Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. SSC Measurement
2.3. Hyperspectral Imaging Systems
2.4. Hyperspectral Image Acquisition and Spectra Extraction
2.4.1. Hyperspectral Image Acquisition
2.4.2. Spectra Extraction
2.5. Data Analysis Methods
2.5.1. Regression Models
2.5.2. Wavelength Selection Methods
2.6. Model Evaluation and Software
3. Results
3.1. Outlier Removal
3.2. Spectral Profiles
3.3. Regression Models
3.4. Analysis of Characteristic Wavelengths
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, G.; Liu, S.; Zhou, Q.; Han, J.; Qian, C.; Li, Y.; Meng, X.; Gao, X.; Zhou, T.; Li, P. Effect of Response Surface Methodology-Optimized Ultrasound-Assisted Pretreatment Extraction on the Composition of Essential Oil Released From Tribute citrus Peels. Front. Nutr. 2022, 9, 840780. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Ouyang, A. Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT-FOOD 2008, 41, 1720–1725. [Google Scholar] [CrossRef]
- Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Prediction of Soluble Solids in Oranges Using Visible/Near-Infrared Spectroscopy: Effect of Peel. Int. J. Food Prop. 2014, 17, 1460–1468. [Google Scholar] [CrossRef]
- Masithoh, R.E.; Pahlawan, M.F.R.; Wati, R.K. Non-destructive determination of SSC and pH of banana using a modular Vis/NIR spectroscopy: Comparison of Partial Least Square (PLS) and Principle Component Regression (PCR). In Proceedings of the IOP Conference Series: Earth and Environmental Science, Yogyakarta, Indonesia, 13–14 October 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, B.; Pan, F.; Luo, W. Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models. Postharvest Biol. Technol. 2020, 163, 111148. [Google Scholar] [CrossRef]
- Wei, X.; He, J.; Zheng, S.; Ye, D. Modeling for SSC and firmness detection of persimmon based on NIR hyperspectral imaging by sample partitioning and variables selection. Infrared Phys. Technol. 2020, 105, 103099. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Y.; Huang, W.; Tian, X.; Xia, Y.; Xu, L.; Fan, S. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys. Technol. 2019, 98, 297–304. [Google Scholar] [CrossRef]
- Gabrielli, M.; Lançon-Verdier, V.; Picouet, P.; Maury, C. Hyperspectral Imaging to Characterize Table Grapes. Chemosensors 2021, 9, 71. [Google Scholar] [CrossRef]
- Ma, T.; Xia, Y.; Inagaki, T.; Tsuchikawa, S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol. Technol. 2021, 174, 111440. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J.; Li, Y. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’ apple based on BiPLS and FiPLS models. Vib. Spectrosc. 2007, 44, 220–227. [Google Scholar] [CrossRef]
- Pissard, A.; Marques, E.J.N.; Dardenne, P.; Lateur, M.; Pasquini, C.; Pimentel, M.F.; Fernández Pierna, J.A.; Baeten, V. Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biol. Technol. 2021, 172, 111375. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.X.; Li, X.; Xu, L.; Deng, L. Noise level penalizing robust Gaussian process regression for NIR spectroscopy quantitative analysis. Chemom. Intell. Lab. Syst. 2020, 201, 104014. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Jiang, X.; Liu, H. Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy. Vib. Spectrosc. 2020, 111, 103152. [Google Scholar] [CrossRef]
- Cayuela, J.A. Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biol. Technol. 2008, 47, 75–80. [Google Scholar] [CrossRef]
- Xu, X.; Mo, J.; Xie, L.; Ying, Y. Influences of Detection Position and Double Detection Regions on Determining Soluble Solids Content (SSC) for Apples Using Online Visible/Near-Infrared (Vis/NIR) Spectroscopy. Food Anal. Method 2019, 12, 2078–2085. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Malegori, C.; Genorini, E.; Iorio, R.; Sblossomic, M.; Girone, G.; Venezia, A. Assessing the Feasibility of a Miniaturized Near-Infrared Spectrometer in Determining Quality Attributes of San Marzano Tomato. Food Anal. Method 2019, 12, 1497–1510. [Google Scholar] [CrossRef]
- Li, B.; Cobo-Medina, M.; Lecourt, J.; Harrison, N.; Harrison, R.J.; Cross, J.V. Application of hyperspectral imaging for nondestructive measurement of plum quality attributes. Postharvest Biol. Technol. 2018, 141, 8–15. [Google Scholar] [CrossRef]
- Huang, F.-H.; Liu, Y.-H.; Sun, X.; Yang, H. Quality inspection of nectarine based on hyperspectral imaging technology. Syst. Sci. Control Eng. 2021, 9, 350–357. [Google Scholar] [CrossRef]
- Rajkumar, P.; Wang, N.; Eimasry, G.; Raghavan, G.S.V.; Gariepy, Y. Studies on banana fruit quality and maturity stages using hyperspectral imaging. J. Food Eng. 2012, 108, 194–200. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, W.; Chu, X.; Xi, M.-j. Selection of Characteristic Wavelengths Using SPA and Qualitative Discrimination of Mildew Degree of Corn Kernels Based on SVM. Spectrosc. Spectr. Anal. 2016, 36, 226–230. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, C.; Zhang, Y.; Ju, W.; Wang, J.; Xiao, M. Molecular spectroscopic wavelength selection using combined interval partial least squares and correlation coefficient optimization. Anal. Methods 2019, 11, 3108–3116. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chu, B.; Fan, Y.; Tao, X.; Yin, W.; He, Y. Hyperspectral Imaging for Predicting the Internal Quality of Kiwifruits Based on Variable Selection Algorithms and Chemometric Models. Sci. Rep. 2017, 7, 7845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, T.; Duan, L.; Chen, X.; Gao, P.; Xu, W. Application and interpretation of deep learning methods for the geographical origin identification of Radix Glycyrrhizae using hyperspectral imaging. RSC Adv. 2020, 10, 41936–41945. [Google Scholar] [CrossRef]
- Daneshvar, A.; Tigabu, M.; Karimidoost, A.; Oden, P.C. Single seed Near Infrared Spectroscopy discriminates viable and non-viable seeds of Juniperus polycarpos. Silva Fennica 2015, 49, 1334. [Google Scholar] [CrossRef] [Green Version]
- Büning-Pfaue, H. Analysis of water in food by near infrared spectroscopy. Food Chem. 2003, 82, 107–115. [Google Scholar] [CrossRef]
- Jochemsen, A.; Alfredsen, G.; Burud, I. Hyperspectral imaging as a tool for profiling basidiomycete decay of Pinus sylvestris L. Int. Biodeterior. Biodegrad. 2022, 174, 105464. [Google Scholar] [CrossRef]
- Bowler, A.L.; Ozturk, S.; Rady, A.; Watson, N. Domain Adaptation for In-Line Allergen Classification of Agri-Food Powders Using Near-Infrared Spectroscopy. Sensors 2022, 22, 7239. [Google Scholar] [CrossRef]
- Okparanma, R.N.; Mouazen, A.M. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils. Sci. World J. 2013, 2013, 160360. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, J.A.; Liebenberg, C.J.; Walsh, K.B. NIR model development and robustness in prediction of melon fruit total soluble solids. Aust. J. Agric. Res. 2006, 57, 411. [Google Scholar] [CrossRef]
- Sánchez, M.-T.; De la Haba, M.-J.; Pérez-Marín, D. Internal and external quality assessment of mandarins on-tree and at harvest using a portable NIR spectrophotometer. Comput. Electron. Agr. 2013, 92, 66–74. [Google Scholar] [CrossRef]
- Wang, A.; Hu, D.; Xie, L. Comparison of detection modes in terms of the necessity of visible region (VIS) and influence of the peel on soluble solids content (SSC) determination of calyx orange using VIS–SWNIR spectroscopy. J. Food Eng. 2014, 126, 126–132. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Rao, X. An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis: A case study for sugar content estimation of citrus. Biosyst. Eng. 2017, 163, 87–93. [Google Scholar] [CrossRef]
Camera | Calibration Set (°Brix) | Validation Set (°Brix) | Prediction Set (°Brix) | ||||||
---|---|---|---|---|---|---|---|---|---|
Number | Min | Max | Number | Min | Max | Number | Min | Max | |
FX10 | 300 | 10.2 | 14.6 | 50 | 10.6 | 15.0 | 50 | 10.7 | 14.2 |
FX17 | 300 | 10.1 | 14.6 | 50 | 10.5 | 14.6 | 50 | 10.6 | 14.4 |
Dataset | Model | Model Parameter | Calibration Set | Validation Set | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
Rc k | RMSEC n (°Brix) | Rv l | RMSEV o (°Brix) | Rp m | RMSEP p (°Brix) | |||
FX10-SP-A a | SVR i | Gamma: 1000.0 C: 106 Eps: 10−5 | 0.810 | 0.435 | 0.750 | 0.511 | 0.705 | 0.53 |
PLSR j | Factor: 19 | 0.786 | 0.451 | 0.769 | 0.497 | 0.731 | 0.51 | |
FX10-SP-B b | SVR | Gamma: 10.0 C: 106 Eps: 10−5 | 0.654 | 0.562 | 0.702 | 0.548 | 0.672 | 0.557 |
PLSR | Factor: 16 | 0.744 | 0.487 | 0.705 | 0.558 | 0.655 | 0.571 | |
FX17-SP-A c | SVR | Gamma: 10,000.0 C: 1000.0 Eps: 10−5 | 0.725 | 0.497 | 0.744 | 0.578 | 0.588 | 0.567 |
PLSR | Factor: 11 | 0.738 | 0.486 | 0.752 | 0.561 | 0.639 | 0.514 | |
FX17-SP-B d | SVR | Gamma: 100.0 C: 106 Eps: 0.001 | 0.700 | 0.516 | 0.769 | 0.544 | 0.529 | 0.591 |
PLSR | Factor: 8 | 0.685 | 0.524 | 0.772 | 0.540 | 0.596 | 0.556 | |
FX10-average e | SVR | Gamma: 100.0 C: 106 Eps: 0.001 | 0.726 | 0.503 | 0.733 | 0.523 | 0.513 | 0.658 |
PLSR | Factor: 17 | 0.782 | 0.455 | 0.751 | 0.515 | 0.736 | 0.515 | |
FX17-average f | SVR | Gamma: 10,000.0 C: 104 Eps: 0.001 | 0.796 | 0.437 | 0.765 | 0.546 | 0.720 | 0.484 |
PLSR | Factor: 11 | 0.747 | 0.479 | 0.773 | 0.540 | 0.611 | 0.540 | |
FX10-fusion g | SVR | Gamma: 1000.0 C: 105 Eps: 0.001 | 0.882 | 0.344 | 0.707 | 0.566 | 0.529 | 0.675 |
PLSR | Factor: 18 | 0.753 | 0.480 | 0.711 | 0.539 | 0.680 | 0.552 | |
FX17-fusion h | SVR | Gamma: 10.0 C: 106 Eps: 0.0001 | 0.708 | 0.510 | 0.770 | 0.543 | 0.599 | 0.534 |
PLSR | Factor: 12 | 0.720 | 0.499 | 0.734 | 0.582 | 0.597 | 0.547 |
Datasets | Number | Characteristic Wavelengths (nm) |
---|---|---|
FX10-SP-A | 18 | 494, 516, 545, 574, 596, 674, 699, 704, 707, 713, 721, 743, 754, 765, 803, 877, 902, 944 |
FX10-SP-B | 10 | 516, 526, 540, 548, 765, 800, 817, 872, 905, 927 |
FX17-SP-A | 19 | 993, 1111, 1139, 1153, 1167, 1202, 1230, 1244, 1251, 1265, 1342, 1363, 1384, 1413, 1427, 1462, 1505, 1554, 1611 |
FX17-SP-B | 20 | 1020, 1111, 1139, 1146, 1188, 1209, 1237, 1251, 1286, 1321, 1335, 1356, 1377, 1413, 1427, 1455, 1490, 1604, 1626, 1647 |
Dataset | Model | Model Parameter | Calibration Set | Validation Set | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
Rc k | RMSEC n (°Brix) | Rv l | RMSEV o (°Brix) | Rp m | RMSEP p (°Brix) | |||
SPA-FX10-SP-A a | SVR i | Gamma: 105 C: 105 Eps: 10−3 | 0.891 | 0.333 | 0.824 | 0.474 | 0.596 | 1.459 |
PLSR j | Factor: 15 | 0.771 | 0.465 | 0.767 | 0.495 | 0.678 | 0.544 | |
SPA-FX10-SP-B b | SVR | Gamma: 1000.0 C: 106 Eps: 10−5 | 0.683 | 0.535 | 0.704 | 0.544 | 0.636 | 0.592 |
PLSR | Factor: 9 | 0.704 | 0.518 | 0.675 | 0.564 | 0.664 | 0.568 | |
SPA-FX17-SP-A c | SVR | Gamma: 104 C: 103 Eps: 10−5 | 0.636 | 0.558 | 0.737 | 0.588 | 0.546 | 0.561 |
PLSR | Factor: 14 | 0.743 | 0.482 | 0.718 | 0.592 | 0.670 | 0.498 | |
SPA-FX17-SP-B d | SVR | Gamma: 103 C: 105 Eps: 10−3 | 0.681 | 0.529 | 0.777 | 0.541 | 0.596 | 0.540 |
PLSR | Factor: 8 | 0.689 | 0.522 | 0.774 | 0.537 | 0.594 | 0.559 | |
CCA-FX10-SP-A e | SVR | Gamma: 10 C: 106 Eps: 10−5 | 0.571 | 0.603 | 0.686 | 0.560 | 0.456 | 0.650 |
PLSR | Factor: 14 | 0.685 | 0.531 | 0.699 | 0.553 | 0.672 | 0.564 | |
CCA-FX10-SP-B f | SVR | Gamma: 103 C: 105 Eps: 10−3 | 0.667 | 0.550 | 0.604 | 0.609 | 0.663 | 0.560 |
PLSR | Factor: 15 | 0.705 | 0.517 | 0.665 | 0.607 | 0.629 | 0.594 | |
CCA-FX17-SP-A g | SVR | Gamma: 105 C: 103 Eps: 10−4 | 0.714 | 0.507 | 0.794 | 0.533 | 0.555 | 0.565 |
PLSR | Factor: 9 | 0.699 | 0.514 | 0.758 | 0.553 | 0.658 | 0.499 | |
CCA-FX17-SP-B h | SVR | Gamma: 104 C: 105 Eps: 10−3 | 0.697 | 0.517 | 0.778 | 0.534 | 0.519 | 0.626 |
PLSR | Factor: 9 | 0.668 | 0.535 | 0.788 | 0.527 | 0.506 | 0.644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; He, M.; Cai, Z.; Qi, H.; Zhang, J.; Zhang, C. Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru. Foods 2023, 12, 247. https://doi.org/10.3390/foods12020247
Li C, He M, Cai Z, Qi H, Zhang J, Zhang C. Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru. Foods. 2023; 12(2):247. https://doi.org/10.3390/foods12020247
Chicago/Turabian StyleLi, Cheng, Mengyu He, Zeyi Cai, Hengnian Qi, Jianhong Zhang, and Chu Zhang. 2023. "Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru" Foods 12, no. 2: 247. https://doi.org/10.3390/foods12020247
APA StyleLi, C., He, M., Cai, Z., Qi, H., Zhang, J., & Zhang, C. (2023). Hyperspectral Imaging with Machine Learning Approaches for Assessing Soluble Solids Content of Tribute Citru. Foods, 12(2), 247. https://doi.org/10.3390/foods12020247