Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measurements
2.3. Dietary Data
2.4. Lipid Profile and Hs-CRP Test
2.5. Stool Analysis
2.5.1. Bioinformatics Analysis Methods
2.5.2. Alpha Diversity Boxplots (with Wilcoxon Rank-Sum)
2.5.3. Beta Diversity PCoA (with PERMANOVA)
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Correlation between Gut Flora and Meat Intake
3.2.1. White Meat Intake and Gut Flora
3.2.2. Red Meat Intake and Gut Flora
3.2.3. Correlation between Gut Flora and Hs-CRP and Lipid Profile
3.2.4. Meat Intake and Gut Flora (Alpha and Beta Diversity)
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Hawkes, C.; De Souza, R.J.; Mente, A.; Dehghan, M.; Nugent, R.; Zulyniak, M.A.; Weis, T.; Bernstein, A.M.; Krauss, R.M. Food consumption and its impact on cardiovascular disease: Importance of solutions focused on the globalized food system: A report from the workshop convened by the World Heart Federation. J. Am. Coll. Cardiol. 2015, 66, 1590–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Obesity and public health in the Kingdom of Saudi Arabia. Rev. Environ. Health 2015, 30, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.; Reedy, J.; Cudhea, F.; Zhang, J.; Shi, P.; Erndt-Marino, J.; Coates, J.; Micha, R.; Webb, P.; Mozaffarian, D. Global, regional, and national consumption of animal-source foods between 1990 and 2018: Findings from the Global Dietary Database. Lancet Planet. Health 2022, 6, e243–e256. [Google Scholar] [CrossRef] [PubMed]
- Intelligence, G.M. Saudi Arabia Red Meat Market Analysis: Market Segmentation By Meat Type, By Storage, By Distributional Channel & By Region With Forecast 2017–2030. Available online: https://www.goldsteinresearch.com/report/saudi-arabia-red-meat-market (accessed on 18 September 2022).
- Ministry of Commerce and Industry. Annual Report 2009; European Central Bank: Frankfurt, Germany, 2009. [Google Scholar]
- Al-Nuaim, A.A.; Bamgboye, E.A.; Al-Rubeaan, K.A.; Al-Mazrou, Y. Overweight and obesity in Saudi Arabian adult population, role of sociodemographic variables. J. Community Health 1997, 22, 211–223. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/data/adult.html#print (accessed on 18 September 2022).
- Vergnaud, A.C.; Norat, T.; Romaguera, D.; Mouw, T.; May, A.M.; Travier, N.; Luan, J.; Wareham, N.; Slimani, N.; Rinaldi, S.; et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am. J. Clin. Nutr. 2010, 92, 398–407. [Google Scholar] [CrossRef] [Green Version]
- You, W.; Henneberg, M. Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: An ecological analysis. BMC Nutr. 2016, 2, 1–11. [Google Scholar]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef] [Green Version]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes–an updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Papier, K.; Hartman, L.; Tong, T.Y.N.; Key, T.J.; Knuppel, A. Higher Meat Intake Is Associated with Higher Inflammatory Markers, Mostly Due to Adiposity: Results from UK Biobank. J. Nutr. 2022, 152, 183–189. [Google Scholar] [CrossRef]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012, 6, 1848–1857. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Foerster, J.; Maskarinec, G.; Reichardt, N.; Tett, A.; Narbad, A.; Blaut, M.; Boeing, H. The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: A randomized crossover intervention trial. PLoS ONE 2014, 9, e109606. [Google Scholar] [CrossRef] [Green Version]
- Lunn, J.; Kuhnle, G.; Mai, V.; Frankenfeld, C.; Shuker, D.; Glen, R.; Goodman, J.; Pollock, J.; Bingham, S. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 2007, 28, 685–690. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Leu, R.K.; Winter, J.M.; Christophersen, C.T.; Young, G.P.; Humphreys, K.J.; Hu, Y.; Gratz, S.W.; Miller, R.B.; Topping, D.L.; Bird, A.R. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: A randomised clinical trial. Br. J. Nutr. 2015, 114, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Borrello, K.; Lim, U.; Park, S.Y.; Monroe, K.R.; Maskarinec, G.; Boushey, C.J.; Wilkens, L.R.; Randolph, T.W.; Le Marchand, L.; Hullar, M.A.; et al. Dietary Intake Mediates Ethnic Differences in Gut Microbial Composition. Nutrients 2022, 14, 660. [Google Scholar] [CrossRef]
- Dwiyanto, J.; Hussain, M.H.; Reidpath, D.; Ong, K.S.; Qasim, A.; Lee, S.W.H.; Lee, S.M.; Foo, S.C.; Chong, C.W.; Rahman, S. Ethnicity influences the gut microbiota of individuals sharing a geographical location: A cross-sectional study from a middle-income country. Sci. Rep. 2021, 11, 2618. [Google Scholar] [CrossRef] [PubMed]
- Aljazairy, E.A.; Al-Musharaf, S.; Abudawood, M.; Almaarik, B.; Hussain, S.D.; Alnaami, A.M.; Sabico, S.; Al-Daghri, N.M.; Clerici, M.; Aljuraiban, G.S. Influence of Adiposity on the Gut Microbiota Composition of Arab Women: A Case-Control Study. Biology 2022, 11, 1586. [Google Scholar] [CrossRef] [PubMed]
- Kasai, C.; Sugimoto, K.; Moritani, I.; Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015, 15, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 September 2022).
- Nishida, C.; Ko, G.; Kumanyika, S. Body fat distribution and noncommunicable diseases in populations: Overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist–Hip Ratio. Eur. J. Clin. Nutr. 2010, 64, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, W.-Y.; Swearingin, B.; Crooms, B.; Lee, R.; Choi, Y.; Dail, T.K.; Ha, C. Body composition measurements determined by air displacement plethysmography and eight-polar bioelectrical impedance analysis are equivalent in African American college students. HealthMED 2012, 6, 1896–1899. [Google Scholar]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Thomas, R.J.; Collazo-Clavell, M.; Korinek, J.; Allison, T.G.; Batsis, J.; Sert-Kuniyoshi, F.; Lopez-Jimenez, F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 2008, 32, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Alkhalaf, M.; Edwards, C.; Combet, E. Validation of a food frequency questionnaire specific for salt intake in Saudi Arabian adults using urinary biomarker and repeated multiple pass 24-hour dietary recall. Proc. Nutr. Soc. 2015, 74, E337. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Badpa, A.G. Meat products and Byproducts for value Addition. In Food Processing: Strategies for Quality Assessment; Springer: Berlin/Heidelberg, Germany, 2014; pp. 125–153. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Ottesen, A.; Ramachandran, P.; Reed, E.; White, J.R.; Hasan, N.; Subramanian, P.; Ryan, G.; Jarvis, K.; Grim, C.; Daquiqan, N.; et al. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 2016, 16, 275. [Google Scholar] [CrossRef] [Green Version]
- Ponnusamy, D.; Kozlova, E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Kirtley, M.L.; Tiner, B.L.; Andersson, J.A.; Grim, C.J. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. USA 2016, 113, 722–727. [Google Scholar] [CrossRef] [Green Version]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gibbons, S.M.; Larsen, P.; Shogan, B.D.; Weiss, S.; et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Guillaume Blanche, F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Package Vegan. 2022. Available online: https://github.com/vegandevs/vegan (accessed on 18 September 2022).
- Ahlmann-Eltze, C. Ggsignif: Significance Brackets for 'ggplot2'. Available online: https://cran.r-project.org/web/packages/ggsignif/index.html (accessed on 18 September 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.; Martiny, J. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS ONE 2020, 15, e0233872. [Google Scholar] [CrossRef]
- Mayorga Reyes, L.; Gonzalez Vazquez, R.; Cruz Arroyo, S.M.; Melendez Avalos, A.; Reyes Castillo, P.A.; Chavaro Perez, D.A.; Ramos Terrones, I.; Ramos Ibanez, N.; Rodriguez Magallanes, M.M.; Langella, P. Correlation between diet and gut bacteria in a population of young adults. Int. J. Food Sci. Nutr. 2016, 67, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Guo, X.; Wei, W.; Li, R.; Hu, K.; Liu, X.; Jiang, W.; Liu, S.; Wang, W.; Sun, H. The association of fried meat consumption with the gut microbiota and fecal metabolites and its impact on glucose homoeostasis, intestinal endotoxin levels, and systemic inflammation: A randomized controlled-feeding trial. Diabetes Care 2021, 44, 1970–1979. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Pastoriza, S.; Jiménez-Hernandez, N.; D’Auria, G.; Francino, M.P.; Rufián-Henares, J.A. Effect of food thermal processing on the composition of the gut microbiota. J. Agric. Food Chem. 2018, 66, 11500–11509. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Y.A.; Tuohy, K.M. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe 2010, 16, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhou, G.; Liu, X.; Song, S.; Xu, X.; Hooiveld, G.; Müller, M.; Liu, L.; Kristiansen, K.; Li, C. Dietary protein sources differentially affect the growth of Akkermansia muciniphila and maintenance of the gut mucus barrier in mice. Mol. Nutr. Food Res. 2019, 63, 1900589. [Google Scholar] [CrossRef]
- Hagi, T.; Belzer, C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl. Microbiol. Biotechnol. 2021, 105, 4833–4841. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Li, C.; Zhou, G. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 2015, 5, 15220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heise, J.; Witt, P.; Maneck, C.; Wichmann-Schauer, H.; Maurischat, S. Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int. J. Food Microbiol. 2021, 339, 109032. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, A.; Ferraris, C.; Uggeri, F.; Trentani, C.; Bertoli, S.; de Giorgis, V.; Veggiotti, P.; Elli, M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clin. Nutr. ESPEN 2017, 17, 33–37. [Google Scholar] [CrossRef]
- Lopez-Siles, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME J. 2017, 11, 841–852. [Google Scholar] [CrossRef]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D. Population-level analysis of gut microbiome variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A.T.E.; Schröder, H. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Dalamaga, M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives. Curr. Obes. Rep. 2019, 8, 317–332. [Google Scholar] [CrossRef]
- Rajkumar, H.; Mahmood, N.; Kumar, M.; Varikuti, S.R.; Challa, H.R.; Myakala, S.P. Effect of probiotic (VSL# 3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediat. Inflamm. 2014, 2014, 348959. [Google Scholar]
- van den Munckhof, I.C.; Kurilshikov, A.; ter Horst, R.; Riksen, N.P.; Joosten, L.; Zhernakova, A.; Fu, J.; Keating, S.T.; Netea, M.G.; De Graaf, J. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: A systematic review of human studies. Obes. Rev. 2018, 19, 1719–1734. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.E.; Lehtoranta, L.; Lehtinen, M.J. The Effect of Bifidobacterium animalis ssp. lactis HN019 on Cellular Immune Function in Healthy Elderly Subjects: Systematic Review and Meta-Analysis. Nutrients 2017, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.; Delzenne, N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007, 50, 2374–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Bonder, M.J.; Cenit, M.C.; Tigchelaar, E.F.; Maatman, A.; Dekens, J.A.; Brandsma, E.; Marczynska, J.; Imhann, F.; Weersma, R.K. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 2015, 117, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Moreno, M.; Perez-Herrera, A.; Locia-Morales, D.; Dizzel, S.; Meyre, D.; Stearns, J.C.; Cruz, M. Association of gut microbiome with fasting triglycerides, fasting insulin and obesity status in Mexican children. Pediatr. Obes. 2021, 16, e12748. [Google Scholar] [CrossRef] [PubMed]
- Poretsky, R.; Rodriguez-R, L.M.; Luo, C.; Tsementzi, D.; Konstantinidis, K.T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 2014, 9, e93827. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 92) | Non-Obese (BMI 18.50–24.99) (n = 48) | Obese (BMI ≥ 30) (n = 44) | p-Value |
---|---|---|---|---|
Age (years) (mean ± SD) | 21.10 ± 1.50 | 20.60 ± 1.10 | 21.60 ± 1.70 | <0.001 |
BMI (kg/m2) | 28.50 ± 8.00 | 21.70 ± 1.90 | 36.00 ± 4.70 | <0.001 |
Waist to hip ratio (cm) | 0.70 ± 0.10 | 0.70 ± 0.10 | 0.80 ± 0.10 | 0.01 |
Fat (kg) | 42.50 ± 9.40 | 34.80 ± 5.50 | 51.10 ± 3.30 | <0.001 |
Skeletal muscle mass (kg) | 21.00 ± 3.50 | 18.60 ± 2.20 | 23.60 ± 2.60 | <0.001 |
Total white meat (g/1000 kcal) | 32 (19–41) | 34 (26–41) | 25 (16–40) | 0.11 |
Total red meat (g/1000 kcal) | 15 (9–19) | 12 (4–16) | 16 (13–21) | <0.001 |
LWM (%) | 35 | 33 | 36 | 0.01 |
HWM (%) | 65 | 67 | 64 | |
LRM (%) | 62 | 56 | 68 | |
HRM (%) | 38 | 44 | 32 | |
Biochemical Measurements | ||||
Total Cholesterol (mmol/L) | 4.10 ± 1.50 | 3.60 ± 1.70 | 4.50 ± 1.00 | 0.01 |
HDL-Cholesterol (mmol/L) | 1.00 ± 0.30 | 0.90 ± 0.40 | 1.00 ± 0.30 | 0.24 |
LDL-Cholesterol (mmol/L) | 2.90 ± 1.30 | 2.60 ± 1.50 | 3.30 ± 1.00 | 0.01 |
Total cholesterol/HDL ratio | 4.30 ± 1.70 | 3.90 ± 1.70 | 4.70 ± 1.70 | 0.05 |
Triglyceride (mmol/L) | 0.70 (0.50–1.00) | 0.50 (0.40–0.70) | 1.00 (0.80–1.10) | <0.001 |
High-sensitivity C-reactive Protein (ng/mL) | 1473.90 (787.10–7635.60) | 1031.20 (553–1514) | 6385.40 (1235–12,988) | <0.001 |
Gut Flora | Total White Meat (g/1000 kcal) | Total Red Meat (g/1000 kcal) | ||||
---|---|---|---|---|---|---|
R | p | (i/m) Q | R | p | (i/m) Q | |
Flavonifractor plautii | −0.04 | 0.70 | 0.18 | 0.31 | <0.0001 | 0.01 |
Bacteroides (unidentified species) | 0.21 | 0.05 | 0.01 | 0.23 | 0.04 | 0.03 |
Actinobacteria | −0.11 | 0.31 | 0.06 | 0.22 | 0.05 | 0.04 |
Faecalibacterium Prausnitzii | 0.22 | 0.05 | 0.03 | 0.18 | 0.07 | 0.06 |
Bifidobacterium adolescentis | −0.09 | 0.42 | 0.12 | 0.15 | 0.15 | 0.07 |
Fusobacteria | 0.06 | 0.61 | 0.16 | −0.11 | 0.32 | 0.09 |
Bifidobacterium longum | −0.11 | 0.31 | 0.07 | 0.09 | 0.41 | 0.10 |
Proteobacteria | −0.02 | 0.87 | 0.21 | 0.08 | 0.46 | 0.12 |
Clostridium Bolteae | 0.08 | 0.45 | 0.15 | 0.08 | 0.47 | 0.13 |
Firmicutes | −0.08 | 0.45 | 0.13 | −0.07 | 0.49 | 0.15 |
Verrucomicrobia | 0.01 | 0.90 | 0.24 | −0.04 | 0.74 | 0.16 |
Akkermansia muciniphila | 0.01 | 0.89 | 0.22 | −0.03 | 0.75 | 0.18 |
F:B ratio | −0.01 | 0.96 | 0.25 | −0.02 | 0.83 | 0.19 |
Bacteroides uniformis | −0.15 | 0.15 | 0.04 | −0.02 | 0.85 | 0.21 |
Clostridium difficile | 0.04 | 0.71 | 0.19 | 0.02 | 0.86 | 0.22 |
Bacteria (unidentified phylum) | −0.1 | 0.36 | 0.09 | 0.01 | 0.94 | 0.24 |
Bacteroidetes | 0.11 | 0.37 | 0.10 | 0.01 | 0.95 | 0.25 |
Gut Flora | Non-Obese | Obese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LWM | HWM | LWM | HWM | |||||||||
R | p | (i/m) Q | R | p | (i/m) Q | R | p | (i/m) Q | R | p | (i/m) Q | |
Actinobacteria | 0.42 | 0.05 | 0.03 | −0.21 | 0.34 | 0.13 | 0.06 | 0.76 | 0.18 | −0.22 | 0.45 | 0.12 |
Bifidobacterium longum | 0.48 | 0.02 | 0.02 | 0.01 | 0.96 | 0.25 | −0.04 | 0.84 | 0.22 | −0.28 | 0.33 | 0.09 |
Bacteroidetes | −0.23 | 0.29 | 0.11 | 0.45 | 0.03 | 0.05 | −0.13 | 0.53 | 0.10 | 0.03 | 0.91 | 0.25 |
Bacteria (unidentified phylum) | −0.09 | 0.69 | 0.23 | −0.20 | 0.37 | 0.14 | 0.17 | 0.40 | 0.03 | 0.43 | 0.12 | 0.06 |
F:B ratio | 0.16 | 0.46 | 0.20 | −0.25 | 0.26 | 0.09 | 0.12 | 0.56 | 0.12 | 0.06 | 0.84 | 0.19 |
Clostridium Bolteae | 0.25 | 0.26 | 0.09 | 0.60 | <0.001 | 0.03 | 0.04 | 0.86 | 0.24 | −0.06 | 0.85 | 0.21 |
Firmicutes | 0.09 | 0.67 | 0.22 | −0.43 | 0.04 | 0.06 | 0.12 | 0.57 | 0.15 | 0.05 | 0.87 | 0.24 |
Flavonifractor plautii | 0.27 | 0.21 | 0.08 | 0.60 | <0.001 | 0.02 | 0.02 | 0.90 | 0.25 | −0.27 | 0.35 | 0.10 |
Clostridium difficile | 0.23 | 0.29 | 0.13 | 0.03 | 0.90 | 0.23 | −0.05 | 0.80 | 0.21 | 0.67 | 0.03 | 0.03 |
Bacteroides uniformis | 0.18 | 0.41 | 0.19 | 0.15 | 0.49 | 0.20 | −0.05 | 0.79 | 0.19 | −0.43 | 0.12 | 0.07 |
Bacteroides (unidentified species) | −0.37 | 0.09 | 0.05 | 0.12 | 0.58 | 0.22 | 0.21 | 0.29 | 0.01 | 0.85 | <0.001 | 0.01 |
Faecalibacterium Prausnitzii | 0.19 | 0.38 | 0.14 | −0.15 | 0.49 | 0.17 | −0.10 | 0.63 | 0.16 | 0.55 | 0.04 | 0.04 |
Bifidobacterium adolescentis | 0.29 | 0.17 | 0.06 | −0.23 | 0.28 | 0.11 | 0.12 | 0.56 | 0.13 | −0.09 | 0.77 | 0.16 |
Proteobacteria | 0.07 | 0.76 | 0.25 | −0.33 | 0.13 | 0.08 | 0.16 | 0.43 | 0.07 | −0.15 | 0.61 | 0.13 |
Fusobacteria | − | − | − | − | 0.13 | 0.51 | 0.09 | −0.05 | 0.86 | 0.22 | ||
Verrucomicrobia | 0.18 | 0.41 | 0.16 | −0.15 | 0.49 | 0.19 | −0.17 | 0.40 | 0.06 | 0.08 | 0.78 | 0.18 |
Akkermansia muciniphila | 0.18 | 0.41 | 0.17 | −0.18 | 0.41 | 0.16 | −0.17 | 0.40 | 0.04 | 0.09 | 0.77 | 0.15 |
Gut Flora | Non-Obese | Obese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LRM | HRM | LRM | HRM | |||||||||
R | p | (i/m) Q | R | p | (i/m) Q | R | p | (i/m) Q | R | p | (i/m) Q | |
Actinobacteria | −0.16 | 0.48 | 0.05 | 0.01 | 0.95 | 0.23 | 0.27 | 0.14 | 0.04 | 0.55 | 0.10 | 0.02 |
Bifidobacterium longum | −0.13 | 0.57 | 0.06 | −0.16 | 0.44 | 0.13 | 0.30 | 0.10 | 0.01 | 0.46 | 0.18 | 0.04 |
Bacteroidetes | 0.04 | 0.85 | 0.19 | 0.05 | 0.83 | 0.19 | 0.06 | 0.74 | 0.19 | −0.35 | 0.32 | 0.05 |
Bacteria (unidentified phylum) | 0.00 | 0.99 | 0.23 | 0.21 | 0.32 | 0.08 | 0.10 | 0.59 | 0.18 | 0.34 | 0.33 | 0.07 |
F:B ratio | −0.02 | 0.94 | 0.22 | −0.01 | 0.98 | 0.25 | −0.15 | 0.41 | 0.15 | 0.31 | 0.38 | 0.09 |
Clostridium Bolteae | −0.04 | 0.87 | 0.20 | 0.21 | 0.32 | 0.06 | −0.14 | 0.45 | 0.16 | −0.29 | 0.41 | 0.11 |
Firmicutes | −0.07 | 0.77 | 0.17 | −0.05 | 0.82 | 0.17 | −0.16 | 0.38 | 0.12 | 0.20 | 0.59 | 0.13 |
Flavonifractor plautii | −0.08 | 0.73 | 0.16 | 0.74 | 0.00 | 0.02 | −0.06 | 0.75 | 0.21 | −0.17 | 0.64 | 0.14 |
Clostridium difficile | −0.08 | 0.72 | 0.14 | −0.19 | 0.37 | 0.09 | 0.01 | 0.95 | 0.25 | −0.17 | 0.64 | 0.16 |
Bacteroides uniformis | 0.01 | 0.99 | 0.25 | −0.19 | 0.38 | 0.11 | −0.04 | 0.82 | 0.22 | 0.14 | 0.69 | 0.18 |
Bacteroides (unidentified species) | −0.20 | 0.38 | 0.03 | 0.07 | 0.74 | 0.16 | −0.04 | 0.84 | 0.24 | −0.13 | 0.72 | 0.20 |
Faecalibacterium Prausnitzii | −0.09 | 0.69 | 0.13 | −0.15 | 0.49 | 0.14 | 0.23 | 0.20 | 0.07 | 0.12 | 0.75 | 0.21 |
Bifidobacterium adolescentis | −0.13 | 0.57 | 0.08 | 0.03 | 0.90 | 0.22 | 0.26 | 0.16 | 0.06 | 0.07 | 0.85 | 0.23 |
Proteobacteria | 0.28 | 0.20 | 0.02 | −0.04 | 0.84 | 0.20 | 0.16 | 0.40 | 0.13 | 0.02 | 0.96 | 0.25 |
Fusobacteria | - | - | - | - | −0.30 | 0.10 | 0.03 | - | - | - | ||
Verrucomicrobia | 0.09 | 0.68 | 0.11 | −0.37 | 0.08 | 0.05 | −0.18 | 0.34 | 0.09 | - | - | - |
Akkermansia muciniphila | 0.09 | 0.68 | 0.09 | −0.40 | 0.05 | 0.03 | −0.17 | 0.37 | 0.10 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almajed, J.; Al-Musharaf, S.; Abudawood, M.; Sabico, S.; Aljazairy, E.A.; Aljuraiban, G.S. Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females. Foods 2023, 12, 245. https://doi.org/10.3390/foods12020245
Almajed J, Al-Musharaf S, Abudawood M, Sabico S, Aljazairy EA, Aljuraiban GS. Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females. Foods. 2023; 12(2):245. https://doi.org/10.3390/foods12020245
Chicago/Turabian StyleAlmajed, Jinan, Sara Al-Musharaf, Manal Abudawood, Shaun Sabico, Esra’a A. Aljazairy, and Ghadeer S. Aljuraiban. 2023. "Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females" Foods 12, no. 2: 245. https://doi.org/10.3390/foods12020245
APA StyleAlmajed, J., Al-Musharaf, S., Abudawood, M., Sabico, S., Aljazairy, E. A., & Aljuraiban, G. S. (2023). Red and White Meat Intake in Relation to Gut Flora in Obese and Non-Obese Arab Females. Foods, 12(2), 245. https://doi.org/10.3390/foods12020245