Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives (Allium tuberosum Rottler)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Determination of Growth Index and Photosynthetic Pigment Content of Chinese Chive
2.3. Determination of Nutritional Quality of Chinese Chive
2.4. Determination of Volatile Flavor Compounds of Chinese Chive
2.5. Calculation of Odor Activity Values
2.6. Statistical Analysis
3. Results
3.1. Effects of Adding Sodium Chloride in Nutrient Solution on Growth and Photosynthetic Pigment Content of Hydroponic Chinese Chive
3.2. Effects of Adding Sodium Chloride in Nutrient Solution on Soluble Sugar, Soluble Protein, Vitamin C and Nitrate Content of Hydroponic Chinese Chive
3.3. Effects of Adding Sodium Chloride in Nutrient Solution on Volatile Flavor Compounds of Hydroponic Chinese Chive
3.4. Odor Activity Values Analysis and Radar Fingerprint Chart of Volatile Compounds in Chinese Chive
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Hao, N.; Wu, T.; Cao, J. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality. Front. Plant Sci. 2022, 13, 836515. [Google Scholar] [CrossRef]
- Drewnowski, A.; Maillot, M.; Vieux, F. Multiple Metrics of Carbohydrate Quality Place Starchy Vegetables Alongside Non-starchy Vegetables, Legumes, and Whole Fruit. Front. Nutr. 2022, 9, 867378. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Li, J.; Dawuda, M.M.; Ali, B.; Wu, Y.; Yu, J.; Tang, Z.; Lyu, J.; Xiao, X.; et al. Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism. Front. Plant Sci. 2021, 12, 683868. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.; Jin, L.; Wei, S.; Wang, S.; Jin, N.; Wang, J.; Xie, J.; Feng, Z.; Zhang, G.; et al. Combined Straw and Plastic Film Mulching Can Increase the Yield and Quality of Open Field Loose-Curd Cauliflower. Front. Nutr. 2022, 9, 888728. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pena, D.; Checa, A.; de Ancos, B.; Wheelock, C.E.; Sanchez-Moreno, C. New insights into the effects of onion consumption on lipid mediators using a diet-induced model of hypercholesterolemia. Redox Biol. 2017, 11, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Weston, L.A.; Barth, M.M. Preharvest Factors Affecting Postharvest Quality of Vegetables. HortScience Publ. Am. Soc. Hortic. Sci. 1997, 32, 812–816. [Google Scholar] [CrossRef] [Green Version]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Mau, J.L.; Chen, C.P.; Hsieh, P.C. Antimicrobial Effect of Extracts from Chinese Chive, Cinnamon, and Corni Fructus. J. Agric. Food Chem. 2001, 49, 183. [Google Scholar] [CrossRef]
- Han, S.H.; Suh, W.S.; Park, K.J.; Kim, K.H.; Lee, K.R. Two new phenylpropane glycosides from Allium tuberosum Rottler. Arch. Pharm. Res. 2015, 38, 1312–1316. [Google Scholar] [CrossRef]
- Zhang, W.N.; Zhang, H.L.; Lu, C.Q.; Luo, J.P.; Zha, X.Q. A new kinetic model of ultrasound-assisted extraction of polysaccharides from Chinese chive. Food Chem. 2016, 212, 274–281. [Google Scholar] [CrossRef]
- Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Nat. Prod. Rep. 2005, 22, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tong, J.; Hu, M.; Ji, Y.; Wang, B.; Liang, H.; Liu, M.; Wu, Z. Transcriptome landscapes of multiple tissues highlight the genes involved in the flavor metabolic pathway in Chinese chive (Allium tuberosum). Genomics 2021, 113, 2145–2157. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, C.; Liu, Y.; Shan, T.; Shi, X.; Gao, X. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals P450 genes involved in thiamethoxam detoxification in Bradysia odoriphaga. Pestic. Biochem. Physiol. 2022, 186, 105176. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Hu, Q.; Zhang, X.; Jiang, J.; Zhang, Y.; Zhang, Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. J. Exp. Bot. 2022, 73, 5818–5827. [Google Scholar] [CrossRef]
- Diouf, I.A.; Derivot, L.; Bitton, F.; Pascual, L.; Causse, M. Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Front. Plant Sci. 2018, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Botía, P.; Navarro, J.M.; Cerdá, A.; Martínez, V. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur. J. Agron. 2005, 23, 243–253. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Massa, D.; Salerno, A.; Rea, E. Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic. Sci. Biotechnol. 2006, 81, 146–152. [Google Scholar] [CrossRef]
- Marín, A.; Rubio, J.S.; Martínez, V.; Gil, M.I. Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition. J. Sci. Food Agric. 2009, 89, 1352–1359. [Google Scholar] [CrossRef]
- Cardenosa, V.; Medrano, E.; Lorenzo, P.; Sanchez-Guerrero, M.C.; Cuevas, F.; Pradas, I.; Moreno-Rojas, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ballesta Mdel, C.; Muries, B.; Moreno, D.A.; Dominguez-Perles, R.; Garcia-Viguera, C.; Carvajal, M. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress. Physiol. Plant. 2014, 150, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, F.; Cassaniti, C.; Malvuccio, A.; Leonardi, C. Effects of salt stress imposed during two growth phases on cauliflower production and quality. J. Sci. Food Agric. 2017, 97, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.-H.; Cao, W.; Peng, H.-H.; Wang, F.; Tatsumi, E.; Kohyama, K.; Li, L.-T. Effect of fermentation metabolites on rheological and sensory properties of fermented rice noodles. J. Sci. Food Agric. 2008, 88, 2134–2141. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Gil, M.I.; Izumi, H.; Colelli, G.; Watkins, C.B.; Zude, M. Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packag. Shelf Life 2017, 14, 2–11. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Rea, E.; Cardarelli, M. Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. 2012, 135, 177–185. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- Galli, V.; da Silva Messias, R.; Perin, E.C.; Borowski, J.M.; Bamberg, A.L.; Rombaldi, C.V. Mild salt stress improves strawberry fruit quality. LWT 2016, 73, 693–699. [Google Scholar] [CrossRef]
- Keutgen, A.; Pawelzik, E. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Lei, T.; Xiao, J.; Li, G.; Mao, J.; Wang, J.; Liu, Z.; Zhang, J. Effect of Drip Irrigation with Saline Water on Water Use Efficiency and Quality of Watermelons. Water Resour. Manag. 2003, 17, 395–408. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Xie, J.; Yu, J.; Li, J.; Lv, J.; Gao, Y.; Niu, T.; Patience, B.E. Effects of Preharvest Methyl Jasmonate and Salicylic Acid Treatments on Growth, Quality, Volatile Components, and Antioxidant Systems of Chinese Chives. Front. Plant Sci. 2021, 12, 767335. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, J.; Sun, L.; Gao, Y.; Cao, M.; Luo, J. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere 2022, 294, 133842. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.F.; Dong, A.W.; Li, G.Z.; Shu, L.; Yong, L. Determination of Total Sugar and Reducing Sugar in Viola Philippicassp Munda, W. Becker by Anthrone Colorimetry. Guangzhou Food Sci. Technol. 2005, 21, 122–124. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef]
- Arya, S.P.; Mahajan, M.; Jain, P. Non-spectrophotometric methods for the determination of Vitamin C. Anal. Chim. Acta 2000, 417, 1–14. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant-Tissue by Nitration of Salicylic-Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Xie, B.; Wu, Q.; Wei, S.; Li, H.; Wei, J.; Hanif, M.; Li, J.; Liu, Z.; Xiao, X.; Yu, J. Optimization of Headspace Solid-Phase Micro-Extraction Conditions (HS-SPME) and Identification of Major Volatile Aroma-Active Compounds in Chinese Chive (Allium tuberosum Rottler). Molecules 2022, 27, 2425. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, X.; Wei, L.; Li, L.; Li, G.; Liu, F.; Xie, J.; Yu, J.; Zhong, Y. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components. Food Chem. 2021, 340, 128166. [Google Scholar] [CrossRef]
- Liu, Y.; He, C.; Song, H. Comparison of fresh watermelon juice aroma characteristics of five varieties based on gas chromatography-olfactometry-mass spectrometry. Food Res. Int. 2018, 107, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Gemert, L.J.V. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2003. [Google Scholar]
- Alenyorege, E.A.; Ma, H.; Aheto, J.H.; Agyekum, A.A.; Zhou, C. Effect of sequential multi-frequency ultrasound washing processes on quality attributes and volatile compounds profiling of fresh-cut Chinese cabbage. LWT 2020, 117, 108666. [Google Scholar] [CrossRef]
- Wei, L.; Wei, S.; Hu, D.; Feng, L.; Liu, Y.; Liu, H.; Liao, W. Comprehensive Flavor Analysis of Volatile Components during the Vase Period of Cut Lily (Lilium spp. ‘Manissa’) Flowers by HS-SPME/GC-MS Combined with E-Nose Technology. Front. Plant Sci. 2022, 13, 822956. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Sun, L.; Yang, L.; Yang, Y.; Wang, Y.; Siddique, K.H.M.; Pang, J. Alkaline Salt Inhibits Seed Germination and Seedling Growth of Canola more than Neutral Salt. Front. Plant. Sci. 2022, 13, 814755. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-E.; Dong, M.-Y.; Fan, X.-W.; Nong, L.-L.; Li, Y.-Z. A study on cassava tolerance to and growth responses under salt stress. Environ. Exp. Bot. 2018, 155, 429–440. [Google Scholar] [CrossRef]
- Sunita, K.; Mishra, I.; Mishra, J.; Prakash, J.; Arora, N.K. Secondary Metabolites from Halotolerant Plant Growth Promoting Rhizobacteria for Ameliorating Salinity Stress in Plants. Front. Microbiol. 2020, 11, 567768. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Guo, R.; Shi, D.; Liu, B.; Lin, X.; Yang, C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol. 2012, 12, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Diao, P.; Kong, L.; Yu, R.; Wuriyanghan, H. Ethylene Enhances Seed Germination and Seedling Growth under Salinity by Reducing Oxidative Stress and Promoting Chlorophyll Content via ETR2 Pathway. Front. Plant Sci. 2020, 11, 1066. [Google Scholar] [CrossRef]
- Agastian, P.; Kingsley, S.J.; Vivekanandan, M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 2000, 38, 287–290. [Google Scholar] [CrossRef]
- Wang, L.S.; Li, W.L.; Qi, X.W.; Ma, L.; Wu, W.L. Physiological and proteomic response of Limonium bicolor to salinity. Russ. J. Plant Physiol. 2017, 64, 349–360. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, Y.; Xu, B. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression. Front. Plant Sci. 2016, 7, 1405. [Google Scholar] [CrossRef] [Green Version]
- Abdullah; Mahmood, A.; Bibi, S.; Naqve, M.; Javaid, M.M.; Zia, M.A.; Jabbar, A.; Ud-Din, W.; Attia, K.A.; Khan, N.; et al. Physiological, Biochemical, and Yield Responses of Linseed (Linum usitatissimum L.) in alpha-Tocopherol-Mediated Alleviation of Salinity Stress. Front. Plant Sci. 2022, 13, 867172. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wan, S.; Li, X.; Kang, Y.; Han, X. Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region. Agric. Water Manag. 2022, 261, 107347. [Google Scholar] [CrossRef]
- Sathee, L.; Jha, S.K.; Rajput, O.S.; Singh, D.; Kumar, S.; Kumar, A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol. Biochem. 2021, 165, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Fuentes., V.; Correa., M.T. Volatile constituents of Chinese chive (Allium tuberosum Rottl. ex Sprengel) and rakkyo (Allium chinense G. Don). J. Agric. Food Chem. 2001, 49, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Yabuki, Y.; Mukaida, Y.; Saito, Y.; Oshima, K.; Takahashi, T.; Muroi, E.; Hashimoto, K.; Uda, Y. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (Allium tuberosum Rottler). Food Chem. 2010, 120, 343–348. [Google Scholar] [CrossRef]
- Neffati, M.; Marzouk, B. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind. Crops Prod. 2008, 28, 137–142. [Google Scholar] [CrossRef]
- Chatterjee, P.; Kanagendran, A.; Samaddar, S.; Pazouki, L.; Sa, T.M.; Niinemets, U. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. Planta 2019, 249, 1903–1919. [Google Scholar] [CrossRef]
- Noordermeer, M.A.; Wouter, V.D.G.; Van Kooij, A.J.; Veldsink, J.W.; Veldink, G.A.; Vliegenthart, J.F.G. Development of a biocatalytic process for the production of C6-aldehydes from vegetable oils by soybean lipoxygenase and recombinant hydroperoxide lyase. J. Agric. Food Chem. 2002, 50, 4270–4274. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xu, S.; Zhang, W.; Xu, C.; Li, B.; Zhang, D.; Mu, W.; Liu, F. Nematicidal Activity of trans-2-Hexenal against Southern Root-Knot Nematode (Meloidogyne incognita) on Tomato Plants. J. Agric. Food Chem. 2017, 65, 544–550. [Google Scholar] [CrossRef]
- Raguso, R.A. More lessons from linalool: Insights gained from a ubiquitous floral volatile. Curr. Opin. Plant Biol. 2016, 32, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Baudino, S.; Caissard, J.C.; Florence, N.; Zhang, H.; Tang, K.; Li, S.; Lu, S. Functional characterization of the eugenol synthase gene (RcEGS1) in rose. Plant Physiol. Biochem. 2018, 129, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hidalgo, F.J.; Medina-Puche, L.; Canete-Gomez, C.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Caballero, J.L.; Rodriguez-Franco, A.; Blanco-Portales, R.; Munoz-Blanco, J.; et al. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. J. Exp. Bot. 2017, 68, 4529–4543. [Google Scholar] [CrossRef] [Green Version]
- Scremin, F.R.; Veiga, R.S.; Silva-Buzanello, R.A.; Becker-Algeri, T.A.; Corso, M.P.; Torquato, A.S.; Bittencourt, P.R.S.; Flores, E.L.M.; Canan, C. Synthesis and characterization of protein microcapsules for eugenol storage. J. Therm. Anal. Calorim. 2017, 131, 653–660. [Google Scholar] [CrossRef]
- Tian, P.; Zhan, P.; Tian, H.; Wang, P.; Lu, C.; Zhao, Y.; Ni, R.; Zhang, Y. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC-MS, OAV, and multivariate analysis. Food Chem. 2021, 345, 128748. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Chen, S.; Tang, J.; Fan, S.; Zhang, J.; Chen, S.; Liu, Y.; Yang, Q.; Xu, Y. Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses. Foods 2021, 10, 2392. [Google Scholar] [CrossRef]
- Anon, A.; Lopez, J.F.; Hernando, D.; Orriols, I.; Revilla, E.; Losada, M.M. Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines. Food Chem. 2014, 148, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Zhang, W.; Lao, F.; Mi, R.; Liao, X.; Luo, D.; Wu, J. Isolation and identification of putative precursors of the volatile sulfur compounds and their inhibition methods in heat-sterilized melon juices. Food Chem. 2021, 343, 128459. [Google Scholar] [CrossRef]
- Wang, M.Q.; Ma, W.J.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, Q.; Niu, Y.; Wu, M.; Zhu, J.; Zhou, X.; Chen, X.; Wang, H.; Li, J.; Kong, J. Characterization of the Key Aroma Compounds in Five Varieties of Mandarins by Gas Chromatography-Olfactometry, Odor Activity Values, Aroma Recombination, and Omission Analysis. J. Agric. Food Chem. 2017, 65, 8392–8401. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, Z.; Guo, Q.; Mao, S.; Li, S.; Sun, F.; Wang, H.; Yang, C. Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. Front. Plant Sci. 2017, 8, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zeng, L.; Chen, S.; Sun, H.; Ma, S. Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiol. Biochem. 2018, 126, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Sarmoum, R.; Haid, S.; Biche, M.; Djazouli, Z.; Zebib, B.; Merah, O. Effect of Salinity and Water Stress on the Essential Oil Components of Rosemary (Rosmarinus officinalis L.). Agronomy 2019, 9, 214. [Google Scholar] [CrossRef]
NO. | Volatile Compound | Formula | Content (μg/kg) | CAS | ||||
---|---|---|---|---|---|---|---|---|
0 mM | 5 mM | 10 mM | 20 mM | 30 mM | ||||
Aldehydes | ||||||||
1 | 2-Butenal | C4H6O | 155.96 ± 24.62ab | 168.13 ± 19.87ab | 227.31 ± 26.57a | 77.09 ± 24.95c | 127.82 ± 20.32bc | 4170-30-3 |
2 | Trans-2-Hexenal | C6H10O | 318.29 ± 19.37a | 373.42 ± 43.43a | 519.25 ± 64.09a | 461.28 ± 30.10a | 398.62 ± 5.32a | 6728-26-3 |
3 | 2-Ethyl-2-hexanal | C8H14O | 10.83 ± 4.35a | 17.16 ± 8.97a | 26.56 ± 4.40a | 19.52 ± 2.53a | 20.22 ± 7.85a | 645-62-5 |
4 | Nonanal | C9H18O | 52.28 ± 9.15b | 175.15 ± 5.10a | 150.55 ± 46.83a | 97.56 ± 16.21ab | 101.26 ± 17.24ab | 124-19-6 |
5 | 2,4-Hexadienal | C6H8O | 38.90 ± 4.97b | 75.23 ± 9.83a | 92.58 ± 1.36a | 52.46 ± 6.15b | 52.83 ± 7.39b | 142-83-6 |
6 | (E)-2-Octenal | C8H14O | — | — | 19.21 ± 4.35a | 13.30 ± 1.08ab | 8.45 ± 1.46b | 2548-87-0 |
7 | Cyclopentanecarboxaldehyde, 2-methyl-3-methylene- | C8H12O | 196.94 ± 7.89b | 384.14 ± 17.64a | 447.81 ± 8.40a | 238.52 ± 39.68b | 215.88 ± 12.91b | 1000154-24-0 |
8 | Decanal | C10H20O | 26.80 ± 4.68a | 23.75 ± 7.37a | 23.08 ± 4.20a | 21.16 ± 0.69a | 20.60 ± 9.00a | 112-31-2 |
9 | trans,trans-2,4-Heptadienal | C7H10O | 69.97 ± 20.73a | 98.56 ± 3.34a | 96.47 ± 10.46a | 92.36 ± 5.50a | 109.56 ± 35.75a | 4313-03-5 |
10 | (2E,4E)-2,4-Octadienal | C8H12O | 23.85 ± 4.22b | 161.00 ± 18.98a | 203.45 ± 44.34a | 193.71 ± 42.47a | 146.78 ± 3.19a | 30361-28-5 |
11 | 4-Ethylbenzaldehyde | C9H10O | 107.60 ± 11.58c | 135.47 ± 6.24bc | 441.44 ± 92.57a | 335.33 ± 51.21a | 295.03 ± 62.63ab | 4748-78-1 |
12 | 2-Undecenal | C11H20O | — | 25.62 ± 5.85a | 16.81 ± 1.96ab | 13.46 ± 1.49b | 10.51 ± 1.05b | 2463-77-6 |
13 | α-Methyl-α-vinyl-2-furanacetaldehyde | C9H10O2 | 64.15 ± 2.33a | 58.03 ± 12.31a | 60.30 ± 11.42a | 59.22 ± 12.71a | 49.13 ± 11.66a | 31776-28-0 |
14 | (E)-2-Tridecenal | C13H24O | — | — | — | 86.46 ± 2.01b | 93.60 ± 1.96a | 7069-41-2 |
Ethers | ||||||||
15 | Dimethyl disulfide | C2H6S2 | 629.51 ± 41.27bc | 804.02 ± 101.09ab | 991.61 ± 119.63a | 417.95 ± 31.59c | 541.75 ± 25.18c | 624-92-0 |
16 | 2,4-Dimethylthiophene | C6H8S | — | 70.86 ± 20.54ab | 98.14 ± 13.41a | 50.63 ± 9.04b | 40.93 ± 7.29b | 638-00-6 |
17 | Methyl propyl disulfide | C4H10S2 | — | — | 18.71 | — | — | 2179-60-4 |
18 | 3,4-Dimethyl-thiophene | C6H8S | 442.58 ± 48.32a | 302.12 ± 43.36b | 365.80 ± 38.22ab | 268.87 ± 30.06b | 287.81 ± 13.12b | 632-15-5 |
19 | Allyl methyl disulfide | C4H8S2 | 892.68 ± 71.45abc | 1051.11 ± 141.06ab | 1212.82 ± 145.39a | 685.61 ± 55.11c | 772.49 ± 34.71bc | 2179-58-0 |
20 | Methyldithio-1-propene | C4H8S2 | 2320.21 ± 148.07a | 1996.12 ± 233.17a | 1905.04 ± 107.89ab | 1260.75 ± 64.79c | 1514.93 ± 96.38bc | 23838-19-9 |
21 | Dimethyl trisulfide | C2H6S3 | 4102.49 ± 260.73a | 3504.61 ± 463.87ab | 4100.35 ± 493.11a | 2239.13 ± 251.07c | 2722.21 ± 200.21bc | 3658-80-8 |
22 | 1-[[(Z)-prop-1-enyl]Disulfanyl]propane | C6H12S2 | 46.88 ± 5.58a | 66.33 ± 3.58a | 23.64 ± 5.95a | 38.25 ± 2.39a | 31.61 ± 8.98a | 23838-20-2 |
23 | (Z)-1-Allyl-2-(prop-1-en-1-yl)disulfane | C6H10S2 | 1049.52 ± 75.22b | 1392.22 ± 94.07 ab | 1621.96 ± 225.23a | 498.90 ± 54.09c | 920.84 ± 131.91bc | 122156-03-0 |
24 | Diallyl disulfide | C6H10S2 | 358.16 ± 52.04c | 646.34 ± 92.57ab | 835.60 ± 40.75a | 642.65 ± 51.09ab | 436.97 ± 86.68bc | 2179-57-9 |
25 | Methyl propyl trisulfide | C4H10S3 | — | — | 112.50 ± 19.90a | 55.37 ± 7.89b | 34.65 ± 7.49b | 17619-36-2 |
26 | 3H-1,2-Dithiole | C3H4S2 | 317.14 ± 39.16a | 467.26 ± 78.04a | 463.22 ± 58.76a | 276.42 ± 58.24a | 330.99 ± 52.07a | 288-26-6 |
27 | Methyl allyl trisulfide | C4H8S3 | 1193.55 ± 33.08a | 1317.75 ± 55.43a | 1190.06 ± 132.13a | 704.72 ± 70.42b | 781.09 ± 148.20b | 34135-85-8 |
28 | (E)-1-Methyl-3-(prop-1-en-1-yl)trisulfane | C4H8S3 | 185.19 ± 61.48a | 116.99 ± 16.47a | — | — | — | 23838-25-7 |
29 | 1-Allyl-3-propyltrisulfane | C6H12S3 | — | — | 5.29 ± 0.64b | 7.58 ± 1.02b | 14.68 ± 1.56a | 33922-73-5 |
30 | 3-Ethenyl-3,6-dihydrodithiine | C6H8S2 | 35.30 ± 2.01a | 35.48 ± 11.57a | 31.09 ± 0.87a | — | — | 62488-52-2 |
31 | 3-Methyl-3H-1,2-dithiole | C4H6S2 | 184.04 ± 30.66ab | 250.25 ± 55.25a | 239.88 ± 39.35ab | 121.42 ± 23.82b | 142.57 ± 21.44ab | 118023-96-4 |
32 | Diallyl trisulfide | C6H10S3 | 126.01 ± 15.25a | 236.69 ± 96.47a | 364.79 ± 119.38a | 191.00 ± 49.85a | 207.33 ± 33.41a | 2050-87-5 |
33 | (Z)-1-Allyl-3-(prop-1-en-1-yl) trisulfane | C6H10S3 | 52.50 ± 3.90a | 39.12 ± 12.48a | 5.12 ± 1.11b | 6.20 ± 1.17b | 4.72 ± 0.20b | 382161-75-3 |
Alcohols | ||||||||
34 | (z)-2-Penten-1-ol | C5H10O | — | — | 6.35 | — | — | 1576-95-0 |
35 | 3-Hexen-1-ol | C6H12O | — | — | 15.69 ± 0.60a | 9.71 ± 0.54b | 9.38 ± 0.69b | 544-12-7 |
36 | Linalool | C10H18O | — | — | 11.84 ± 7.03a | 8.73 ± 0.92ab | 6.49 ± 1.65ab | 78-70-6 |
37 | 1-Octanol | C8H18O | 6.59 ± 0.64b | 23.12 ± 3.74a | 21.58 ± 5.66a | 14.15 ± 2.89ab | 12.55 ± 0.87ab | 111-87-5 |
38 | (+)-Borneol | C10H18O | 17.49 ± 1.11c | 24.09 ± 1.28b | 40.71 ± 2.32a | 34.91 ± 1.83a | 22.83 ± 2.46bc | 464-43-7 |
39 | Cis-4-Isopropenyl-1-methylcyclohexanol | C10H18O | — | — | — | — | 56.41 | 7299-41-4 |
40 | Cis-4-(isopropyl)-1-methylcyclohex-2-en-1-ol | C10H18O | 54.99 ± 4.03b | 90.10 ± 0.85a | 53.33 ± 9.41b | — | — | 29803-82-5 |
41 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | C20H40O | 81.42 ± 2.21c | 131.38 ± 22.97bc | 241.13 ± 19.37a | 172.12 ± 17.89ab | 138.26 ± 38.74bc | 102608-53-7 |
42 | Isophytol | C20H40O | — | — | 23.65 ± 1.04a | 10.34 ± 0.47b | — | 505-32-8 |
43 | 1-Hexadecanol | C16H34O | — | — | 45.54 | — | — | 36653-82-4 |
44 | Phytol | C20H40O | 140.88 ± 30.06a | 232.30 ± 20.95a | 181.01 ± 72.98a | 154.47 ± 34.93a | 123.66 ± 44.61a | 150-86-7 |
Ketones | ||||||||
45 | 2,5-Octanedione | C8H14O2 | — | 10.90 ± 0.19b | 15.46 ± 0.55a | 8.39 ± 0.23c | — | 3214-41-3 |
46 | 1-(1,4-dimethyl-3-cyclohexen-1-yl)-Ethanone | C10H16O | — | 7.23 ± 1.23a | 7.89 ± 1.15a | 8.08 ± 0.98a | 4.02 ± 0.49b | 43219-68-7 |
47 | 2-Cyclopenten-1-one, 2,3,4-trimethyl- | C8H12O | — | — | — | — | 12.48 | 28790-86-5 |
48 | α-Ionone | C13H20O | — | 15.72 ± 0.70b | 28.01 ± 1.81a | — | — | 127-41-3 |
49 | Geranylacetone | C13H22O | 33.82 ± 3.90a | 41.59 ± 7.23a | — | — | — | 3796-70-1 |
50 | β-ionone | C13H20O | 138.47 ± 16.68ab | 120.68 ± 15.50ab | 233.75 ± 62.46a | 104.78 ± 26.57b | 174.56 ± 27.75ab | 79-77-6 |
51 | Hexahydrofarnesyl acetone | C18H36O | 13.88 ± 1.42b | 13.71 ± 1.38b | 34.47 ± 6.45a | 18.99 ± 4.89b | 17.93 ± 0.93b | 502-69-2 |
Hydrocarbons | ||||||||
52 | 3-Ethyl-2-methyl-1,3-hexadien | C9H16 | — | 44.96 ± 15.12a | 34.60 ± 3.33a | 36.76 ± 0.70a | 24.74 ± 4.07a | 61142-36-7 |
53 | (E)-7-Tetradecene | C14H28 | — | — | — | 11.14 ± 0.35a | 8.82 ± 1.79a | 41446-63-3 |
54 | 2-Tridecyne | C13H24 | 8.66 ± 1.05a | 8.98 ± 2.11a | 11.37 ± 1.18a | — | — | 28467-75-6 |
55 | 7-Tetradecyne | C14H26 | — | — | — | 16.44 | — | 35216-11-6 |
56 | Neophytadiene | C20H38 | 163.00 ± 59.96b | 302.66 ± 20.15a | 278.87 ± 1.11a | 298.92 ± 29.97a | 204.04 ± 18.65ab | 504-96-1 |
57 | 3,4′-Diethyl-1,1′-biphenyl | C16H18 | 31.89 ± 9.77a | 27.35 ± 5.26ab | 13.23 ± 0.12bc | — | — | 61141-66-0 |
Esters | ||||||||
58 | Trans-3-Hexenyl acetate | C8H14O2 | — | 14.18 ± 1.55b | 33.71 ± 3.69a | 28.51 ± 2.49a | 15.85 ± 1.19b | 3681-82-1 |
59 | Linalyl acetate | C12H20O2 | 6.39 ± 0.51b | 9.17 ± 0.90a | — | — | — | 115-95-7 |
60 | Ethyl myristate | C16H32O2 | 41.07 ± 9.42a | 46.05 ± 2.57a | 31.54 ± 1.54a | 33.20 ± 5.00a | 21.65 ± 4.77a | 124-06-1 |
61 | Hexadecanoic acid, ethyl ester | C18H36O2 | 253.26 ± 49.58a | 219.13 ± 41.37a | 112.09 ± 40.42a | 217.44 ± 9.81a | 192.64 ± 53.67a | 628-97-7 |
62 | Dimethyl phthalate | C10H10O4 | 41.44 ± 4.86b | 108.11 ± 23.62a | 127.86 ± 38.11a | 96.39 ± 18.48a | 106.92 ± 31.18a | 131-11-3 |
63 | Ethyl 9-hexadecenoate | C18H34O2 | 20.45 ± 9.61a | 24.29 ± 3.44a | 26.85 ± 1.93a | 16.76 ± 6.84a | 16.59 ± 2.62a | 54546-22-4 |
64 | Linoleic acid ethyl ester | C20H36O2 | — | 21.90 ± 0.94a | 22.04 ± 4.69a | 19.12 ± 4.27a | — | 544-35-4 |
65 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | C16H22O4 | 133.37 ± 17.28a | 182.43 ± 6.25a | 250.05 ± 70.40a | 221.87 ± 29.52a | 178.57 ± 33.54a | 84-69-5 |
66 | 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- | C20H34O2 | 19.09 ± 2.98c | 36.84 ± 9.67ab | 45.38 ± 2.57a | 22.99 ± 3.68bc | 35.14 ± 3.70abc | 1191-41-9 |
Phenols | ||||||||
67 | Eugenol | C10H12O2 | 19.51 ± 2.11bc | 10.69 ± 2.05c | 34.94 ± 4.27a | 23.71 ± 5.54ab | 25.39 ± 4.46ab | 97-53-0 |
68 | 2-Methoxy-4-vinylphenol | C9H10O2 | 36.53 ± 6.48a | 56.33 ± 8.77a | 40.63 ± 6.03a | 37.04 ± 12.52a | 36.21 ± 9.01a | 7786-61-0 |
Furans | ||||||||
69 | 2,3-Dihydrofuran | C4H6O | — | 140.52 | — | — | — | 1191-99-7 |
70 | 2-Pentylfuran | C9H14O | — | — | 14.59 | — | — | 3777-69-3 |
Others | ||||||||
71 | 2-Methyl-2-phenyl oxirane | C9H10O | — | — | — | — | 2.37 | 2085-88-3 |
72 | 3-Ethoxy-3,7-dimethyl-1,6-octadiene | C12H22O | 19.78 ± 0.75b | 23.23 ± 1.98b | 28.66 ± 0.75a | 14.27 ± 1.00c | 8.97 ± 1.91d | 72845-33-1 |
73 | Methoxyphenyloxim | C8H9NO2 | 375.69 ± 72.97c | 423.07 ± 1.21bc | 700.96 ± 64.18a | 468.03 ± 29.05bc | 573.06 ± 60.84ab | 1000222-86-6 |
74 | trans-Z-α-Bisabolene epoxide | C15H24O | — | 4.72 ± 0.69cd | 12.85 ± 3.56ab | 15.78 ± 1.44a | 7.23 ± 1.85bc | — |
75 | Dodecanoic acid | C12H24O2 | — | — | 42.45 ± 11.25b | 36.20 ± 0.84b | 61.37 ± 4.25a | 143-07-7 |
Total content | 14,659.02 | 16,408.35 | 18,733.52 | 11,386.18 | 12,534.01 | |||
Total number | 48 | 58 | 65 | 59 | 58 |
NO. a | Volatile Compound | Odor Threshold b (μg/kg) | Odor Activity Values (OAVs) | Odor Description c | ||||
---|---|---|---|---|---|---|---|---|
0 mM | 5 mM | 10 mM | 20 mM | 30 mM | ||||
Aldehydes | ||||||||
1 | 2-Butenal | 1400.0 | 0.11 | 0.12 | 0.16 | 0.06 | 0.09 | Flower |
2 | Trans-2-Hexenal | 1125.0 | 0.28 | 0.33 | 0.46 | 0.41 | 0.35 | Green, banana, fatty |
4 | Nonanal | 1.0 | 52.28 | 175.15 | 150.55 | 97.56 | 101.26 | Fatty, orange, rose odor |
5 | 2,4-Hexadienal | 60.0 | 0.65 | 1.25 | 1.54 | 0.87 | 0.88 | Sweet, green aroma |
6 | (E)-2-Octenal | 3.0 | — | — | 6.40 | 4.43 | 2.82 | Fresh, cucumber, fatty, green, herbal, banana |
8 | Decanal | 2.0 | 13.40 | 11.88 | 11.54 | 10.58 | 10.30 | Sweet, floral, fatty odor |
9 | trans,trans-2,4-Heptadienal | 15.4 | 4.54 | 6.40 | 6.26 | 6.00 | 7.11 | Fatty, green odor |
10 | (2E,4E)-2,4-Octadienal | 10.0 | 2.38 | 16.10 | 20.34 | 19.37 | 14.68 | Green, fatty |
Ethers | ||||||||
15 | Dimethyl disulfide | 12.0 | 52.46 | 67.00 | 82.63 | 34.83 | 45.15 | Diffuse, intense onion odor |
18 | 3,4-Dimethyl-thiophene | 5000.0 | 0.09 | 0.06 | 0.07 | 0.05 | 0.06 | Savory roasted onion |
21 | Dimethyl trisulfide | 6.0 | 683.75 | 584.10 | 683.39 | 373.19 | 453.70 | Fresh onion |
24 | Diallyl disulfide | 30.0 | 11.94 | 21.54 | 27.85 | 21.42 | 14.57 | Characteristic garlic odor |
Alcohols | ||||||||
34 | (z)-2-Penten-1-ol | 720.0 | — | — | 0.01 | — | — | Green, fruity |
35 | 3-Hexen-1-ol | 70.0 | — | — | 0.22 | 0.14 | 0.13 | Green, leafy |
36 | Linalool | 37.0 | — | — | 0.32 | 0.24 | 0.18 | Pleasant floral odor |
37 | 1-Octanol | 100.0 | 0.07 | 0.23 | 0.22 | 0.14 | 0.13 | Green, rose |
Ketones | ||||||||
48 | α-Ionone | 10.6 | — | 1.48 | 2.64 | — | — | Sweet, floral, fruity |
49 | Geranylacetone | 60.0 | 0.56 | 0.69 | — | — | — | Fresh, green, fruity, rose |
50 | β-ionone | 8.4 | 16.48 | 14.37 | 27.83 | 12.47 | 20.78 | Flowery |
Esters | ||||||||
58 | Trans-3-Hexenyl acetate | 870.0 | — | 0.02 | 0.04 | 0.03 | 0.02 | Fruity, green, banana, pear |
60 | Ethyl myristate | 4000.0 | 0.010 | 0.012 | 0.008 | 0.008 | 0.005 | Sweet waxy violet |
61 | Hexadecanoic acid, ethyl ester | 2000.0 | 0.13 | 0.11 | 0.06 | 0.11 | 0.10 | Fruity |
Phenols | ||||||||
67 | Eugenol | 7.1 | 2.75 | 1.51 | 4.92 | 3.34 | 3.58 | Sweet, spicy, clove |
68 | 2-Methoxy-4-vinylphenol | 12.0 | 3.04 | 4.69 | 3.39 | 3.09 | 3.02 | Sweet, spicy, clove |
Furans | ||||||||
70 | 2-Pentylfuran | 5.8 | — | — | 2.5 | — | — | Fruity, green, vegetable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Xiao, X.; Li, H.; Wei, S.; Li, J.; Gao, Y.; Yu, J. Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives (Allium tuberosum Rottler). Foods 2023, 12, 204. https://doi.org/10.3390/foods12010204
Xie B, Xiao X, Li H, Wei S, Li J, Gao Y, Yu J. Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives (Allium tuberosum Rottler). Foods. 2023; 12(1):204. https://doi.org/10.3390/foods12010204
Chicago/Turabian StyleXie, Bojie, Xuemei Xiao, Haiyan Li, Shouhui Wei, Ju Li, Yanqiang Gao, and Jihua Yu. 2023. "Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives (Allium tuberosum Rottler)" Foods 12, no. 1: 204. https://doi.org/10.3390/foods12010204
APA StyleXie, B., Xiao, X., Li, H., Wei, S., Li, J., Gao, Y., & Yu, J. (2023). Moderate Salinity of Nutrient Solution Improved the Nutritional Quality and Flavor of Hydroponic Chinese Chives (Allium tuberosum Rottler). Foods, 12(1), 204. https://doi.org/10.3390/foods12010204