Effect of Adding Matricaria recutita L., Cymbopogon citratus, or Mentha piperita L. Extracts to Fermented Orange Beverage: Sensory Evaluation, Physicochemical Characterization, and Prediction of Toxic Risks and Biological Activity In Silico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experiment 1—Production of Fermented Orange Beverage and Choice of Aromatic Herb Concentrations
2.2.1. Raw Material: Oranges and Aromatic Herbs
2.2.2. Fermented Orange Beverage Production with the Addition of Aromatic Herbal Extracts
2.2.3. Sensory Evaluation of Functional Fermented Orange Beverages
2.3. Experiment 2—Physicochemical Characterization and Bioactive Parameters of Functional Fermented Orange Beverages
2.3.1. Physicochemical Characterization
2.3.2. Total Phenolic and Total Flavonoid Content, and Antioxidant Potential
2.3.3. HPLC Analysis of Phenolic Compounds
2.3.4. Prediction of Toxic Risks In Silico
2.3.5. Prediction of Biological Activity In Silico
2.4. Statistical Analysis
3. Results
3.1. Sensory Evaluation
3.2. Physicochemical Characterization
3.3. Total Phenolic and Flavonoid Content, and Antioxidant Capacity
3.4. Composition of Phenolic Compounds
3.5. In Silico Toxicity Prediction
3.6. Prediction of Biological Activity In Silico
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrara, A.; De Candia, V.; Ferranti, P. Technological Processes to Produce Novel Ingredients From Agri-Food Sources: Functional Compounds From Citrus Wastes. Ref. Modul. Food Sci. 2023. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Flores-Félix, J.D.; Alves, G.; Silva, L.R. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022, 27, 3294. [Google Scholar] [CrossRef] [PubMed]
- Radonjić, S.; Maraš, V.; Raičević, J.; Košmerl, T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef] [PubMed]
- Umeh, S.; Udemezue, O. Pawpaw (Carica papaya) Wine: With Low Sugar Produced Using Saccharomyces Cerevisiae Isolated from a Local Drink “Burukutu”. Biotechnol. Food Sci. 2015, 3, 17–22. [Google Scholar]
- Escudero-López, B.; Fernández-Pachón, M.S.; Herrero-Martín, G.; Ortega, Á.; Cerrillo, I.; Martín, F.; Berná, G. Orange Beverage Ameliorates High-Fat-Diet-Induced Metabolic Disorder in Mice. J. Funct. Foods 2016, 24, 254–263. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The Gut Microbiota: A Key Factor in the Therapeutic Effects of (Poly)Phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Jegham, S.; Njima, Y.B.; Hamdaoui, G.; Zemni, H.; Marzouk, B. Juice Components and Antioxidant Capacity of Four Tunisian Citrus Varieties. J. Sci. Food Agric. 2011, 91, 142–151. [Google Scholar] [CrossRef]
- Passos, O.S.; Souza, J.D.S.; Bastos, D.C.; Girardi, E.A.; de Lima Gurgel, F.; Garcia, M.V.B.; Garcia, M.V.B.; de Oliveira, R.P.; dos Santos Soares Filho, W. Citrus Industry in Brazil with Emphasis on Tropical Areas. In Citrus; Sajid, M., Amanullah, Eds.; InTechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Shiradhonkar, R.; Dukare, A.; Jawalekar, K.; Magar, P.; Jadhav, H. Fortification of Wine with Herbal Extracts: Production, Evaluation and Therapeutic Applications of Such Fortified Wines. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 9–14. [Google Scholar] [CrossRef]
- Gross, A.V.; Stolz, E.D.; Müller, L.G.; Rates, S.M.K.; Ritter, M.R. Medicinal Plants for the “Nerves”: A Review of Ethnobotanical Studies Carried out in South Brazil. Acta Bot. Bras. 2019, 33, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Gholamipourfard, K.; Salehi, M.; Banchio, E. Mentha Piperita Phytochemicals in Agriculture, Food Industry and Medicine: Features and Applications. S. Afr. J. Bot. 2021, 141, 183–195. [Google Scholar] [CrossRef]
- Hawrelak, J.A.; Wohlmuth, H.; Pattinson, M.; Myers, S.P.; Goldenberg, J.Z.; Harnett, J.; Cooley, K.; Van De Venter, C.; Reid, R.; Whitten, D.L. Western Herbal Medicines in the Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2020, 48, 102233. [Google Scholar] [CrossRef]
- Oladeji, O.S.; Adelowo, F.E.; Ayodele, D.T.; Odelade, K.A. Phytochemistry and Pharmacological Activities of Cymbopogon Citratus: A Review. Sci. Afr. 2019, 6, e00137. [Google Scholar] [CrossRef]
- Mailänder, L.K.; Lorenz, P.; Bitterling, H.; Stintzing, F.C.; Daniels, R.; Kammerer, D.R. Phytochemical Characterization of Chamomile (Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022, 27, 8508. [Google Scholar] [CrossRef]
- Jean-quartier, C.; Jeanquartier, F.; Jurisica, I.; Holzinger, A. In Silico Cancer Research towards 3R. BMC Cancer 2018, 18, 408. [Google Scholar] [CrossRef]
- Shah, M.; Kabir, H.; Hossain, M.M.; Kabir, I.; Ahmad, S.; Chakrabarty, N.; Rahman, A.; Rahman, M. Antioxidant, antidiarrheal, hypoglycemic and thrombolytic activities of organic and aqueous extracts of Hopea odorata leaves and in silico PASS prediction of its isolated compounds. BMC Complement. Altern. Med. 2016, 16, 474. [Google Scholar] [CrossRef] [Green Version]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Must and Wines, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- Brazilian Health Regulatory Agency—ANVISA. Brazilian Pharmacopoeia; Brazilian Health Regulatory Agency: Brasília, Brazil, 2010; Volume 1, ISBN 9788588233409. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Academic Press: New York, NY, USA, 2004; pp. 1–374. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Evaristo, M.I.; Leitão, M.C. Identificação e Quantificação Por DAD-HPLC, Da Fracção Fenólica Contida Em Folhas de Quercus suber L. Silva Lusit. 2001, 9, 135–141. (In Portuguese) [Google Scholar]
- Marwaha, A.; Goel, R.K.; Mahajan, M.P. PASS-Predicted Design, Synthesis and Biological Evaluation of Cyclic Nitrones as Nootropics. Bioorganic Med. Chem. Lett. 2007, 17, 5251–5255. [Google Scholar] [CrossRef] [PubMed]
- Instrução Normativa n. 34 de 29 de Novembro de 2012. Complementa Os Padrões de Identidade e Qualidade Para Bebidas Fermentadas, Tendo Em Vista o Disposto No Anexo Do Decreto n. 6.871, de 4 de Junho de 2009; Ministério da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2012. (In Portuguese)
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-Five Years of Total Antioxidant Capacity Measurement of Foods and Biological Fluids: Merits and Limitations. J. Sci. Food Agric. 2018, 100, 5064–5078. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, P.; Bianco, M.L.; Pannuzzo, P.; Timpanaro, N. Effect of Cold Storage on Vitamin C, Phenolics and Antioxidant Activity of Five Orange Genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biol. Technol. 2008, 49, 348–354. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Canbas, A.; Cabaroglu, T. HPLC Determination of Organic Acids, Sugars, Phenolic Compositions and Antioxidant Capacity of Orange Juice and Orange Wine Made from a Turkish Cv. Kozan. Microchem. J. 2009, 91, 187–192. [Google Scholar] [CrossRef]
- Maurer, L.H.; Cazarin, C.B.B.; Quatrin, A.; Nichelle, S.M.; Minuzzi, N.M.; Teixeira, C.F.; Cruz, I.B.M.; Júnior, M.R.M.; Emanuelli, T. Dietary Fiber and Fiber-Bound Polyphenols of Grape Peel Powder Promote GSH Recycling and Prevent Apoptosis in the Colon of Rats with TNBS-Induced Colitis. J. Funct. Foods 2020, 64, 103644. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Karbalay-Doust, S.; Noorafshan, A. Antiulcerogenic Effects of Matricaria Chamomilla Extract in Experimental Gastric Ulcer in Mice. Iran. J. Med. Sci. 2009, 34, 198–203. [Google Scholar]
- Umre, R.; Ganeshpurkar, A.; Ganeshpurkar, A.; Pandey, S.; Pandey, V.; Shrivastava, A.; Dubey, N. In Vitro, in Vivo and in Silico Antiulcer Activity of Ferulic Acid. Futur. J. Pharm. Sci. 2018, 4, 248–253. [Google Scholar] [CrossRef]
- Salgueiro, A.C.; Folmer, V.; da Rosa, H.S.; Costa, M.T.; Boligon, A.A.; Paula, F.R.; Roos, D.H.; Puntel, G.O. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. J. Ethnopharmacol. 2016, 194, 6–14. [Google Scholar] [CrossRef]
- Raies, A.B.; Bajic, V.B. In Silico Toxicology: Computational Methods for the Prediction of Chemical Toxicity. WIREs Comput. Mol. Sci. 2016, 6, 147–172. [Google Scholar] [CrossRef]
Sensory Test | Parameter | Herbal Extract | Concentration of herbal Extract mL.100 mL−1 | ||||
---|---|---|---|---|---|---|---|
0.5 | 1.0 | 2.0 | 3.0 | 4.0 | |||
Acceptance test X | Color | MR | 5.72 a | 5.63 a | 5.64 a | 5.63 a | 5.64 a |
CC | 5.76 a | 5.72 a | 5.48 a | 5.52 a | 5.36 a | ||
MP | 5.72 a | 5,68 a | 5.24 a | 5.08 a | 5.04 a | ||
Aroma | MR | 5.24 a | 5.16 ab | 5.32 a | 4.72 ab | 4.36 b | |
CC | 5.08 a | 5.16 a | 5.28 a | 5.20 a | 4.92 a | ||
MP | 5.04 a | 5.08 a | 5.36 a | 5.32 a | 5.16 a | ||
Flavor | MR | 5.28 a | 4.44 ab | 4.88 a | 4.36 ab | 3.48 b | |
CC | 5.12 ab | 5.40 a | 4.88 ab | 4.32 ab | 4.08 b | ||
MP | 5.12 a | 4.72 ab | 4.72 ab | 3.84 b | 3.92 b | ||
Preference test Y | MR | 88 a | 88 a | 73 a | 69 a | 57 b | |
CC | 83 a | 82 a | 82 a | 73 a | 59 b | ||
MP | 92 a | 90 a | 77 a | 57 b | 59 b | ||
Purchase intention Z | MR | 2.56 ab | 2.88 ab | 2.24 b | 3.20 ab | 3.48 a | |
CC | 2.44 a | 2.52 a | 2.64 a | 3.28 a | 3.32 a | ||
MP | 2.28 b | 2.56 b | 3.00 ab | 3.60 a | 3.60 a |
Parameters | Crude Extract | Fermented Orange Beverage | |||||
---|---|---|---|---|---|---|---|
MR | CC | MP | Control | Fermented + MR | Fermented + CC | Fermented + MP | |
Physicochemical characterization | |||||||
Alcohol (%) | na | na | na | 16.2 a | 16.1 a | 15.9 a | 16.2 a |
Total acidity (mEq L−1) | na | na | na | 122.0 a | 119.3 a | 118.9 a | 122.7 a |
Volatile acidity (mEq L−1) | na | na | na | 10.1 a | 9.1 a | 10.4 a | 10.8 a |
Fixed acidity (mEq L−1) | na | na | na | 111.2 a | 109.6 a | 105.8 a | 111.1 a |
pH | na | na | na | 3.8 a | 3.8 a | 3.8 a | 3.8 a |
Reducing sugars (g L−1) | na | na | na | 3.3 a | 3.2 a | 3.3 a | 3.2 a |
Reduced dry extract (g L−1) | na | na | na | 27.1 a | 27.1 a | 27.3 a | 27.4 a |
Total phenolic and flavonoid content and antioxidant capacity | |||||||
TPC (mg L−1 GAE) | 1965.0 b | 1193.3 c | 2843.3 a | 459.4 c | 481.9 b | 474.3 b | 495.2 a |
TFC (mg L−1 CAE) | 347.2 b | 216.2 c | 1247.0 a | 32.1 d | 41.4 b | 35.9 c | 64.4 a |
DPPH (IC50) | 119.7 b | 223.6 a | 44.3 c | 26.9 b | 28.0 a | 25.2 c | 22.4 d |
ORAC (µmol L−1 TE) | 2.5 a | 2.6 a | 2.6 a | 1.6 b | 1.8 b | 1.9 b | 2.2 a |
Parameters | RT (min) | Crude Extract | Fermented Orange Beverage | |||||
---|---|---|---|---|---|---|---|---|
MR | CC | MP | Control | Fermented + MR | Fermented + CC | Fermented + MP | ||
Phenolic acids | ||||||||
Chlorogenic acid (mg L−1) | 15.1 | 49.1 a | 8.4 c | 47.4 b | 10.9 c | 16.0 a | 13.8 b | 10.8 c |
Caffeic acid (mg L−1) | 16.5 | nd | 3.5 | nd | 5.3 a | 5.5 a | 5.3 a | 5.3 a |
Ferulic acid (mg L−1) | 23.2 | 95.2 b | nd | 98.7 a | 1.6 ab | 1.7 a | 1.0 c | 1.1 bc |
Flavonoids | ||||||||
Narirutin (mg L−1) | 26.1 | nd | nd | nd | 69.7 a | 70.6 a | 66.5 b | 69.6 a |
Rutin (mg L−1) | 27.1 | nd | nd | nd | 6.1 | nd | nd | nd |
Hesperidin (mg L−1) | 28.1 | nd | nd | nd | 130.3 a | 129.9 a | 124.3 b | 125.1 b |
Luteolin (mg L−1) | 37.3 | 20.1 a | 3.1 c | 17.4 b | nd | nd | nd | nd |
Apigenin (mg L−1) | 39.2 | 138.4 a | nd | 132.4 a | nd | nd | nd | nd |
In Silico | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | Narirutin | Rutin | Hesperidin | |
---|---|---|---|---|---|---|---|
Prediction of toxicity | Mutagenic (AMES toxicity) | (-)pkCSM (-)admetSAR (-)Protox (-)Lazar | (-)pkCSM (-)admetSAR (-)Protox (-)Lazar | (-)pkCSM (-)admetSAR (-)Protox (-)Lazar | (-)pkCSM (-)admetSAR (-)Protox (-)Lazar | (-)pkCSM (-)admetSAR (-)Protox | (-)pkCSM (-)admetSAR (-)Protox |
Carcinogenic | (-)admetSAR (-)Protox (-)Lazar | (-)admetSAR (-)Lazar | (-)admetSAR (-)Protox (-)Lazar | (-)pkCSM (-)admetSAR (-)Protox | (-)pkCSM (-)admetSAR (-)Protox | (-) pkCSM (-)admetSAR (-)Protox | |
Hepatotoxicity | (-)pkCSM | (-)pkCSM (-)Protox | (-)pkCSM (-) Protox | (-)pkCSM (-) Protox | (-)pkCSM (-) Protox | (-)pkCSM (-) Protox | |
Blood–brain barrier penetration | (-)pkCSM (-)Lazar | (-)pkCSM (-)admetSAR (-)Lazar | (-)pkCSM (-)admetSAR (-)Lazar | (-)pkCSM (-)admetSAR (-)Lazar | (-)pkCSM (-)admetSAR (-)Lazar | (-)pkCSM (-)admetSAR (-)Lazar | |
Acute oral toxicity | * III admetSAR | * IV admetSAR | * IV admetSAR | * III admetSAR | * III admetSAR | * III admetSAR | |
Prediction of biological activity | Antihemorrhagic | Pa PASS (16.4%) | n.r. | n.r. | Pa PASS (81.5%) | Pa PASS (90.4%) | Pa PASS (72.7%) |
Antioxidant | Pa PASS (80.9%) | Pa PASS (61.1%) | Pa PASS (54.7%) | Pa PASS (88.0%) | Pa PASS (92.7%) | Pa PASS (85.3%) | |
Free radical scavenging | Pa PASS (85.6%) | Pa PASS (67.0%) | Pa PASS (74.1%) | Pa PASS (98.2%) | Pa PASS (99.0%) | Pa PASS (99.1%) | |
Anti-inflammatory | Pa PASS (65.7%) | Pa PASS (64.8%) | Pa PASS (66.1%) | Pa PASS (71.6%) | Pa PASS (74.6%) | Pa PASS (70.4%) | |
Antiulcerative | Pa PASS (54.2%) | Pa PASS (61.0%) | Pa PASS (60.4%) | Pa PASS (71.6%) | Pa PASS (58.5%) | Pa PASS (70,9%) | |
Gastritis treatment | Pa PASS (27.1%) | Pa PASS (35.5%) | Pa PASS (38.4%) | Pa PASS (35.5%) | Pa PASS (49.6%) | Pa PASS (39,9%) | |
Mucomembranous protection | Pa PASS (75.2%) | Pa PASS (94.5%) | Pa PASS (90.6%) | n.r. | n.r. | n.r. | |
Vasoprotection | Pa PASS (44.2%) | Pa PASS (78.2%) | Pa PASS (75.3%) | PaPASS (97.0%) | Pa PASS (98.0%) | Pa PASS (97.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascarin, L.G.; Franco, F.W.; Dornelles, R.C.; Figueredo, K.C.; Santos, R.O.; Bauermann, L.d.F.; Emanuelli, T.; Somacal, S.; Sautter, C.K. Effect of Adding Matricaria recutita L., Cymbopogon citratus, or Mentha piperita L. Extracts to Fermented Orange Beverage: Sensory Evaluation, Physicochemical Characterization, and Prediction of Toxic Risks and Biological Activity In Silico. Foods 2023, 12, 243. https://doi.org/10.3390/foods12020243
Mascarin LG, Franco FW, Dornelles RC, Figueredo KC, Santos RO, Bauermann LdF, Emanuelli T, Somacal S, Sautter CK. Effect of Adding Matricaria recutita L., Cymbopogon citratus, or Mentha piperita L. Extracts to Fermented Orange Beverage: Sensory Evaluation, Physicochemical Characterization, and Prediction of Toxic Risks and Biological Activity In Silico. Foods. 2023; 12(2):243. https://doi.org/10.3390/foods12020243
Chicago/Turabian StyleMascarin, Laura Gizele, Fernanda Wouters Franco, Rafaela Castro Dornelles, Kássia Caroline Figueredo, Roberta Oliveira Santos, Liliane de Freitas Bauermann, Tatiana Emanuelli, Sabrina Somacal, and Cláudia Kaehler Sautter. 2023. "Effect of Adding Matricaria recutita L., Cymbopogon citratus, or Mentha piperita L. Extracts to Fermented Orange Beverage: Sensory Evaluation, Physicochemical Characterization, and Prediction of Toxic Risks and Biological Activity In Silico" Foods 12, no. 2: 243. https://doi.org/10.3390/foods12020243
APA StyleMascarin, L. G., Franco, F. W., Dornelles, R. C., Figueredo, K. C., Santos, R. O., Bauermann, L. d. F., Emanuelli, T., Somacal, S., & Sautter, C. K. (2023). Effect of Adding Matricaria recutita L., Cymbopogon citratus, or Mentha piperita L. Extracts to Fermented Orange Beverage: Sensory Evaluation, Physicochemical Characterization, and Prediction of Toxic Risks and Biological Activity In Silico. Foods, 12(2), 243. https://doi.org/10.3390/foods12020243