Soil Amendment and Storage Effect the Quality of Winter Melons (Benincasa hispida (Thunb) Cogn.) and Their Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Treatment
2.2. Fruit Storage and Weight Loss
2.3. Juice Processing
2.4. Juice Yield and Processing Waste
2.5. Physicochemical Quality Attributes
2.5.1. Particle Size and Juice Stability
2.5.2. Juice Dry Matter and Non-Soluble Dry Matter
2.5.3. SSC, pH and TA
2.5.4. Measurement of Volatile Compounds
2.5.5. Measurement of Nonvolatile Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss during Fruit Storage
3.2. Juice Production and Waste
3.3. Particle Size and Stability of Juice
3.4. Sugars, Acids and Non-Soluble Dry Matter of Juice
3.5. Nutritional Composition of Juice
3.6. Volatile and Non-Volatile Profile of Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Epstein, L.H.; Gordy, C.C.; Raynor, H.A.; Beddome, M.; Kilanowski, C.K.; Paluch, R. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obes. Res. 2001, 9, 171–178. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr. Diabetes Rep. 2012, 12, 195–203. [Google Scholar] [CrossRef]
- Hu, F.B. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 2013, 14, 606–619. [Google Scholar] [CrossRef]
- Bray, G.A.; Popkin, B.M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 2014, 37, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Hung, H.-C.; Joshipura, K.J.; Jiang, R.; Hu, F.B.; Hunter, D.; Smith-Warner, S.A.; Colditz, G.A.; Rosner, B.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef] [Green Version]
- Joshipura, K.J.; Ascherio, A.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Hennekens, C.H.; Spiegelman, D.; Willett, W.C. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 1999, 282, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Joshipura, K.J.; Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Colditz, G.; Ascherio, A.; Rosner, B.; Spiegelman, D. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001, 134, 1106–1114. [Google Scholar] [CrossRef]
- Dennison, B.A.; Rockwell, H.L.; Baker, S.L. Excess fruit juice consumption by preschool-aged children is associated with short stature and obesity. Pediatrics 1997, 99, 15–22. [Google Scholar] [CrossRef]
- Wojcicki, J.M.; Heyman, M.B. Reducing childhood obesity by eliminating 100% fruit juice. Am. J. Public Health 2012, 102, 1630–1633. [Google Scholar] [CrossRef]
- Gill, J.M.; Sattar, N. Fruit juice: Just another sugary drink? Lancet Diabetes Endocrinol. 2014, 2, 444–446. [Google Scholar] [CrossRef]
- De Oliveira Pineli, L.d.L.; de Aguiar, L.A.; Fiusa, A.; de Assunção Botelho, R.B.; Zandonadi, R.P.; Melo, L. Sensory impact of lowering sugar content in orange nectars to design healthier, low-sugar industrialized beverages. Appetite 2016, 96, 239–244. [Google Scholar] [CrossRef]
- Badami, K.; Daryono, B.; Amzeri, A.; Khoiri, S. Combining ability and heterotic studies on hybrid melon (Cucumis melo L.) populations for fruit yield and quality traits. SABRAO J. Breed. Genet. 2020, 52, 402–417. [Google Scholar]
- Mohosina, F.; Mehedi, M.N.H.; Mahmud, E.; Hasan, M.K.; Noor, M.M.A.; Rahman, M.H.S.; Chowdhury, A.K. Genetic diversity of commercially cultivated watermelons (Citrullus lanatus) hybrids in Bangladesh. SABRAO J. Breed. Genet 2020, 52, 418–434. [Google Scholar]
- Zaini, N.A.M.; Anwar, F.; Hamid, A.A.; Saari, N. Kundur [Benincasa hispida (Thunb.) Cogn.]: A potential source for valuable nutrients and functional foods. Food Res. Int. 2011, 44, 2368–2376. [Google Scholar] [CrossRef]
- Pandey, A.; Bhardwaj, D.; Dubey, R.K.; Singh, V.; Pandey, S. Botany, diversity, utilization and improvement of ash gourd (Benincasa hispida Thunb. Ex Murray Cogn)-A review. Ann. Hortic. 2015, 8, 1–15. [Google Scholar]
- Morton, J.F. The wax gourd, a year-round Florida vegetable with unusual keeping quality. Proc. Fla. State Hortic. Soc. 1971, 84, 104–109. [Google Scholar]
- Tiwari, A.; Anusha, I.; Sumangali, M.; Anand Kumar, D.; Madhusudana, K.; Agawane, S. Preventive and therapeutic efficacies of Benincasa hispida and Sechium edule fruit’s juice on sweet-beverages induced impaired glucose tolerance and oxidative stress. Pharmacologia 2013, 4, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Baldwin, E.; Plotto, A.; Cameron, R.; Manthey, J.; Dorado, C.; Bai, J. The effect of cultivar and processing method on the stability, flavor, and nutritional properties of winter melon juice. LWT 2018, 97, 223–230. [Google Scholar] [CrossRef]
- Wesson, L.G. The effect of tartronic acid on abnormal fat formation from carbohydrate. Endocrinology 1950, 47, 302–304. [Google Scholar] [CrossRef]
- Wesson, L.G. Possible Sources of Tartronate Deficiency in Man. Nature 1961, 189, 147–148. [Google Scholar] [CrossRef]
- Doharey, V.; Kumar, M.; Upadhyay, S.K.; Singh, R.; Kumari, B. Pharmacognostical, physicochemical and pharmaceutical paradigm of ash gourd, Benincasa hispida (Thunb.) fruit. Plant Arch. 2021, 21, 249–252. [Google Scholar] [CrossRef]
- Ramesh, M.; Gayathri, V.; Rao, A.A.; Prabhakar, M.; Rao, C.S. Pharmacological actions of fruit juice of Benincasa hispida. Fitoterapia 1989, 60, 241–247. [Google Scholar]
- Sun, X.; Baldwin, E.A.; Plotto, A.; Manthey, J.A.; Duan, Y.; Bai, J. Effects of thermal processing and pulp filtration on physical, chemical and sensory properties of winter melon juice. J. Sci. Food Agric. 2017, 97, 543–550. [Google Scholar] [CrossRef]
- Rosskopf, E.; Di Gioia, F.; Hong, J.C.; Pisani, C.; Kokalis-Burelle, N. Organic amendments for pathogen and nematode control. Annu. Rev. Phytopathol. 2020, 58, 277–311. [Google Scholar] [CrossRef]
- Paudel, B.R.; Di Gioia, F.; Zhao, X.; Ozores-Hampton, M.; Hong, J.C.; Kokalis-Burelle, N.; Pisani, C.; Rosskopf, E.N. Evaluating anaerobic soil disinfestation and other biological soil management strategies for open-field tomato production in Florida. Renew. Agric. Food Syst. 2020, 35, 274–285. [Google Scholar] [CrossRef]
- Shah, H.; Tariq, A.; Noreen, R.; Rahman, A.; Shafique, H.A.; Ara, J.; Ehteshamul-Haque, S. Effects of fungicides and storage temperature in maintaining the shelf life and fruit quality of stored mango (Mangifera indica L.). Pak. J. Bot. 2021, 53, PJB2021–PJB2024. [Google Scholar]
- Imahori, Y.; Takemura, M.; Bai, J. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 2008, 49, 54–60. [Google Scholar] [CrossRef]
- Soga, A.; Yoshida, M.; Watanabe, S.; Manago, M. Low Temperature Limit on Storage of Wax Gourd [Benincasa hispida]; Bulletin of the Agricultural Research Institute of Kanagawa Prefecture: Hiratsuka, Japan, 2004. [Google Scholar]
- Sun, X.; Baldwin, E.A.; Manthey, J.; Dorado, C.; Rivera, T.; Bai, J. Effect of Preprocessing Storage Temperature and Time on the Physicochemical Properties of Winter Melon Juice. J. Food Qual. 2022, 2022, 3237639. [Google Scholar] [CrossRef]
- Pandey, S.; Jha, A.; Rai, M. Screening of advance breeding lines/cultivars for shelf-life and biochemical changes during storage of ash gourd (Benincasa hispida). Acta Hortic. 2009, 806, 249–255. [Google Scholar] [CrossRef]
- Di Gioia, F.; Ozores-Hampton, M.; Hong, J.; Kokalis-Burelle, N.; Albano, J.; Zhao, X.; Black, Z.; Gao, Z.; Wilson, C.; Thomas, J. The effects of anaerobic soil disinfestation on weed and nematode control, fruit yield, and quality of Florida fresh-market tomato. HortScience 2016, 51, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.M.; Kokalis-Burelle, N.; Muramoto, J.; Shennan, C.; McCollum, T.G.; Rosskopf, E.N. Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Prot. 2012, 39, 33–40. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.A.; Plotto, A.; Cameron, R.; Ford, B.L.; Luzio, G.; Manthey, J.; Narciso, J.; Dea, S. A comparison of processed and fresh squeezed ‘Hamlin’ orange juice-flavor quality. Proc. Fla. State Hortic. Soc. 2010, 123, 199–206. [Google Scholar]
- Bai, J.; Mielke, E.A.; Chen, P.M.; Spotts, R.A.; Serdani, M.; Hansen, J.D.; Neven, L.G. Effect of high-pressure hot-water washing treatment on fruit quality, insects, and disease in apples and pears: Part I. System description and the effect on fruit quality of ‘D’Anjou’ pears. Postharvest Biol. Technol. 2006, 40, 207–215. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.; Stover, E.; Driggers, R.; Hearn, J. Volatile profile comparison of USDA sweet orange-like hybrids versus ‘Hamlin’ and ‘Ambersweet’. HortScience 2014, 49, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Baldwin, E.A.; Zhao, W.; Plotto, A.; Sun, X.; Wang, Z.; Brecht, J.K.; Bai, J.; Yu, Z. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT Food Sci. Technol. 2015, 62, 115–121. [Google Scholar] [CrossRef]
- Bai, J.; Hagenmaier, R.D.; Baldwin, E.A. Volatile response of four apple varieties with different coatings during marketing at room temperature. J. Agric. Food Chem. 2002, 50, 7660–7668. [Google Scholar] [CrossRef]
- Bai, J.; Baldwin, E.; Tsantili, E.; Plotto, A.; Sun, X.; Wang, L.; Kafkaletou, M.; Wang, Z.; Narciso, J.; Zhao, W. Modified humidity clamshells to reduce moisture loss and extend storage life of small fruits⋆. Food Packag. Shelf Life 2019, 22, 100376. [Google Scholar] [CrossRef]
- Bai, J.; Plotto, A. Coatings for fresh fruits and vegetables. In Edible Coatings and Films to Improve Food Quality, 2nd ed.; Baldwin, E., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 185–242. [Google Scholar]
- Rahman, M.; Miaruddin, M.; Khan, M.; Masud, M.; Begum, M. Effect of storage periods on postharvest quality of pumpkin. Bangladesh J. Agric. Res. 2013, 38, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, T.; Baldwin, E.A.; Manthey, J.A.; Plotto, A.; Zhang, Q.; Gao, W.; Bai, J.; Shan, Y. Extraction Method Affects Contents of Flavonoids and Carotenoids in Huanglongbing-Affected “Valencia” Orange Juice. Foods 2021, 10, 783. [Google Scholar] [CrossRef]
- Ellerbee, L.; Wicker, L. Calcium and pH influence on orange juice cloud stability. J. Sci. Food Agric. 2011, 91, 171–177. [Google Scholar] [CrossRef]
- Ackerley, J.; Wicker, L. Floc formation and changes in serum soluble cloud components of fresh Valencia orange juice. J. Food Sci. 2003, 68, 1169–1174. [Google Scholar] [CrossRef]
- Salehi, F. Physico-chemical and rheological properties of fruit and vegetable juices as affected by high pressure homogenization: A review. Int. J. Food Prop. 2020, 23, 1136–1149. [Google Scholar] [CrossRef]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Bai, J.; Baldwin, E.A.; Goodner, K.L.; Mattheis, J.P.; Brecht, J.K. Response of four apple cultivars to 1-methylcyclopropene treatment and controlled atmosphere storage. HortScience 2005, 40, 1534–1538. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M.; Carrillo-López, A.; Bello-Perez, L.A. Carbohydrates. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 175–205. [Google Scholar] [CrossRef]
- Wills, R.B.; Wong, A.W.; Scriven, F.M.; Greenfield, H. Nutrient composition of Chinese vegetables. J. Agric. Food Chem. 1984, 32, 413–416. [Google Scholar] [CrossRef]
- Gross, K.C.; Sams, C.E. Changes in cell wall neutral sugar composition during fruit ripening: A species survey. Phytochemistry 1984, 23, 2457–2461. [Google Scholar] [CrossRef]
- Gao, J.; Qin, Z.; Zhou, X.; Xin, M. Screening of germplasm with high content of tartronic acid in cucumber. China Veg. 2012, 22, 30–34. [Google Scholar]
- Le Gall, H.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell wall metabolism in response to abiotic stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef]
- Ratnayake, R.M.S.; Melton, L.D.; Hurst, P.L. Influence of Cultivar, Cooking, and Storage on Cell-Wall Polysaccharide Composition of Winter Squash (Cucurbita maxima). J. Agric. Food Chem. 2003, 51, 1904–1913. [Google Scholar] [CrossRef]
- Fatariah, Z.; Tengku Zulkhairuazha, T.; Wan Rosli, W. Ascorbic acid quantification in Benincasa hispida fruit extracted using different solvents. Int. Food Res. J. 2015, 22, 208–212. [Google Scholar]
- Dong, M.; Yin, Q.; Feng, W.; Xu, J.; Xu, W. Study of Benincasa hispida contents effective for protection of kidney. Jiangsu J. Agric. Sci. 1995, 46–55. [Google Scholar]
- Hu, G.; Yang, F.-Q. Biological activities of nucleosides and their analogues in dietary foods. Chem. Rapid Commun. 2014, 2, 22–28. [Google Scholar]
- AlJahani, A.; Cheikhousman, R. Nutritional and sensory evaluation of pumpkin-based (Cucurbita maxima) functional juice. Nutr. Food Sci. 2017, 47, 346–356. [Google Scholar] [CrossRef]
- McGorrin, R.J. Character-impact flavor and off-flavor compounds in foods. In Flavor, Fragrance, and Odor Analysis, 2nd ed.; Marsili, R., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 207–262. [Google Scholar]
- Pang, X.; Zhang, Y.; Qiu, J.; Cao, J.; Sun, Y.; Li, H.; Kong, F. Coupled multidimensional GC and odor activity value calculation to identify off-odors in thermally processed muskmelon juice. Food Chem. 2019, 301, 125307. [Google Scholar] [CrossRef]
- McGorrin, R.J. The significance of volatile sulfur compounds in food flavors: An overview. In Volatile Sulfur Compounds in Food; Chapter 1; American Chemical Society: Washington, DC, USA, 2011; pp. 3–31. [Google Scholar]
- Chipps, E.S.; Jayini, R.; Ando, S.; Protzman, A.D.; Muhi, M.Z.; Mottaleb, M.A.; Malkawi, A.; Islam, M.R. Cytotoxicity analysis of active components in bitter melon (Momordica charantia) seed extracts using human embryonic kidney and colon tumor cells. Nat. Prod. Commun. 2012, 7, 1934578X1200700926. [Google Scholar] [CrossRef]
Storage Time (d) | Percentage of Each Fruit Portion (%) | ANOVA (Prob > |t|) | |||||
---|---|---|---|---|---|---|---|
1 | 120 | Soil Treatment (S) | Storage Time (T) | S × T | |||
Soil Treatment | ASD | Control | ASD | Control | |||
Flesh | 67.05 | 65.02 | 67.58 | 66.84 | 0.033 * z | 0.060 | 0.263 |
Juice | 56.68 | 53.70 | 55.43 | 54.62 | 0.008 ** | 0.772 | 0.081 |
Peel | 11.48 | 11.69 | 12.01 | 12.36 | 0.693 | 0.401 | 0.922 |
Core | 21.47 | 23.29 | 20.41 | 20.80 | 0.309 | 0.118 | 0.503 |
Pulp | 10.36 | 11.33 | 12.15 | 12.22 | 0.170 | 0.005 ** | 0.231 |
Total waste | 43.32 | 46.30 | 44.57 | 45.38 | 0.009 ** | 0.741 | 0.081 |
Storage Time (d) | Percentage of Each Fruit Portion (%) | ANOVA (Prob > |t|) | |||||
---|---|---|---|---|---|---|---|
1 | 120 | Soil Treatment (S) | Storage Time (T) | S × T | |||
Soil Treatment | ASD | Control | ASD | Control | |||
Absorbance of supernatant (OD 660 nm) | 0.122 | 0.063 | 0.214 | 0.154 | 0.0001 *** z | 0.0048 ** | 0.0064 ** |
Particle size (nm) | 533.1 | 682.4 | 700.4 | 748.2 | 0.0001 *** | 0.0001 *** | 0.0215 * |
Zeta potential (mV) | −11.580 | −8.769 | −11.680 | −8.767 | 0.0008 *** | 0.2614 | 0.1843 |
Storage Time (d) | Percentage of Each Fruit Portion (%) | ANOVA (Prob > |t|) | |||||
---|---|---|---|---|---|---|---|
1 | 120 | Soil Treatment (S) | Storage Time (T) | S × T | |||
Soil Treatment | ASD | Control | ASD | Control | |||
Total dry matter (%) | 2.23 | 2.57 | 2.25 | 2.42 | 0.0010 *** z | 0.1229 | 0.0630 |
Soluble solids content (°Bx) | 2.14 | 2.43 | 2.11 | 2.27 | 0.0010 *** | 0.0448 * | 0.1241 |
Non-soluble dry matter (%) | 0.093 | 0.143 | 0.136 | 0.146 | 0.0010 *** | 0.0026 ** | 0.0046 ** |
pH | 5.45 | 5.60 | 5.19 | 5.21 | 0.1909 | 0.001 *** | 0.3238 |
Titratable acidity (H+ mmol L−1) | 7.71 | 6.09 | 13.94 | 14.21 | 0.5065 | 0.001 *** | 0.3624 |
Fructose (%) | 0.5525 | 0.5246 | 0.4081 | 0.4433 | 0.8879 | 0.0019 ** | 0.2416 |
Glucose (%) | 0.4162 | 0.4291 | 0.3124 | 0.3447 | 0.4730 | 0.0140 * | 0.7553 |
Sucrose (%) | n.d. y | n.d. | n.d | n.d. | |||
Arabinose (%) | 0.1060 | 0.1031 | 0.0822 | 0.0879 | 0.7569 | 0.0022 ** | 0.3625 |
Galactose (%) | 0.0161 | 0.0193 | 0.0132 | 0.0137 | 0.2527 | 0.0202 * | 0.3708 |
Xylose (%) | 0.0005 | 0.0007 | 0.0004 | 0.0004 | 0.1382 | 0.0152 * | 0.0827 |
Mannose (%) | n.d. | n.d | n.d. | n.d | |||
Rhamnose (%) | n.d. | n.d | n.d. | n.d | |||
Malic acid (%) | 0.1297 | 0.1023 | 0.0836 | 0.0702 | 0.1327 | 0.0125 * | 0.5850 |
Citric acid (%) | 0.0056 | 0.0124 | 0.0643 | 0.0639 | 0.4688 | 0.0001 *** | 0.4210 |
Succinic acid (%) | n.d. | n.d | n.d. | n.d | |||
Tartronic acid (%) | 0.0017 | 0.0017 | 0.0016 | 0.0016 | 0.6643 | 0.0690 | 0.9398 |
Galacturonic acid (%) | n.d. | n.d | n.d. | n.d |
Storage Time (d) | Concentration (mg L−1) | ANOVA (Prob > |t|) | |||||
---|---|---|---|---|---|---|---|
1 | 120 | Soil Treatment (S) | Storage Time (T) | S × T | |||
Soil Treatment | ASD | Control | ASD | Control | |||
Thiamine (Vitamin B1) | 0.113 | 0.066 | 0.141 | 0.121 | 0.0690 | 0.0287 * z | 0.4166 |
Riboflavin (Vitamin B2) | 0.031 | 0.031 | 0.019 | 0.017 | 0.7735 | 0.0005 *** | 0.7573 |
Niacin (Vitamin B3) | 0.022 | 0.032 | 0.011 | 0.010 | 0.3773 | 0.0063 ** | 0.2311 |
Pantothenic acid (Vitamin B5) | 0.682 | 0.510 | 0.695 | 0.604 | 0.0155 * | 0.2437 | 0.3746 |
Pyridoxine (Vitamin B6) | 0.012 | 0.009 | 0.052 | 0.052 | 0.8732 | 0.0020 ** | 0.8610 |
Biotin (Vitamin B7) | n.d. y | n.d. | n.d. | n.d. | |||
Cobalamin (Vitamin B12) | n.d. | n.d. | n.d. | n.d. | |||
Ascorbic acid (Vitamin C) | 139.988 | 135.279 | 104.342 | 101.150 | 0.4560 | 0.0001 *** | 0.8841 |
Total vitamins | 140.848 | 135.928 | 105.260 | 101.955 | 0.0798 | 0.0001 *** | 0.6582 |
Alanine | 0.667 | 0.653 | 0.757 | 0.737 | 0.6947 | 0.0733 | 0.9371 |
Arginine | 59.121 | 91.057 | 122.451 | 113.350 | 0.5127 | 0.0332 * | 0.2533 |
Aspartate | 21.612 | 15.943 | 76.286 | 60.589 | 0.1267 | 0.0001 *** | 0.4468 |
Cysteine | n.d. | n.d. | n.d. | n.d. | |||
Glutamate | 0.557 | 0.582 | 2.179 | 2.158 | 0.2843 | 0.0001 *** | 0.3952 |
Glutamine | 279.663 | 406.499 | 397.641 | 415.866 | 0.2718 | 0.3305 | 0.4027 |
Glycine | 4.356 | 6.104 | 5.044 | 5.453 | 0.1770 | 0.9802 | 0.3849 |
Isoleucine | 22.341 | 27.581 | 33.444 | 33.015 | 0.4255 | 0.0203 * | 0.3514 |
Leucine | 22.126 | 28.325 | 17.219 | 18.030 | 0.0942 | 0.0034 ** | 0.1828 |
Lysine | 12.824 | 13.489 | 16.022 | 16.675 | 0.6045 | 0.0311 * | 0.9964 |
Methionine | 3.722 | 5.060 | 4.689 | 5.607 | 0.0632 | 0.1859 | 0.6983 |
Phenylalanine | 27.227 | 33.834 | 46.009 | 48.373 | 0.3701 | 0.0078 ** | 0.6653 |
Proline | 3.142 | 4.750 | 4.053 | 3.815 | 0.1108 | 0.9742 | 0.0422 * |
Serine | 10.367 | 9.597 | 10.685 | 11.062 | 0.7763 | 0.2176 | 0.4143 |
Threonine | 6.981 | 8.930 | 9.710 | 9.941 | 0.3525 | 0.1289 | 0.4587 |
Tryptophan | 75.083 | 75.835 | 77.331 | 77.424 | 0.9668 | 0.8504 | 0.9741 |
Tyrosine | 34.093 | 41.208 | 48.777 | 48.932 | 0.2902 | 0.0082 ** | 0.3098 |
Valine | 20.936 | 25.544 | 27.458 | 28.440 | 0.4517 | 0.2194 | 0.6217 |
Total amino acids | 604.817 | 794.990 | 899.755 | 899.468 | 0.2591 | 0.0062 ** | 0.3564 |
Adenosine | 29.619 | 26.295 | 14.651 | 13.459 | 0.1360 | 0.0001 *** | 0.4565 |
Cytidine | 1.671 | 0.700 | 1.558 | 0.940 | 0.0104 * | 0.7972 | 0.4801 |
Guanosine | 8.167 | 4.249 | 4.263 | 2.955 | 0.0743 | 0.0755 | 0.3353 |
Inosine | 0.014 | 0.015 | 0.003 | 0.002 | 0.9147 | 0.0001 *** | 0.5193 |
5-Methyluridine | n.d. | n.d. | n.d. | n.d. | |||
Uridine | 2.319 | 2.432 | 1.167 | 0.834 | 0.7391 | 0.0027 ** | 0.5064 |
Total nucleosides | 41.790 | 33.691 | 21.641 | 18.189 | 0.0262 * | 0.0001 *** | 0.2628 |
Storage Time (Days) | Concentration (ng mL-1) | ANOVA (Prob > |t|) | |||||
---|---|---|---|---|---|---|---|
1 | 120 | Soil Treatment (S) | Storage Time (T) | S × T | |||
Soil Treatment | ASD | Control | ASD | Control | |||
Acetaldehyde | 1.38 | 3.33 | 1.40 | 3.97 | 0.0176 * z | 0.7099 | 0.7322 |
Methanethiol | 1.63 | 1.65 | 1.42 | 1.51 | 0.8270 | 0.4611 | 0.8703 |
Dimethyl sulfide | 0.93 | 1.50 | 0.95 | 0.53 | 0.8121 | 0.1443 | 0.1266 |
Pentanal | 2.04 | 2.49 | 2.03 | 2.44 | 0.0160 * | 0.8678 | 0.9045 |
Dimethyl disulfide | 1.21 | 1.70 | 1.12 | 1.46 | 0.0097 ** | 0.2641 | 0.6028 |
(Z)-3-Hexenal | 4.34 | 6.32 | 4.31 | 6.22 | 0.0010 *** | 0.9059 | 0.9391 |
Hexanal | 299.26 | 340.17 | 293.92 | 340.42 | 0.0075 ** | 0.8643 | 0.8512 |
(E)-2-Hexenal | 190.65 | 242.69 | 190.57 | 242.93 | 0.0004 *** | 0.9946 | 0.9897 |
1-Hexanol | 74.30 | 179.65 | 74.72 | 198.77 | 0.0265 * | 0.8405 | 0.8472 |
Methoxy-phenyl oxime | 6.13 | 5.31 | 6.18 | 5.09 | 0.2104 | 0.9081 | 0.8548 |
(E,E)-2,4-Hexadienal | 4.06 | 5.39 | 3.95 | 5.52 | 0.0203 * | 0.9908 | 0.8339 |
D-Limonene | 8.58 | 1.70 | 8.71 | 1.69 | 0.0100 ** | 0.9806 | 0.9797 |
Nonanal | 1.58 | 4.07 | 1.60 | 4.11 | <0.0001 *** | 0.9479 | 0.9917 |
(E,Z)-2,6-Nonadienal | 13.98 | 22.37 | 14.01 | 22.44 | 0.0907 | 0.9917 | 0.9970 |
(E)-2-Nonenal | 3.59 | 7.76 | 3.59 | 7.81 | <0.0001 *** | 0.9737 | 0.9742 |
Total | 613.66 | 826.11 | 608.49 | 844.91 | 0.0002 *** | 0.9532 | 0.9100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Rosskopf, E.N.; Jeffries, K.A.; Zhao, W.; Plotto, A. Soil Amendment and Storage Effect the Quality of Winter Melons (Benincasa hispida (Thunb) Cogn.) and Their Juice. Foods 2023, 12, 209. https://doi.org/10.3390/foods12010209
Bai J, Rosskopf EN, Jeffries KA, Zhao W, Plotto A. Soil Amendment and Storage Effect the Quality of Winter Melons (Benincasa hispida (Thunb) Cogn.) and Their Juice. Foods. 2023; 12(1):209. https://doi.org/10.3390/foods12010209
Chicago/Turabian StyleBai, Jinhe, Erin N. Rosskopf, Kristen A. Jeffries, Wei Zhao, and Anne Plotto. 2023. "Soil Amendment and Storage Effect the Quality of Winter Melons (Benincasa hispida (Thunb) Cogn.) and Their Juice" Foods 12, no. 1: 209. https://doi.org/10.3390/foods12010209
APA StyleBai, J., Rosskopf, E. N., Jeffries, K. A., Zhao, W., & Plotto, A. (2023). Soil Amendment and Storage Effect the Quality of Winter Melons (Benincasa hispida (Thunb) Cogn.) and Their Juice. Foods, 12(1), 209. https://doi.org/10.3390/foods12010209