Pharm. Biomed. Anal. 2014, 87, 176–190. [Google Scholar] [CrossRef]
- Venhuis, B.J.; Zomer, G.; Vredenbregt, M.J.; De Kaste, D. The identification of (−)-trans-tadalafil, tadalafil, and sildenafil in counterfeit Cialis® and the optical purity of tadalafil stereoisomers. J. Pharm. Biomed. Anal. 2010, 51, 723–727. [Google Scholar] [CrossRef]
- Kee, C.L.; Ge, X.; Gilard, V.; Malet-Martino, M.; Low, M.Y. A review of synthetic phosphodiesterase type 5 inhibitors (PDE-5i) found as adulterants in dietary supplements. J. Pharm. Biomed. Anal. 2018, 147, 250–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.H.; Park, H.J.; Kim, J.-Y.; Cho, S.; Kim, W.S. Determination of non-opioid analgesics in adulterated food and dietary supplements by LC-MS/MS. Food Addit. Contam. Part A. 2014, 31, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Calahan, J.; Howard, D.; Almalki, A.J.; Gupta, M.P.; Calderón, A.I. Chemical adulterants in herbal medicinal products: A review. Planta Medica. 2016, 82, 505–515. [Google Scholar] [CrossRef]
- Byard, R.W. A review of the potential forensic significance of traditional herbal medicines. J. Forensic Sci. 2010, 55, 89–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venhuis, B.; De Kaste, D. Towards a decade of detecting new analogues of sildenafil, tadalafil and vardenafil in food supplements: A history, analytical aspects and health risks. J. Pharm. Biomed. Anal. 2012, 69, 196–208. [Google Scholar] [CrossRef]
- de Carvalho, L.M.; Martini, M.; Moreira, A.P.L.; de Lima, A.P.S.; Correia, D.; Falcão, T.; Garcia, S.C.; de Bairros, A.V.; Nascimento, P.C.D.; Bohrer, D. Presence of synthetic pharmaceuticals as adulterants in slimming phytotherapeutic formulations and their analytical determination. Forensic Sci. Int. 2011, 204, 6–12. [Google Scholar] [CrossRef]
- Rocha, T.; Amaral, J.; Oliveira, M.B. Adulteration of dietary supplements by the illegal addition of synthetic drugs: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 43–62. [Google Scholar] [CrossRef]
- Hallur, V.; Atharga, B.; Hosur, A.; Binjawadagi, B.; Bhat, K. Design and development of a portable instrument for the detection of artificial ripening of banana fruit. In Proceedings of the International Conference on Circuits, Communication, Control and Computing, Bangalore, India, 21–22 November 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Geyer, H.; Parr, M.K.; Koehler, K.; Mareck, U.; Schänzer, W.; Thevis, M. Nutritional supplements cross-contaminated and faked with doping substances. J. Mass Spectrom. 2008, 43, 892–902. [Google Scholar] [CrossRef]
- Becue, I.; Poucke, C.; Peteghem, C. An LC-MS screening method with library identification for the detection of steroidsin dietary supplements. J. Mass Spectrom. 2011, 46, 327–335. [Google Scholar] [CrossRef]
- Aqai, P.; Cevik, E.; Gerssen, A.; Haasnoot, W.; Nielen, M.W.F. High-throughput bioaffinity mass spectrometry for screening and identification of designer anabolic steroids in dietary supplements. Anal. Chem. 2013, 85, 3255–3262. [Google Scholar] [CrossRef]
- Odoardi, S.; Castrignanò, E.; Martello, S.; Chiarotti, M.; Strano-Rossi, S. Determination of anabolic agents in dietary supplements by liquid chromatography-high-resolution mass spectrometry. Food Addit. Contam. Part A 2015, 32, 635–647. [Google Scholar] [CrossRef]
- Hughes, D. The world anti-doping code in sport: Update for 2015. Aust. Prescr. 2015, 38, 167. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Zhang, L.; Li, L.; Ma, N.; Tu, K.; Song, L.; Pan, L. Multisource fingerprinting for region identification of walnuts in Xinjiang combined with chemometrics. J. Food Process Eng. 2018, 41, e12687. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.; Kuang, L.; Shen, Y.; Zheng, H.; Zhang, H.; Farooq, S.; Asim, S.; Shah, B.S.A. Geographical origin of Chinese apples based on multiple element analysis. J. Sci. Food Agric. 2019, 99, 6182–6190. [Google Scholar] [CrossRef]
- Singh, C.B.; Paliwal, J.; Jayas, D.S.; White, N. Near-infrared spectroscopy: Applications in the grain industry. In Proceedings of the 2006 ASAE Annual Meeting, Boston, MA, USA, 19–22 August 2006; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006. [Google Scholar]
- Bertelli, D.; Lolli, M.; Papotti, G.; Bortolotti, L.; Serra, G.; Plessi, M. Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. J. Agric. Food Chem. 2010, 58, 8495–8501. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Gao, S.; Niu, Y.; Zhang, X.; Du, Z.; Liu, H.; Zhang, Y. Botanical origin identification and adulteration quantification of honey based on Raman spectroscopy combined with convolutional neural network. Vib. Spectrosc. 2022, 123, 103439. [Google Scholar] [CrossRef]
- Hegazi, N.M.; Elghani, G.; Farag, M. The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. J. Food Sci. Technol. 2021, 59, 2527–2534. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Danezis, G.; Haroutounian, S.A.; Georgiou, C.A. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO “Fava Santorinis”. Food Chem. 2016, 213, 238–245. [Google Scholar] [CrossRef]
- Tsanakas, G.F.; Mylona, P.V.; Koura, K.; Gleridou, A.; Polidoros, A.N. Genetic diversity analysis of the Greek lentil (Lens culinaris) landrace ‘Eglouvis’ using morphological and molecular markers. Plant Genet. Resour. 2018, 16, 469–477. [Google Scholar] [CrossRef]
- Ganopoulos, I.; Bazakos, C.; Madesis, P.; Kalaitzis, P.; Tsaftaris, A. Barcode DNA high-resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J. Sci. Food Agric. 2013, 93, 2281–2286. [Google Scholar] [CrossRef]
- Raieta, K.; Muccillo, L.; Colantuoni, V. A novel reliable method of DNA extraction from olive oil suitable for molecular traceability. Food Chem. 2015, 172, 596–602. [Google Scholar] [CrossRef]
- Pereira, L.; Gomes, S.; Barrias, S.; Fernandes, J.R.; Martins-Lopes, P. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res. Int. 2018, 103, 170–181. [Google Scholar] [CrossRef]
- Tsopelas, F.; Konstantopoulos, D.; Kakoulidou, A. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration. Anal. Chim. Acta. 2018, 1015, 8–19. [Google Scholar] [CrossRef]
- Song, W.; Song, Z.; Vincent, J.; Wang, H.; Wang, Z. Quantification of extra virgin olive oil adulteration using smartphone videos. Talanta 2020, 216, 120920. [Google Scholar] [CrossRef]
- Fattah, S.; Ali, M. Carbide ripened fruits-a recent health hazard. Faridpur Med. Coll. J. 2010, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Haughey, S.A.; Graham, S.F.; Cancouët, E.; Elliott, C.T. The application of near-infrared reflectance spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem. 2013, 136, 1557–1561. [Google Scholar] [CrossRef]
- Karabasanavar, N.S.; Singh, S.P.; Kumar, D.; Shebannavar, S.N. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-looFood chemistry. Food Chem. 2014, 145, 530–534. [Google Scholar] [CrossRef]
- Ali, M.; Hashim, U.; Mustafa, S.; Man, Y.C.; Adam, T.; Humayun, Q. Nanobiosensor for the detection and quantification of pork adulteration in meatball formulation. J. Exp. Nanosci. 2014, 9, 152–160. [Google Scholar] [CrossRef]
- Perret, C.; Tabin, R.; Marcoz, J.P.; Llor, J.; Cheseaux, J.J. Apparent life-threatening event in infants: Think about star anise intoxication! Arch. De Pediatr. Organe Off. De La Soc. Fr. De Pediatr. 2011, 18, 750–753. [Google Scholar] [CrossRef]
- Pesic, M.; Barac, M.; Vrvic, M.; Ristic, N.; Macej, O.; Stanojevic, S. Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE. Food Chem. 2011, 125, 1443–1449. [Google Scholar] [CrossRef]
- Mishra, V.; Mishra, M.; Ansari, K.M.; Chaudhari, B.P.; Khanna, R.; Das, M. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer. Eur. J. Cancer 2012, 48, 2075–2085. [Google Scholar] [CrossRef]
- Shan, W.C.; Xi, J.Z.; Sun, J.; Zhang, Y.J.; Wang, J.P. Production of the monoclonal antibody against Sudan 4 for multi-immunoassay of Sudan dyes in egg. Food Control. 2012, 27, 146–152. [Google Scholar] [CrossRef]
- Chang, X.C.; Hu, X.Z.; Li, Y.Q.; Shang, Y.J.; Liu, Y.Z.; Feng, G.; Wang, J.P. Multi-determination of Para red and Sudan dyes in egg by a broad specific antibody based enzyme linked immunosorbent assay. Food Control. 2011, 22, 1770–1775. [Google Scholar] [CrossRef]
- Ghosh, D.; Singha, P.S.; Firdaus, S.B.; Ghosh, S. Metanil yellow: The toxic food colorant. Asian Pac. J. Health Sci. 2017, 4, 65–66. [Google Scholar] [CrossRef]
- Abd Elhalem, S.; EL-Atrash, A.; Osman, A.; Sherif, A.; Salim, E. Short term toxicity of food additive azo dye, sunset yellow (E110), at low doses, in male Sprague-Dawley rats. Egypt. J. ExBiol. Zool. 2016, 12, 13–21. [Google Scholar]
- Dwivedi, K.; Kumar, G. Genetic damage induced by a food coloring dye (sunset yellow) on meristematic cells of Brassica campestris L. J. Environ. Public Health 2015, 2015, 319727. [Google Scholar] [CrossRef] [Green Version]
- Sarhan, M.A.; Shati, A.; Elsaid, F. Biochemical and molecular studies on the possible influence of the Brassica oleracea and Beta vulgaris extracts to mitigate the effect of food preservatives and food chemical colorants on albino rats. Saudi J. Biol. Sci. 2014, 21, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Lin, F.; Liu, L.; Kuang, H.; Wang, L.; Xu, C. Immunoaffinity removal and immunoassay for rhodamine B in chilli powder. Int. J. Food Sci. Technol. 2010, 45, 2589–2595. [Google Scholar] [CrossRef]
- Xu, H.; Heinze, T.M.; Paine, D.D.; Cerniglia, C.E.; Chen, H. Sudan azo dyes and Para Red degradation By prevalent bacteria of the human gastrointestinal tract. Anaerobe 2010, 16, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Heinze, T.M.; Chen, S.; Cerniglia, C.E.; Chen, H. Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora. Appl. Environ. Microbiol. 2007, 73, 7759–7762. [Google Scholar] [CrossRef]
Ripening Agent | Features |
---|---|
Ethylene | Treatment is accomplished either at the packing house or at the distribution place [32]. Climacteric fruits become ripened successfully with less than 1 ppm ethylene gas by volume with an exposure of 12 h or more [28,33]. The time as well as the required concentration for ripening may vary from 0.1 to 1 ppm depending on the commodity [34]. |
Ethanol [31] | Exogenously applied to inhibit ethylene biosynthesis for ripening purposes. A 35–50% ethanol treatment is effective against microbial and fungal attack, improves sensorial quality, and prevents table grape decay. |
Ethylene Glycol [25] | Cheaper than ethylene gas. Usable by dilution with water. Addition of water may fasten the ripening process of various fruits in colder climactic conditions. Alkyl alcohol consisting of 6 and 14 carbon atoms can artificially ripe bananas. Lauryl alcohol can develop to a completely yellow color without affecting palatability within 48 h during treatment with 0.01% by weight of bananas. |
Calcium Carbide [34,35] | Often used traditionally in granular or powder form. The high cost and scarcity of ethylene availability, faster ripening capability due to break down of glucose. and being comparatively cheaper than other chemicals are the root causes behind its vast usage. Sometimes, industrial grade calcium carbide shows impurities, such as Ca3P2, CaS, Ca3N2, SiC2, AsS3, and PH3. Acetylene is produced from the reaction of calcium carbide with moisture initiates ripening in mangoes at 1 mL/L and in bananas at 2.8 mL/L or 1 mL/L. |
Ethephon [25] | Above pH 5, it decomposes into ethylene gas, bi-phosphate ion, and chloride ion. Provides better color profile than naturally ripened fruits and also improves the peel color of mangoes. Increases skin color, skin carotinoids, total suspended sloid, vitamin C, and fruit juice. Fruits treated with ethephon possess longer shelf life than fruits treated with calcium carbide, and it causes faster ripening. Some studies showed that pineapples, bananas, and tomatoes treated with 1000 ppm ethephon took less time for ripening than with other reagents. |
Methyl Jasmonate [31] | Improves firmness, increases resistance to mechanical damage, and reduces microbial attack and post-harvest decay. Resists postharvest diseases, increases polyamine content, and elongates shelf life. Application of 0.1–10 mM jasmonate causes chlorophyll degradation, enhances carotene accumulation, and, thus, changes the color of apples and mangoes. A combined treatment of 0.1 mM methyl jasmonate and ethanol on strawberry shows higher antioxidant capacity, total phenolics, and anthocyanins than treatment with ethanol only. |
Preservative | Food Item |
---|---|
Sodium benzoate (E211) | Carbonated drinks, pickles, sauces, and certain medicines |
Sulfur dioxide (E220) | Carbonated drinks, dried fruit juices, cordials, and potato products |
Sodium meta-bisulfite | Preservatives and antioxidants |
Potassium nitrate (E249) | Cured meats and canned meat products |
P-hydroxy benzoic acid esters (parabens) | Preserved foods and pharmaceuticals |
Lactic acid bacteria | Fermented foods |
Mono sodium glutamate (MSG) | All frozen foods, canned tuna, and vegetables |
Sodium nitrite and sodium nitrate | Processed meats and fish to retain red color and avoid botulism |
Trans fat | Deep-processed fast foods and certain processed foods |
Sodium sulfite (E221) | Used in wine making and other processed foods |
Potassium bromates | White flour, bread, and rolls |
Propyl gallate and tertiary butyl hydroquinone | Processed foods, vegetable oils, and meat products |
Food Item | Adulterant |
---|---|
Chili | Oil, rice flour, bran, fruits, plant husks, rice powder, sawdust, talc powder, brick powder, and salt powder |
Oregano | Sumac, olive leaves, myrtle leaves, Satureja montana L., Origanum majorana L., Cistus incanus L., Rubus caesius L., and Rhus coriaria L. |
Cumin | Almond, peanut, treenuts, peach, cherry, fennel seeds, coriander seeds, caraway seeds, anise seeds, black cumin, and white cumin |
Black Pepper | Chili, buckwheat or millet, powdered papaya seed, berries of wild pepper species, dried fruits of Lantana camara, Embelia ribes, seeds of Mirabilis jalapa, berries of Schinus molle, cheaper plant material of similar color, size, and shape, low-quality exhausted pepper, and stem and chalk of black pepper |
Cinnamon and Nutmeg | Coffee husk |
Chinese star anise | Japanese star anise |
Paprika | Almond, white pepper, curcuma, barium sulphate, and brick powder |
Saffron | Saffron of unknown origin, flower petals, and styles, old or deteriorated saffron materials, marigold leaves, arnica, beet, pomegranate fibers, dyed corn stigmas, cut or dyed C. sativus stamens, curcuma powder rhizomes, safflower, and calendula petals |
Turmeric | Chalk powder, Curcuma zedoaria, and Curcuma malabarica |
Garlic | Cornstarch |
Sage | Ginger and onion powder and olive leaves |
Black pepper berries | Mineral oil and dried papaya seed |
Chili fruits | Mineral oil |
Ginger | Lime, capsaicin, and exhausted ginger |
Cardamom fruits | Small pebbles, orange seeds, and unroasted coffee seeds |
Clove | Magnesium salt, sand, earth, and exhausted clove |
Cinnamon powder | Eugenol, cylon oil, beechnut husk, hazel nut, and almond shell dust |
Aniseed powder | Fennel |
Substitution Issue | Food Category | Substituted Compound |
---|---|---|
Substitution of Species and Tissues | Fishery substitution | Crustaceans and high-quality shrimps, etc. [65] |
Substitution in meat products | Beef and horse meat, beef and mutton, poultry and pork, sausage, minced meat, etc. [67,68,85] | |
Substitution in milk products | Cow milk, sheep milk, goat and buffalo milk, feta, manchego and pecorino cheese, etc. [77,123] | |
Coffee substitution | Arabica and robusta coffee [79,80,81] | |
Substitution of Protein Content | Protein substitution in meat | Protein from animal or vegetable origin, enzymes, etc. [68,71,82] |
Protein substitution in milk | Melamine, urea, whey, vegetable proteins, etc. [45,88,91,93] | |
Protein substitution in egg and egg-derived food | Melamine [94] | |
Protein substitution in staple food | Gluten containing cereals in gluten-free products, peanut, lupin, etc. [95,98,99] | |
Substitution of Fat Content | Fat substitution in milk | Soybean oil, peanut oil, sunflower oil, coconut oil, beef tallow, pork lard, etc. [60,124,125] |
Substitution of oil and fat content in oil and fat | Extra virgin olive oil, virgin coconut oil, pure sesame oil, etc. [102,103,106] | |
Fruit juice and vinegar | Cheap fruit juice or vegetable juice, reconstituted juice, vinegar derived from a C3 or C4 plant, wine vinegar, alcohol vinegar, etc. [49,111,112] | |
Substitution by Low Quality Food Products and Substances | Staple food | Common wheat and durum wheat, Basmati rice and non-Basmati rice [113,118] |
Spices | Oil, bran, fruits, plant husks, olive leaves, myrtle leaves, etc. [9,121] | |
Substitution by other non-meat ingredients in meat products | Dried bread, corn meal, potato starch, smoke aroma, blood, natural bacon flavors, glycerin and lecithin from animal fat, lard, mono- and diglycerides, sodium stearoyl lactylate, etc. [67,71,85] |
Adulterant Category | Example |
---|---|
Anorexics | Amfepramone, rimonabant, fenproporex, phentermine, sibutramine, orlistat, mazindol, and fenfluramine |
Anxiolytics or benzodiazepines | Diazepam, flurazepam, clonazepam, alprazolam, medazepam, midazolam, oxazepam, oxazolam, and chlordiazepoxide |
Antidepressants | Fluoxetine, paroxetine, sertraline, bupropion, and diuretics, such as furosemide, spironolactone, and hydrochlorothiazide |
Laxatives | Phenolphthalein and stimulants, such as ephedrine, norephedrine, and synephrine |
Adulterant Category | Example |
---|---|
Anabolic agents | AAS, clenbuterol, selective androgen receptor, modulators, tibolone, zeranol, zilpaterol, peptide hormones, and growth factors |
Diuretics and certain masking agents | Acetazolamide, carmerone, indaparid, and plasma expanders |
Stimulants | Amfepramone, meferox, and pseudoephedrine |
Nacrotics | Buprenorphine, dextromoramide, methadone, morphine, and oxycodone |
New, modified, or “designer” steroids | Prostanozol, methasterone, andostatrienedione, androstenedione, 5-androstern-3β-ol-17-one, methandienone, testosterone esters, androst-4-ene-3β-17β-diol, and boldenone |
Adulterant | Health Effect |
---|---|
Artificial ripening agents | Carcinogenic, headache, dizziness, mood disturbances, sleepiness, mental confusion, vomiting, diarrhea, permanent skin damage, kidney failure, etc. [25,32,34,159] |
Artificial sweetening agents | Clastogenic, genotoxic, headache, dry mouth, nausea, vomiting, dizziness, DNA damage, and cancer [29,42,43] |
Artificial coloring agents | Genotoxic, carcinogenic, multi-organ tissue injury, adverse effects on immune system and reproductive system, heart problems, mutagenicity, allergic reaction, hyperactivity, anemia, brain tumors, stomach diseases, brain injury, pigmented contact dermatitis, and stomach problems [9,29,166,167,168,169,170,171,172,173,174] |
Preservatives | Disturbance in the nervous system, kidney, liver, and lungs [54] |
Substituted meat products | Allergic reactions, diabetes, and cardiovascular diseases [72,161,162] |
Substitution of spices | Intoxication, neurological, and gastrointestinal problems in children, anaphylaxis, and liver and stomach problems [9,163] |
Oil substitution | Gall bladder cancer, epidemic dropsy, glaucoma, loss of eyesight, paralysis, liver damage, and cardiac arrest [105,165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momtaz, M.; Bubli, S.Y.; Khan, M.S. Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review. Foods 2023, 12, 199. https://doi.org/10.3390/foods12010199
Momtaz M, Bubli SY, Khan MS. Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review. Foods. 2023; 12(1):199. https://doi.org/10.3390/foods12010199
Chicago/Turabian StyleMomtaz, Mysha, Saniya Yesmin Bubli, and Mohidus Samad Khan. 2023. "Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review" Foods 12, no. 1: 199. https://doi.org/10.3390/foods12010199
APA StyleMomtaz, M., Bubli, S. Y., & Khan, M. S. (2023). Mechanisms and Health Aspects of Food Adulteration: A Comprehensive Review. Foods, 12(1), 199. https://doi.org/10.3390/foods12010199