Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Crop Management, and Experimental Design
2.2. Physiological Behavior and Maturity Indices at Harvest
2.3. Juice Sampling and VOC Analysis
2.4. Candidate Gene Selection
2.5. Statistical Analysis and QTL Mapping
2.6. Classification of VOCs According to Ethylene Dependence
3. Results
3.1. Ideogram of the NILs. Physiological Behavior, Mapping of ETHQB3.5 and Putative Candidate Genes
3.2. Volatile Organic Compounds
3.2.1. Compound Classes of VOCs and Univariate Analysis
3.2.2. Univariate Analysis of Individual VOCs
3.2.3. Genes Located in the Region Mapped of ETHQB3.5 or Covered by the Introgression
3.2.4. VOC QTL Mapping
3.2.5. Correlation Network and Hierarchical Clustering Analysis
3.3. Association between VOCs and Climacteric Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klee, H.J. Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytol. 2010, 187, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Dunemann, F.; Ulrich, D.; Boudichevskaia, A.; Grafe, C.; Weber, W.E. QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol. Breed. 2009, 23, 501–521. [Google Scholar] [CrossRef]
- Illa, E.; Eduardo, I.; Audergon, J.M.; Barale, F.; Dirlewanger, E.; Li, X.W.; Moing, A.; Lambert, P.; Le Dantec, L.; Gao, Z.S.; et al. Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol. Breed. 2011, 28, 667–682. [Google Scholar] [CrossRef]
- Sánchez, G.; Besada, C.; Badenes, M.L.; Monforte, A.J.; Granell, A. A non-targeted approach unravels the volatile network in peach fruit. PLoS ONE 2012, 7, e38992. [Google Scholar] [CrossRef] [Green Version]
- Eduardo, I.; Chietera, G.; Pirona, R.; Pacheco, I.; Troggio, M.; Banchi, E.; Bassi, D.; Rossini, L.; Vecchietti, A.; Pozzi, C. Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet. Genomes 2013, 9, 189–204. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Ruiz, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma profile of a collection of near-isogenic lines of melon. Food Chem. 2010, 118, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Galpaz, N.; Gonda, I.; Shem-Tov, D.; Barad, O.; Tzuri, G.; Lev, S.; Fei, Z.; Xu, Y.; Mao, L.; Jiao, C.; et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seqbased high-resolution QTL and eQTL mapping. Plant J. 2018, 94, 169–191. [Google Scholar] [CrossRef] [Green Version]
- Mayobre, C.; Pereira, L.; Eltahiri, A.; Bar, E.; Lewinsohn, E.; Garcia-Mas, J. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem. 2021, 353, 129484. [Google Scholar] [CrossRef]
- Saliba-Colombani, V.; Causse, M.; Langlois, D.; Philouze, J.; Buret, M. Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 2001, 102, 259–272. [Google Scholar] [CrossRef]
- Tadmor, Y.; Fridman, E.; Gur, A.; Larkov, O.; Lastochkin, E.; Ravid, U.; Zamir, D.; Lewinsohn, E. Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J. Agric. Food Chem. 2002, 50, 2005–2009. [Google Scholar] [CrossRef]
- Tieman, D.M.; Zeigler, M.; Schmelz, E.A.; Taylor, M.G.; Bliss, P.; Kirst, M.; Klee, H.J. Identification of loci affecting flavour volatile emissions in tomato fruits. J. Exp. Bot. 2006, 57, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, S.; Cin, V.D.; Fei, Z.J.; Li, H.; Bliss, P.; Taylor, M.G.; Klee, H.J.; Tieman, D.M. Flavour compounds in tomato fruits: Identification of loci and potential pathways affecting volatile composition. J. Exp. Bot. 2009, 60, 325–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbowicz, K.; Liu, Z.; Alseekh, S.; Tieman, D.; Taylor, M.; Kuhalskaya, A.; Ofner, I.; Zamir, D.; Klee, H.J.; Fernie, A.R.; et al. Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty acid-derived flavor volatiles in tomato. Mol. Plant. 2018, 11, 1147–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doligez, A.; Audiot, E.; Baumes, R. This, PQTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol. Breed. 2006, 18, 109–125. [Google Scholar] [CrossRef]
- Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Grando, M.S. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor. Appl. Genet. 2009, 118, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla-Fontanesi, Y.; Rambla, J.L.; Cabeza, A.; Medina, J.J.; Sánchez-Sevilla, J.F.; Valpuesta, V.; Botella, M.A.; Granell, A.; Amaya, I. Genetic analysis of strawberry fruit aroma and identification of o-methyltransferase faOMT as the locus controlling natural variation in mesifurane content. Plant Physiol. 2012, 159, 851–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, A.; Kassim, A.; McCallum, S.; Woodhead, M.; Smith, K.; Zait, D.; Graham, J. Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor. Appl. Genet. 2013, 126, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Vallone, S.; Sivertsen, H.; Anthon, G.E.; Barrett, D.M.; Mitcham, E.J.; Ebeler, S.E.; Zakharov, F. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chem. 2013, 139, 171–183. [Google Scholar] [CrossRef]
- Verzera, A.; Dima, G.; Tripodi, G.; Ziino, M.; Lanza, C.M.; Mazzaglia, A. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Food Anal. Meth. 2011, 4, 141–149. [Google Scholar] [CrossRef]
- Chaparro-Torres, L.A.; Bueso, M.C.; Fernández-Trujillo, J.P. Aroma volatiles at harvest obtained by HSSPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behavior in melon fruit. J. Sci. Food Agric. 2016, 96, 2352–2365. [Google Scholar] [CrossRef]
- Sánchez, G.; Venegas-Calerón, M.; Salas, J.J.; Monforte, A.; Badenes, M.L.; Granell, A. An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genom. 2013, 14, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggelis, A.; John, I.; Grierson, D. Analysis of physiological and molecular changes in melon (Cucumis melo L.) varieties with different rates of ripening. J. Exp. Bot. 1997, 48, 769–778. [Google Scholar] [CrossRef]
- Nuñez-Palenius, H.G.; Gomez-Lim, M.; Ochoa-Alejo, N.; Grumet, R.; Lester, G.; Cantliffe, D.J. Melon fruits: Genetic, diversity, physiology, and biotechnology features. Crit. Biotechnol. 2008, 28, 13–55. [Google Scholar] [CrossRef]
- Blanca, J.; Esteras, C.; Ziarsolo, P.; Pérez, D.; Fernández-Pedrosa, V.; Collado, C.; de Pablos, R.R.; Ballester, A.; Roig, C.; Cañizares, J.; et al. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genom. 2012, 13, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, A.; Fergany, M.; Formisano, G.; Ziarsolo, P.; Blanca, J.; Fei, Z.; Staub, J.E.; Zalapa, J.E.; Cuevas, H.E.; Dace, G.; et al. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011, 11, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteras, C.; Rambla, J.L.; Sánchez, G.; López-Gresa, M.P.; González-Mas, M.C.; Fernández-Trujillo, J.P.; Bellés, J.M.; Granell, A.; Picó, M.B. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J. Sci. Food Agric. 2018, 98, 3915–3925. [Google Scholar] [CrossRef]
- Roy, A.; Bal, S.S.; Fergany, M.; Kaur, S.; Singh, H.; Malik, A.A.; Singh, J.; Monforte, A.J.; Dhillon, N.P.S. Wild melon diversity in India (Punjab State). Gen. Resour. Crop. Evol. 2012, 59, 755–767. [Google Scholar] [CrossRef]
- Raghami, M.; López-Sesé, A.I.; Hasandokht, M.R.; Zamani, Z.; Moghadam, M.R.F.; Kashi, A. Genetic diversity among melon accessions from Iran and their relationships with melon germplasm of diverse origins using microsatellite markers. Plant Syst. Evol. 2014, 300, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Ezura, H.; Owino, W.O. Melon, an alternative model plant for elucidating fruit ripening. Plant Sci. 2008, 175, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Périn, C.; Gomez-Jimenez, M.C.; Hagen, L.; Dogimont, C.; Pech, J.C.; Latché, A.; Pitrat, M.; Lelièvre, J.M. Molecular and genetic characterization of a nonclimacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002, 129, 300–309. [Google Scholar] [CrossRef]
- Moreno, E.; Obando, J.; Dos-Santos, N.; Fernández-Trujillo, J.P.; Monforte, A.J.; García-Mas, J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor. Appl. Genet. 2008, 116, 589–602. [Google Scholar] [CrossRef]
- Vegas, J.; Garcia-Mas, J.; Monforte, A.J. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor. Appl. Genet. 2013, 126, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Santo Domingo, M.; Ruggieri, V.; Argyris, J.; Phillips, M.A.; Zhao, G.; Lian, Q.; Xu, Y.; He, Y.; Huang, S.; et al. Genetic dissection of climacteric fruit ripening in a melon population segregating for ripening behavior. Hortic. Res. 2020, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Santo Domingo, M.; Argyris, J.; Mayobre, C.; Valverde, L.; Martín-Hernández, M.; Pujol, M.; Garcia-Mas, J. A novel introgression line collection to unravel the genetics of climacteric ripening and fruit quality in melon. Sci. Rep. 2021, 11, 11364. [Google Scholar] [CrossRef] [PubMed]
- Oren, E.; Tzuri, G.; Dafna, A.; Rees, E.R.; Song, B.X.; Freilich, S.; Elkind, Y.; Isaacson, T.; Schaffer, A.A.; Tadmor, Y.; et al. QTL mapping and genomic analyses of earliness and fruit ripening traits in a melon recombinant inbred lines population supported by de novo assembly of their parental genomes. Hortic. Res. 2022, 9, uhabo81. [Google Scholar] [CrossRef]
- Santo Domingo, M.; Areco, L.; Mayobre, C.; Valverde, L.; Martín-Hernández, A.M.; Pujol, M.; Garcia-Mas, J. Modulating climacteric intensity in melon through QTL stacking. Hortic. Res. 2022, 9, uhac131. [Google Scholar] [CrossRef]
- Eduardo, I.; Arús, P.; Monforte, A.J. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI 161375. Theor. Appl. Genet. 2005, 112, 139–148. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Moreno, E.; García-Mas, J.; Nicolai, B.; Lammertyn, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Climacteric or non-climacteric behavior in melon fruit. 1. Aroma volatiles. Postharvest Biol. Technol. 2008, 49, 27–37. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Obando-Ulloa, J.M.; Martínez, J.A.; Moreno, E.; García-Mas, J.; Monforte, A.J. Climacteric and non-climacteric behavior in melon fruit 2. Linking climacteric pattern and main postharvest disorders and decay in a set of near-isogenic lines. Postharvest Biol. Technol. 2008, 50, 125–134. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Nicolai, B.; Lammertyn, J.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol. Technol. 2009, 52, 146–156. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Fernández-Talavera, M.; Ruiz-León, M.T.; Roca, M.J.; Dos-Santos, N. Aroma volatiles during whole melon ripening in a climacteric near-isogenic line and its inbred non-climacteric parents. Acta Hort. 2012, 934, 951–958. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Dos-Santos, N.; Martínez-Alcaraz, R.; Le Bléis, I. Non-destructive assessment of aroma volatiles from a climacteric near-isogenic line of melon obtained by headspace sorptive bar extraction. Foods 2013, 2, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Ishii, M.; Sasaki, M.; Rabinowitch, H.D.; Ben-Oliel, G. Identification of an allele attributable to formation of cucumber-like flavor in wild tomato species (Solanum pennellii) that was inactivated during domestication. J. Agric. Food Chem. 2007, 55, 4080–4086. [Google Scholar] [CrossRef] [PubMed]
- Dos-Santos, N.; Bueso, M.C.; Fernández-Trujillo, J.P. Aroma volatiles biomarkers of textural differences at harvest in non-climacteric near-isogenic lines of melon. Food Res. Int. 2013, 54, 1801–1812. [Google Scholar] [CrossRef]
- Fernández-Silva, I.; Eduardo, I.; Blanca, J.; Esteras, C.; Picó, B.; Nuez, F.; Arús, P.; Garcia-Mas, J.; Monforte, A.J. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor. Appl. Genet. 2008, 118, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, M.J.; Oliver, M.; Garcia-Mas, J.; Monfort, A.; Dolçet-Sanjuan, R.; Katzir, N.; Arús, P.; Monforte, A.J. Simple sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor. Appl. Genet. 2005, 110, 802–811. [Google Scholar] [CrossRef]
- Deleu, W.; Esteras, C.; Roig, C.; Gonzalez-To, M.; Fernandez-Silva, I.; Gonzalez-Ibeas, D.; Blanca, J.; Aranda, M.A.; Arus, P.; Nuez, F.; et al. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mas, J.; Benjak, A.; Sanseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Henaff, E.; Cámara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 2012, 109, 11872–11877. [Google Scholar] [CrossRef] [Green Version]
- Esteras, C.; Formisano, G.; Roig, C.; Diaz, A.; Blanca, J.; Garcia-Mas, J.; Gómez-Guillamón, M.L.; López-Sesé, A.I.; Lázaro, A.; Monforte, A.J.; et al. SNP genotyping in melons: Genetic variation, population structure, and linkage disequilibrium. Theor. Appl. Genet. 2013, 126, 1285–1303. [Google Scholar] [CrossRef]
- Fukino, N.; Sakata, Y.; Kunihisa, M.; Matsumoto, S. Characterisation of novel simple sequence repeat (SSR) markers for melon (Cucumis melo L.) and their use for genotype identification. J. Hort. Sci. Biotechnol. 2007, 82, 330–334. [Google Scholar] [CrossRef]
- Tijskens, L.M.M.; Dos-Santos, N.; Jowkar, M.M.; Obando, J.; Moreno, E.; Schouten, R.E.; Monforte, A.J.; Fernández-Trujillo, J.P. Postharvest fruit firmness behavior of near-isogenic lines of melon. Postharvest Biol. Technol. 2009, 51, 320–326. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Jowkar, M.M.; Moreno, E.; Souri, M.K.; Martínez, J.A.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Discrimination of climacteric and non-climacteric fruit at harvest and at senescence stage by quality traits. J. Sci. Food Agric. 2009, 89, 1743–1753. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Obando, J.; Martínez, J.Á.; Alarcón, A.; Eduardo, I.; Arús, P.; Monforte, A.J. Quality management of experiments with a collection of near-isogenic lines of melon. In Proceedings of the III IBEROLAB—Third Virtual Iberoamerican Congress on Laboratory Quality Management, Virtual, 30 June 2005; Atienza, J., Rabasseda, J., Eds.; Ministry of Environment and Rural and Marine Environment: Madrid, Spain, 2005; pp. 149–158. [Google Scholar]
- Kader, A.A. Methods of gas mixing, sampling and analysis. In Postharvest Technology of Horticultural Crops, 3rd ed.; Kader, A.A., Ed.; University of California: Oakland, CA, USA, 2000; pp. 145–148. [Google Scholar]
- Castanera, R.; Ruggieri, V.; Pujol, M.; Garcia-Mas, J.; Casacuberta, J. An Improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front. Plant Sci. 2020, 10, 1815. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Paterson, A.H.; DeVerna, J.; Lanini, B.; Tanksley, S. Fine mapping of Quantitative loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 1990, 24, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. Fast R functions for robust correlations and hierarchical clustering. J. Stat. Soft. 2012, 46, i11. Available online: http://www.jstatsoft.org/v46/i11 (accessed on 20 November 2022). [CrossRef] [Green Version]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9. Available online: http://igraph.org (accessed on 20 November 2022).
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data. R Package Version 3.1.3. 2022. Available online: https://CRAN.R-project.org/package=gplots (accessed on 20 November 2022).
- Périn, C.; Hagen, L.S.; De Conto, V.; Katzir, N.; Danin-Poleg, Y.; Portnoy, V.; Baudracco-Arnas, S.; Chadoeuf, J.; Dogimont, C.; Pitrat, M. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor. Appl. Genet. 2002, 104, 1017–1034. [Google Scholar] [CrossRef]
- Allwood, J.W.; Cheung, W.; Xu, Y.; Mumm, R.; De Vos, R.; Deborde, C.; Biais, B.; Maucourt, M.; Berger, Y.; Schaffer, A.A.; et al. Metabolomics in melon: A new opportunity for aroma analysis. Phytochemistry 2014, 99, 61–72. [Google Scholar] [CrossRef]
- Gonda, I.; Bar, E.; Portnoy, V.; Lev, S.; Burger, J.; Schaffer, A.A.; Tadmor, Y.; Gepstein, S.; Giovannoni, J.J.; Katzir, N.; et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J. Exp. Bot. 2010, 61, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Gonda, I.; Lev, S.; Bar, E.; Sikron, N.; Portnoy, V.; Davidovich-Rikanati, R.; Burger, J.; Schaffer, A.A.; Tadmor, Y.; Giovannonni, J.J.; et al. Catabolism of l-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. Plant J. 2013, 74, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Guler, Z.; Karaca, F.; Yetisir, H. Volatile compounds and sensory properties in various melons, which were chosen from different species and different locations, grown in Turkey. Int. J. Food Prop. 2013, 16, 168–179. [Google Scholar] [CrossRef]
- Freilich, S.; Lev, S.; Gonda, I.; Reuveni, E.; Portnoy, V.; Oren, E.; Lohse, M.; Galpaz, N.; Bar, E.; Tzuri, G.; et al. Systems approach for exploring the intricate associations between sweetness, color and aroma in melon fruits. BMC Plant Biol. 2015, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Qi, H.; Jin, Y.; Tian, X.; Sui, L.; Qiu, Y. Role of ethylene in biosynthetic pathway of related-aroma volatiles derived from amino acids in oriental sweet melons (Cucumis melo var. makuwa Makino). Scientia Hort. 2016, 201, 24–35. [Google Scholar] [CrossRef]
- Beaulieu, J.C. Volatile changes in cantaloupe during growth, maturation, and in stored fresh-cuts prepared from fruit harvested at various maturities. J. Amer. Soc. Hort. Sci. 2006, 131, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.C.; Lancaster, V.A. Correlating volatile compounds, sensory attributes, and quality parameters in stored fresh-cut cantaloupe. J. Agric. Food Chem. 2007, 55, 9503–9513. [Google Scholar] [CrossRef]
- Song, J.; Forney, C.F. Flavour volatile production and regulation in fruit. Can. J. Plant Sci. 2008, 88, 537–550. [Google Scholar] [CrossRef]
- Pang, X.; Guo, X.; Qin, Z.; Yao, Y.; Hu, X.; Wu, J. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. J. Agric. Food Chem. 2012, 60, 4179–4185. [Google Scholar] [CrossRef]
- Bauchot, A.D.; Mottram, D.S.; Dodson, A.T.; John, P. Effect of aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile esters in cantaloupe Charentais melon (Cv. Vedrantais). J. Agric. Food Chem. 1998, 46, 4787–4792. [Google Scholar] [CrossRef]
- El-Sharkawy, I.; Manríquez, D.; Flores, B.; Regad, F.; Bouzayen, M.; Latché, A.; Pech, J.C. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine r esidue for enzyme activity. Plant Mol. Biol. 2005, 59, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.Y.; Zhao, C.; Fan, J.G.; Cong, H.Z.; Liang, S.C.; Yu, X.Y. Antisense suppression of alcohol acetyltransferase gene in ripening melon fruit alters volatile composition. Sci. Hort. 2012, 139, 96–101. [Google Scholar] [CrossRef]
- Sugimoto, N.; Engelgau, P.; Jones, A.D.; Song, J.; Beaudry, R. Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. Proc. Natl. Acad. Sci. USA 2021, 118, e2009988118. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, F.A.; Coustham, V.; Loudet, O. Lessons from eQTL mapping studies: Non-coding regions and their role behind natural phenotypic variation in plants. Curr. Opin. Plant Biol. 2012, 15, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Flores, F.; El-Yahyaoui, F.; de Billerbeck, G.; Romojaro, F.; Latché, A.; Bouzayen, M.; Pech, J.C.; Ambid, C. Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. J. Exp. Bot. 2002, 53, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Zanor, M.I.; Rambla, J.L.; Chaib, J.; Steppa, A.; Medina, A.; Granell, A.; Fernie, A.R.; Causse, M. Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J. Exp. Bot. 2009, 60, 2139–2154. [Google Scholar] [CrossRef] [Green Version]
- Giordano, A.; Santo Domingo, M.; Quadrana, L.; Pujol, M.; Martín-Hernández, M.; Garcia-Mas, J. CRISPR/Cas9 gene editing uncovers the roles of constitutive triple response 1 and repressor of silencing 1 in melon fruit ripening and epigenetic regulation. J. Exp. Bot. 2022, 73, 4022–4033. [Google Scholar] [CrossRef]
- Zhong, S.; Fei, Z.; Chen, Y.R.; Zheng, Y.; Huang, M.; Vrebalov, J.; McQuinn, R.; Gapper, N.; Liu, B.; Xiang, J.; et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 2013, 31, 154–159. [Google Scholar] [CrossRef]
- Amaro, A.L.; Fundo, J.F.; Oliveira, A.; Beaulieu, J.C.; Fernández-Trujillo, J.P.; Almeida, D.P.F. 1-Methylcyclopropene effects on temporal changes of aroma volatiles and phytochemicals of fresh-cut cantaloupe. J. Sci. Food Agric. 2013, 93, 828–837. [Google Scholar] [CrossRef]
- Rowan, D.D.; Hunt, M.B.; Alspach, P.A.; Whitworth, C.J.; Oraguzie, N.C. Heritability and genetic and phenotypic correlations of apple (Malus x domestica) fruit volatiles in a genetically diverse breeding population. J. Agric. Food Chem. 2009, 57, 7944–7952. [Google Scholar] [CrossRef]
- Dávila-Aviña, J.E.D.; González-Aguilar, G.A.; Ayala-Zavala, J.F.; Sepulveda, D.R.; Olivas, G.I. Volatile compounds responsible of tomato flavor. Rev. Fitotec. Mex. 2011, 34, 133–143. [Google Scholar]
- García-Gutiérrez, M.; Dos-Santos, N.; Chaparro-Torres, L.; Fernández-Trujillo, J.P. Optimización de un método no destructivo para determinar la evolución del aroma en postcosecha del fruto de melón entero. In Proceedings of the VI IBEROLAB—VI Iberoamerican Virtual Congress on Laboratory Quality Management, Virtual, 4 July 2011; Alsina, I., Martín de la Hinojosa, M.I., Hooghuis, H., Eds.; Ministry of Environment and Rural and Marine Environment: Madrid, Spain, 2011; pp. 103–111. [Google Scholar]
- Van de Poel, B.; Bulens, I.; Markoula, A.; Hertog, M.L.A.T.; Dreesen, R.; Wirtz, M.; Vandoninck, S.; Oppermann, Y.; Keulemans, J.; Hell, R.; et al. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol. 2012, 160, 1498–1514. [Google Scholar] [CrossRef] [PubMed]
- Varlet, X.; Fernández, X. Sulfur-containing volatile compounds in seafood: Occurrence, odorant properties and mechanisms of formation. Food Sci. Technol. Int. 2010, 16, 463–503. [Google Scholar] [CrossRef] [PubMed]
- Günther, C.S.; Heinemann, K.; Laing, W.A.; Nicolau, L.; Marsh, K.B. Ethylene-regulated (methylsulfanyl) alkanoate ester biosynthesis is likely to be modulated by precursor availability in Actinidia chinensis genotypes. J. Plant Physiol. 2011, 168, 629–638. [Google Scholar] [CrossRef]
- Mandin, O.; Duckham, S.C.; Ames, J.M. Volatile compounds from potato-like model systems. J. Agric. Food Chem. 1999, 47, 2355–2359. [Google Scholar] [CrossRef]
- Merchante, C.; Alonso, J.M.; Stepanova, N.A. Ethylene signaling: Simple ligand, complex regulation. Curr. Opin. Plant Biol. 2013, 16, 554–560. [Google Scholar] [CrossRef]
- Paul, V.; Pandey, R.; Srivstava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. J. Food Sci. Technol. 2012, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Yuan, S.; Zhang, D.W.; Lv, X.; Lin, H.H. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. J. Exp. Bot. 2012, 63, 5705–5716. [Google Scholar] [CrossRef]
- Dong, T.; Chen, G.; Tian, S.; Xie, Q.; Yin, W.; Zhang, Y.; Hu, Z. A non-climacteric fruit gene CaMADS-RIN regulates fruit ripening and ethylene biosynthesis in climacteric fruit. PLoS ONE 2014, 9, e95559. [Google Scholar] [CrossRef]
- Ríos, P.; Argyris, J.; Vegas, J.; Leida, C.; Kenigswald, M.; Tzuri, G.; Troadec, C.; Bendahmane, A.; Katzir, N.; Picó, B.; et al. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J. 2017, 91, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Lü, P.; Yu, S.; Zhu, N.; Chen, Y.R.; Zhou, B.; Pan, Y.; Tzeng, D.; Fabi, J.P.; Argyris, J.; Garcia-Mas, J.; et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 2018, 4, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Bin, B.; Santo Domingo, M.; Mayobre, C.; Martín-Hernández, A.M.; Pujol, M.; Garcia-Mas, J. Knock-out of CmNAC-NOR affects melon climacteric fruit ripening. Front. Plant Sci. 2022, 13, 878037. [Google Scholar] [CrossRef]
- U.S. Secretary of Commerce United States of America. Data Searches by CAS Registry. 2011. Available online: http://webbook.nist.gov/chemistry/cas-ser (accessed on 1 January 2022).
- Wyllie, S.G.; Leach, D.N.; Wang, Y.M.; Shewfelt, R.L. Key aroma compounds in melons—Their development and cultivar dependence. Fruit Flavors 1995, 596, 248–257. [Google Scholar] [CrossRef]
- Lessner, D.J.; Lhu, L.; Wahal, C.S.; Ferry, J.G. An engineered methanogenic pathway derived from the domains Bacteria and Archea. Mbio 2010, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. Available online: http://www.pherobase.com (accessed on 25 July 2013).
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com (accessed on 23 October 2022).
- Nattaporn, W.; Pranee, A. Effect of pectinase on volatile and functional bioactive compounds in the flesh and placenta of ‘Sunlady’ cantaloupe. Int. Food Res. J. 2011, 18, 819–827. Available online: http://www.ifrj.upm.edu.my/18%20(02)%202011/(49)%20IFRJ-2010-004.pdf (accessed on 20 November 2022).
- Biocycle.org. Available online: http://biocyc-org/META/NEW-IMAGE?type=NIL&object=PWY-5410 (accessed on 16 December 2013).
- Singh, T.K.; Drake, M.A.; Cadwallade, K.R. Flavor of Cheddar cheese: A chemical and sensory perspective. Compr. Rev. Food Sci. Food Saf. 2003, 2, 139–162. [Google Scholar] [CrossRef]
- Wyllie, S.G.; Leach, D.N. Aroma volatiles of Cucumis melo cv. Golden Crispy. J. Agric. Food Chem. 1990, 38, 2042–2044. [Google Scholar] [CrossRef]
- Wikipedia. Propyl acetate. 2013. Available online: http://en.wikipedia.org/wiki/Propyl_acetate (accessed on 16 December 2013).
- Goldenberg, L.; Feygenberg, O.; Samach, A.; Pesis, E. Ripening attributes of new passion fruit line featuring seasonal non-climacteric behavior. J. Agric. Food Chem. 2012, 60, 1810–1821. [Google Scholar] [CrossRef]
- Cann, A.F.; Liao, J.C. Pentanol isomer synthesis in engineered microorganisms. Appl. Microbiol. Biotechnol. 2010, 85, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Neilson, H. The hydrolisis and synthesis of etylbutyrate by platinum black. Science 1902, XV, 715–716. Available online: http://www.jstor.org/stable/1628613 (accessed on 25 July 2013).
- Fantastic Flavours. Available online: http://www.flavours.asia/aromas.html (accessed on 25 July 2013).
- Acree, T.; Arn, H. Flavornet and Human Odor Space. 2004. Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/referencespapers.aspx?referenceid=1708978 (accessed on 25 July 2013).
- Rossouw, D.; Naes, T.; Bauer, F.F. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. Bmc Genom. 2008, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Hayata, Y.; Sakamoto, T.; Maneerat, C.; Li, X.; Kozuka, H.; Sakamoto, K. Evaluation of aroma compounds Contributing to muskmelon flavor in Porapak Q extracts by aroma extract dilution analysis. J. Agric. Food Chem. 2003, 51, 3415–3418. [Google Scholar] [CrossRef] [PubMed]
- Matich, A.; Rowan, D. Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry. J. Agric. Food Chem. 2007, 55, 2727–2735. [Google Scholar] [CrossRef] [PubMed]
- McLeish, R. Styrene Graphical Pathway Map. 2011. Available online: http://www.umbbd.ethz.ch/sty/sty_image_map.html (accessed on 25 July 2013).
- Bedoukian Research Inc. Prenyl acetate. Product Information. 2013. Available online: http://www.bedoukian.com/products/product.asp?id=151 (accessed on 16 December 2013).
- Seybold, S.J.; Vanderwel, D. Biosynthesis and endocrine regulation of pheromone production in the Coleoptera. In Insect Pheromone Biochemistry and Molecular Biology. The Biosynthesis and Detection of Pheromones and Plant Volatiles; Blomquist, G.J., Vogt, R.G., Eds.; Elsevier Academic Press: London, UK, 2003; Chapter 6; pp. 137–200. [Google Scholar] [CrossRef]
- Van Moerkercke, A.; Schauvinhold, I.; Pichersky, E.; Haring, M.A.; Schuurink, R.C. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 2009, 60, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Ribnicky, D.M.; Shulaev, V.; Raskin, I. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol. 1998, 118, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Trinh, T.T.T.; Woon, W.Y.; Yu, B.; Curran, P.; Liu, S.Q. Effect of L-isoleucine and L-phenylalanine Addition on aroma compound formation during longan juice fermentation by a co-culture of Saccharomyces cerevisiae and Williopsis saturnus. S. Afr. J. Enol. Vitic. 2010, 31, 116–124. [Google Scholar] [CrossRef]
- Kanehisa Laboratories. Propanoate Metabolism. 00640. 11/13/13. 2013. Available online: http://www.genome.jp/dbget-bin/show_pathway?map00640+C00207 (accessed on 25 July 2013).
- Smit, B.A.; Engels, W.J.M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Arfi, K.; Landaud, S.; Bonnarme, P. Evidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl. Environ. Microbiol. 2006, 72, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.K.; Tang, X.; Zhang, Y.Z.; Zhao, W. Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography-mass spectrometry. Molecules 2012, 17, 2271–2282. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Ionone. 2013. Available online: http://en.wikipedia.org/wiki/Ionone (accessed on 25 July 2013).
- Jardine, K.J.; Sommer, E.D.; Saleska, S.R.; Huxman, T.E.; Harley, P.C.; Abrell, L. Gas phase measurements of pyruvic acid and its volatile metabolites. Environ. Sci. Technol. 2010, 44, 2454–2460. [Google Scholar] [CrossRef]
- Croteau, R.; Karp, F. Biosynthesis of monoterpenes: Partial purification and characterization of 1,8-cineole synthetase from Salvia officinalis. Archiv. Biochem. Biophys. 1977, 179, 257–265. [Google Scholar] [CrossRef]
- Pérez, A.G.; Sanz, C. Formation of fruit flavor. In Fruit and Vegetable Flavour; Bruckner, B., Grant, W.S., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2008; pp. 41–70. [Google Scholar] [CrossRef]
- Sanz, C.; Olías, J.M.; Pérez, A.G. Aroma biochemistry of fruits and vegetables. In Phytochemistry of Fruit and Vegetables; Tomás-Barberán, F.A., Robins, R.J., Eds.; Clarendon Press: Oxford, UK, 1997; pp. 125–155. [Google Scholar]
- Perfumer Flavorist Library. Available online: http://www.perfumerflavorist.com/flavor/library (accessed on 25 July 2013).
- Goodner, K.L. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT-Food Sci. Technol. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- Acree, T.; Arn, H. Flavornet and Human Odor Space. 2013. Available online: http://www.flavornet.org (accessed on 25 July 2013).
- Mahattanatawee, K.; Ruiz, P.; Davenport, T.; Rouseff, R. Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection. J. Agric. Food Chem. 2007, 55, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- ChemicalDictionary.org. Undecane. Chemical Dictionary. 2009. Available online: http://www.chemicaldictionary.org/dic/U/Undecane_429.html (accessed on 15 December 2013).
- Wikipedia. Undecane. 2013. Available online: http://en.wikipedia.org/wiki/Undecane (accessed on 15 December 2013).
- Weldegergis, T.B. Application of Modern Chromatographic Technologies for the Analysis of Volatile Compounds in South African Wines. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2009. Available online: http://hdl.handle.net/10019.1/1129 (accessed on 13 December 2013).
- Wikipedia. Cyclohexane. 2013. Available online: http://en.wikipedia.org/wiki/Cyclohexane (accessed on 13 December 2013).
- Anonymous. Ethyl Benzene Pathway. UM-BBD Pathway Map. Starting with Reaction r0234. (University of Minnessota. Updated 27 May 2013). 2013. Available online: http://www.umbbd.ethz.ch/servlets/dynamicpathway?ptype=p&reacID=r0234&max_rows=5 (accessed on 13 December 2013).
- Kniemeyer, O.; Heider, J. (S)-1-Phenylethanol dehydrogenase of Azoarcus sp strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Archiv. Microbiol. 2001, 176, 129–135. [Google Scholar] [CrossRef]
- Kunst, L.; Jetter, R.; Samuels, A.L. Biosynthesis and transport of plant cuticular waxes. In Annual Plant Reviews: Biology of the Plant Cuticle; Riederer, M., Mülle, M., Eds.; Blackwell: Oxford, UK, 2006; pp. 182–215. [Google Scholar] [CrossRef]
- Josephson, O.B.; Lindsay, R.C.; Stuiber, D.A. Variations in the occurrences of enzymatically derived volatile aroma compounds in salt- and freshwater fish. J. Agric. Food Chem. 1984, 32, 1344–1347. [Google Scholar] [CrossRef]
- Wills, D.; Stephen, S.; Bryan, E. N-Octane Pathway Map. University Minnessota. (Updated 20 April 2013). 2012. Available online: http://umbbd.ethz.ch/oct/oct_map.html (accessed on 13 December 2013).
- Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Maffei, S.M.; Nicholson, E.L.; Boss, P.K. Grape contribution to wine aroma: Production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must. J. Agric. Food Chem. 2012, 60, 2638–2646. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information, U.S. National Library of Medicine. Methyl 2-ethylbutyrate—Substance Summary (SID 479764). 2013. Available online: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=479764#x27 (accessed on 15 December 2013).
- Fauconnier, M.L.; Marlier, M. Fatty acid hydroperoxides pathways in plants. A review. Grasas Aceites 1998, 48, 30–37. [Google Scholar] [CrossRef]
- Leffingwell, J.C. Carotenoids as Flavor and Fragance Precursors. 2001. Available online: http://www.leffingwell.com/caroten.htm (accessed on 15 December 2013).
- Kaiser, B.K.; Carleton, M.; Hickman, J.W.; Miller, C.; Lawson, D.; Budde, M.; Warrener, P.; Paredes, A.; Mullapudi, S.; Navarro, P.; et al. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS ONE 2013, 8, e58307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, F.; Takeoka, G.R.; Buttery, R.G.; Whiterhand, L.C.; Naim, M.; Rabionowitch, H.D. Studies on the aroma of five fresh tomato cultivars and the precursors of cis- and trans-4,5-epoxy-(E)-2-decenals and methional. J. Agric. Food Chem. 2008, 56, 3749–3757. [Google Scholar] [CrossRef]
- Vranová, J.; Ciesarová, Z. Furan in Food—A review. Czech J. Food Sci. 2009, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Cameron, D.C.; Altaras, N.E.; Hoffman, M.L.; Shaw, A.J. Metabolic engineering of propanediol pathways. Biotechnol. Prog. 2008, 14, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia. Camphor. 2013. Available online: http://en.wikipedia.org/wiki/Camphor (accessed on 15 December 2013).
- Kanehisa Laboratories. Glycerolipid Metabolism. 2013. Available online: http://www.genome.jp/kegg-bin/show_pathway?map00561+C00479.005618/30/13 (accessed on 15 December 2013).
- Stipanuk, M.H.; Ueki, I. Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metabol. Dis. 2011, 34, 17–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keen, A.R.; Walker, N.J.; Peberdy, M.F. The formation of 2-butanone and 2-butanol in Cheddar cheese. J. Dairy Res. 1974, 41, 249–257. [Google Scholar] [CrossRef]
- Peterson, D.; Renieccius, G.A. Biological pathways for the formation of oxygen-containing aroma compounds. In: Heteroatomic aroma compounds. ACS Symp. Ser. 2002, 826, 227–242. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. (Eds.) Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Technischen Universitat München: Garching, Germany, 1998. [Google Scholar]
- Josephson, D.B.; Lindsay, R.C. Retro-aldol degradations of unsaturated aldehydes: Role in the formation of c 4-heptenal from t 2, c 6-nonadienal in fish, oyster and other flavors. J. Am. Chem. Soc. 1987, 64, 132–138. [Google Scholar] [CrossRef]
- Grosch, W.; Schwarz, J.M. Linoleic and linolenic acid as precursors of the cucumber flavor. Lipids 1971, 6, 351–352. [Google Scholar] [CrossRef]
- Hui, Y.H. (Ed.) Handbook of Fruit and Vegetable Flavors; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wikipedia. Cyclohexanol. 2013. Available online: http://en.wikipedia.org/wiki/Cyclohexanol (accessed on 15 December 2013).
- Anonymous. Diisobutyl Ketone. Available online: http://www.chemicalland21.com/industrialchem/solalc/VALERONE.htm (accessed on 15 December 2013).
- Rudell, D.R.; Mattinson, D.S.; Mattheis, J.P.; Wyllie, S.G.; Fellman, J.K. Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of “Redchief Delicious” apple fruit (Malus domestica Borkh.). J. Agric. Food Chem. 2002, 50, 2627–2632. [Google Scholar] [CrossRef]
- Colquhoun, T.A.; Marciniak, D.M.; Wedde, A.E.; Kim, J.Y.; Schwieterman, M.L.; Levin, L.A.; Van Moerkercke, A.; Schuurink, R.C.; Clark, D.G. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petuniaxhybrida cv. Mitchell Diploid’ flower. J. Exp. Bot. 2012, 63, 4821–4833. [Google Scholar] [CrossRef] [Green Version]
- Stueven, R. Technical note: Down with Diacetyl! 2003. Available online: http://www.beerme.com/graphics/pics/diacetyl.gif (accessed on 15 December 2013).
- Hughes, P.S.; Baxter, E.D. (Eds.) Beer Quality, Safety, and Nutritional Aspects; RSC Paperbacks; The Royal Society of Chemistry: Cambridge, UK, 2001. [Google Scholar]
- Rodríguez-Nogales, J.M.; Roura, E.; Contreras, E. Biosynthesis of ethyl butyrate using immobilized lipases: A statistical approach. Process. Biochem. 2005, 40, 63–68. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate pathway and aromatic amino acid biosynthesis in plants. Ann. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- Suzuki, H.; Ohnishi, Y.; Furusho, Y.; Sakuda, S.; Horinouchi, S. Novel benzene ring biosynthesis from C3 and C4 primary metabolites by two enzymes. J. Biol. Chem. 2006, 281, 36944–36951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolle, A.; Ondruschka, B.; Bonrath, W.; Netscher, T.; Findeisen, M.; Hoffmann, M.M. Thermal isomerization of (+)-cis- and (-)-trans-pinane leading to (-)-beta-citronellene and (+)-isocitronellene. Chemistry 2008, 14, 6805–6814. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.; Nugent, W.A. Process for the Preparation of Optically Active Cycloolefins. European Patent EP 0749406B1, PCT/US95/02393, 27 December 1996. [Google Scholar]
- Fernández-Trujillo, J.P. Linear retention index of VOCs found in near-isogenic line SC12-1. Unpublished.
- Stein, S.; Mirokhin, Y.; Tchekhovskoi, D.; Mallard, G. The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library. Version 2.0. 4 December 2012. Available online: https://chemdata.nist.gov/mass-spc/ms-search/docs/Ver20Man.pdf (accessed on 20 November 2022).
- AMDIS32. 2.0g. Estimated Non-Polar Retention Index (n-alkane Scale). NIST. 2012. Available online: https://chemdata.nist.gov/mass-spc/ms-search/docs/Ver20Man.pdf (accessed on 20 November 2022).
- Panighel, A.; Maoz, I.; De Rosso, M.; De Marchi, F.; Dalla Vedova, A.; Gardiman, M.; Bavaresco, L.; Flamini, R. Identification of saffron aroma compound β-isophorone (3,5,5-trimethyl-3-cyclohexen-1-one) in some V. vinifera grape varieties. Food Chem. 2014, 145, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia. 3,3,5-Trimethylcyclohexanol. Available online: https://en.wikipedia.org/wiki/3,3,5-Trimethylcyclohexanol (accessed on 20 November 2022).
NILs. Replicates and Classification of Climacteric Behavior a | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS | SC3-5-7 | SC3-5-8 | SC3-5-12 | SC3-5-13 | SC3-5-14 | ETHQB3.5 Association d | |||||||
n = 21 | n = 5 | n = 7 | n = 7 | n = 9 | n = 9 | ||||||||
Compound Class b | (NC) | (NC) | (LC/MC) | (LC/MC) | (LC/MC) | (LC/MC) | p-Value c | ||||||
ACE | 5.89 | 7.24 | 43.24 | * | 46.39 | * | 15.73 | * | 24.56 | * | **** | Full | |
NAE | 6.31 | 5.38 | 4.90 | 5.47 | 6.36 | 6.00 | NS | No | |||||
ALD | 33.30 | 52.02 | * | 19.24 | 13.64 | * | 35.82 | 29.44 | *** | No | |||
ALC | 16.80 | 17.17 | 14.78 | 11.40 | 15.54 | 16.05 | NS | No | |||||
KET | 19.80 | 9.48 | * | 6.79 | * | 6.35 | * | 13.00 | * | 10.06 | * | **** | No |
ACD | 0.24 | 0.38 | 0.36 | 0.30 | 0.23 | 1.02 | NS | No | |||||
SDC | 1.50 | 2.22 | 7.79 | * | 7.25 | * | 4.84 | * | 6.99 | * | **** | Full | |
TER | 1.40 | 1.01 | 0.73 | * | 0.97 | 1.36 | 1.31 | *** | No | ||||
AHA | 2.08 | 1.69 | 0.58 | * | 1.20 | 1.96 | 1.27 | ** | No | ||||
OTH | 6.42 | 3.51 | 1.63 | * | 2.62 | * | 4.36 | 3.36 | * | **** | No |
NILs and Classification of Climacteric Behavior a | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | PS | SC3-5-7 | SC3-5-8 | SC3-5-12 | SC3-5-13 | SC3-5-14 | |||||||||||
Order b | CAS c Number | IUPAC d Name | Class e | IDN f | (NC) | (NC) | (LC/MC) | (LC/MC) | (LC/MC) | (LC/MC) | p-Value g | MQ h | |||||
1 | 000554-12-1 | Methyl propanoate | NAE | 17 | 0.06 | 0.13 | 0.3 | * | 0.24 | * | 0.12 | * | 0.45 | * | **** | 95 | |
2 | 000108-21-4 | 1-Methylethyl acetate | ACE | 21 | 0.05 | 0.15 | 0.36 | * | 0.37 | * | 0.31 | * | 0.47 | * | **** | 81 | |
3 | 001534-08-3 | S-Methyl ethanethioate | SDC | 27 | 0.05 | 0.82 | * | 0.92 | * | 0.74 | * | 0.98 | * | 1.44 | * | **** | 87 |
4 | 000109-60-4 | Propyl acetate | ACE | 32 | 0.16 | 0.41 | 1.61 | * | 0.85 | 0.25 | 0.21 | ** | 83 | ||||
5 | 000623-42-7 | Methyl butanoate | NAE | 33 | 0 | 0.02 | 0.11 | * | 0.07 | * | 0.02 | 0.08 | * | **** | 91 | ||
6 | 000137-32-6 | 2-Methylbutan-1-ol | ALC | 34 | 0 | 0.03 | 0.09 | * | 0.15 | * | 0.04 | * | 0.16 | * | **** | 86 | |
7 | 000110-19-0 | 2-Methylpropyl acetate | ACE | 44 | 0.06 | 1.79 | 8.33 | * | 6.17 | * | 2.39 | * | 5.45 | * | **** | 83 | |
8 | 000868-57-5 | Methyl 2-methylbutanoate | NAE | 45 | 0 | 0.07 | * | 0.46 | * | 0.42 | * | 0.06 | * | 0.24 | * | **** | 76 |
9 | 000105-54-4 | Ethyl butanoate | NAE | 49 | 0.18 | 0.82 | 0.54 | * | 0.85 | 0.39 | 0.13 | **** | 97 | ||||
10 | 000106-36-5 | Propyl propanoate | NAE | 50 | 0 | 0.03 | 0.32 | * | 0.11 | * | 0.09 | 0.11 | * | **** | 78 | ||
11 | 000123-86-4 | Butyl acetate | ACE | 51 | 0.17 | 0.41 | 2.31 | * | 1.99 | * | 0.39 | 0.46 | * | *** | 90 | ||
12 | 002432-51-1 | 1-Methylsulfanylbutan-1-one | SDC | 55 | 0 | 0.05 | 0.12 | * | 0.06 | * | 0.04 | 0.1 | * | **** | 63 | ||
13 | 000123-92-2 | 3-Methylbutyl acetate | ACE | 64 | 0.02 | 0.03 | 0.27 | * | 0.16 | * | 0.04 | 0.05 | * | **** | 90 | ||
14 | 000624-41-9 | 2-Methylbutyl acetate | ACE | 65 | 0.13 | 1.19 | * | 10.04 | * | 9.16 | * | 1.24 | * | 4.18 | * | **** | 83 |
15 | 000100-42-5 | Ethenylbenzene | OTH | 66 | 5.21 | 3.14 | 2.17 | * | 2.37 | * | 3.12 | * | 3.24 | * | *** | 97 | |
16 | 016630-66-3 | Methyl 2-methylsulfanylacetate | SDC | 72 | 0 | 0.01 | 0.05 | * | 0.09 | * | 0.01 | 0.03 | * | **** | 87 | ||
17 | 001191-16-8 | 3-Methylbut-2-enyl acetate | ACE | 73 | 0 | 0.01 | 0.06 | * | 0.06 | * | 0.01 | 0.01 | **** | 72 | |||
18 | 023747-45-7 | 3-Methyl-1-methylsulfanyl-butan-1-one | SDC | 74 | 0 | 0.04 | 0.18 | * | 0.08 | * | 0.04 | 0.13 | * | **** | 64 | ||
19 | 000111-70-6 | Heptan-1-ol | ALC | 83 | 0 | 0.03 | * | 0.01 | 0.03 | * | 0.05 | * | 0.06 | * | *** | 80 | |
20 | 115051-66-6 | 1-(3-Hydroxypropylsulfanyl)ethanone | SDC | 94 | 0.07 | 0.72 | 3.82 | * | 4 | * | 0.59 | * | 1.16 | * | **** | 64 | |
21 | 000142-92-7 | Hexyl acetate | ACE | 96 | 0.02 | 0.1 | * | 0.81 | * | 1.2 | * | 0.11 | * | 0.25 | * | **** | 85 |
22 | 000470-82-6 | 1,8,8-Trimethyl-7-oxabicyclo[2-2-2]octane | TER | 98 | 0.01 | 0.04 | 0.11 | * | 0.13 | * | 0.04 | 0.1 | * | **** | 96 | ||
23 | 019780-39-3 | (2R,3S)-3-Ethylheptan-2-ol | ALC | 106 | 0.03 | 0.14 | * | 0.03 | 0.2 | * | 0.16 | * | 0.25 | * | **** | 50 | |
24 | NID1 | NID1 (LRI 1143; RT 20.871) (m/z 43, 88, 73, 61, 148, 41, 45) | NID | 122 | 0.02 | 0.15 | 1.67 | * | 1.58 | * | 0.27 | * | 0.8 | * | **** | 55 | |
25 | 3901-95-9 | 1-Methyl-4-propan-2-ylcyclohexan-1-ol | ALC | 125 | 0.1 | 0.21 | * | 0.06 | 0.11 | 0.17 | * | 0.29 | * | **** | 71 | ||
26 | 000140-11-4 | Benzyl acetate | ACE | 132 | 0.18 | 0.16 | 5.08 | * | 2.97 | * | 3.21 | * | 3.34 | * | **** | 97 | |
27 | 056805-23-3 | (3Z,6Z)-Nona-3.6-dien-1-ol | ALC | 137 | 0.02 | 0.15 | * | 0.3 | * | 0.26 | * | 0.12 | 0.23 | *** | 80 | ||
28 | 007371-86-0 | 4-Acetyloxypentan-2-yl acetate | ALC | 141 | 0.02 | 0.28 | * | 0.43 | * | 0.59 | * | 0.06 | 0.18 | * | **** | 73 | |
29 | 015764-16-6 | 2,4-Dimethylbenzaldehyde | ALD | 149 | 0 | 0.13 | * | 0.03 | 0.06 | 0.1 | 0.04 | ** | 93 | ||||
30 | 000103-45-7 | 2-Phenylethyl acetate | ACE | 151 | 0.12 | 0.77 | * | 1.73 | * | 1.07 | * | 0.84 | * | 1.01 | * | **** | 72 |
31 | 074367-33-2 | (1-Hydroxy-2.4.4-trimethyl-pentan-3-yl) 2-methylpropanoate | NAE | 153 | 1.42 | 0.55 | 0.34 | * | 0.45 | * | 1.02 | 0.87 | *** | 78 | |||
32 | 000067-64-1 | Acetone | KET | 4 | 6.26 | 2.62 | 1.06 | * | 4.96 | 4.96 | 3.99 | ** | 72 | ||||
33 | 000079-20-9 | Methyl acetate | ACE | 6 | 0.69 | 0.58 | 2.25 | * | 1.13 | 1.13 | 1.77 | * | * | 86 | |||
34 | 000078-84-2 | 2-Methylpropanal | ALD | 7 | 0 | 0.02 | 0.06 | * | 0.02 | 0.02 | 0.17 | * | **** | 81 | |||
35 | 000078-83-1 | 2-Methylpropan-1-ol | ALC | 16 | 0 | 0.04 | 0.01 | 0.04 | * | 0.04 | * | 0.27 | * | ** | 68 | ||
36 | 000108-88-3 | Methylbenzene | OTH | 41 | 1.59 | 0.33 | * | 0.25 | * | 1.4 | 0.87 | 0.93 | ** | 76 | |||
37 | 003214-41-3 | Octane-2-5-dione | KET | 87 | 0.03 | 0.1 | * | 0.04 | 0.09 | 0.09 | * | 0.08 | * | ** | 71 | ||
38 | 000111-87-5 | Octan-1-ol | ALC | 110 | 0.05 | 0.51 | * | 0.1 | 0.21 | * | 0.18 | 0.51 | * | **** | 72 | ||
39 | 000079-77-6 | (E)-4-(2,6,6-Trimethyl-1-cyclohexenyl)but-3-en-2-one | KET | 160 | 0.02 | 0.11 | * | 0.06 | * | 0.02 | 0.07 | * | 0.09 | * | **** | 71 | |
40 | 000075-07-0 | Acetaldehyde | ALD | 1 | 0.25 | 0.38 | 0.36 | 0.28 | 0.48 | * | 0.48 | * | * | 83 | |||
41 | 000074-93-1 | Methanethiol | SDC | 2 | 0.35 | 0.21 | 0.16 | * | 0.17 | * | 0.22 | 0.3 | ** | 90 | |||
42 | 00064-17-5 | Ethanol | ALC | 3 | 0.43 | 0.12 | * | 0.17 | 0.27 | 0.38 | 0.37 | ** | 86 | ||||
43 | 009057-02-7 | Propanal | ALD | 5 | 0.08 | 0 | 0.21 | * | 0 | 0 | 0 | ** | 90 | ||||
44 | 000075-15-0 | Methanedithione | SDC | 8 | 0.07 | 0 | 0 | 0.06 | 0.18 | * | 0.05 | ** | 69 | ||||
45 | 000071-23-8 | Propan-1-ol | ALC | 9 | 0.06 | 0.03 | 0 | * | 0.01 | 0.07 | 0 | * | **** | 60 | |||
46 | 000123-72-8 | Butanal | ALD | 10 | 0.35 | 0.2 | 0.13 | * | 0.12 | * | 0.28 | 0.25 | ** | 82 | |||
47 | 000078-93-3 | Butan-2-one | KET | 11 | 0.16 | 0.12 | 0 | * | 0.14 | 0.2 | 0.16 | **** | 64 | ||||
48 | 092112-69-1 | Hexane | AHA | 13 | 0 | 0.1 | * | 0.05 | 0.01 | 0.04 | 0.07 | * | ** | 72 | |||
49 | 000123-73-9 | But-2-enal | ALD | 18 | 0.25 | 0.2 | 0.11 | * | 0.09 | * | 0.18 | 0.16 | *** | 86 | |||
50 | 000590-86-3 | 3-Methylbutanal | ALD | 19 | 0 | 0.01 | 0 | 0.01 | 0.03 | * | 0.06 | * | **** | 60 | |||
51 | 068411-77-8 | Cyclohexane | AHA | 20 | 0.42 | 0.14 | 0.03 | * | 0.29 | 0.53 | 0.37 | * | 50 | ||||
52 | 000110-62-3 | Pentanal | ALC | 22 | 0.04 | 0.07 | 0.07 | 0.08 | 0.1 | * | 0.14 | * | ** | 90 | |||
53 | 000616-25-1 | Pent-1-en-3-ol | ALC | 23 | 0.1 | 0.1 | 0.04 | * | 0.07 | 0.12 | 0.08 | ** | 78 | ||||
54 | 017528-72-2 | Pent-1-en-3-one | KET | 24 | 0.38 | 0.3 | 0.17 | * | 0.17 | * | 0.32 | 0.26 | * | 51 | |||
55 | 000600-14-6 | Pentane-2.3-dione | KET | 25 | 0 | 0.13 | * | 0 | 0 | 0 | 0.44 | * | **** | 85 | |||
56 | 003208-16-0 | 2-Ethylfuran | OTH | 28 | 0.5 | 0.3 | 0.07 | * | 0.27 | 0.52 | 0.56 | ** | 53 | ||||
57 | 000108-10-1 | 4-Methylpentan-2-one | KET | 29 | 0.04 | 0.02 | 0 | * | 0 | * | 0.03 | 0.01 | * | **** | 50 | ||
58 | 068920-64-9 | Methyldisulfanylmethane | SDC | 35 | 0.33 | 0.22 | 0.22 | 0.12 | * | 0.33 | 0.54 | ** | 94 | ||||
59 | 000565-69-5 | 2-Methylpentan-3-one | KET | 36 | 0.07 | 0.05 | 0.03 | * | 0.03 | 0.09 | 0.07 | * | 80 | ||||
60 | NID4 | NID4 (LRI 734; RT 3.229) (m/z 41, 98, 69, 55, 83) | ALD | 37 | 0 | 0.02 | * | 0.01 | * | 0 | 0.01 | * | 0.02 | * | ** | - | |
61 | 000105-46-4 | Butan-2-yl acetate | ACE | 40 | 0 | 0 | 0.04 | * | 0.03 | * | 0.02 | * | 0.07 | * | **** | 72 | |
62 | 025044-01-3 | 2-Methylpent-1-en-3-one | KET | 43 | 0.03 | 0.02 | 0.51 | 0.05 | 0.06 | 0.08 | * | * | 70 | ||||
63 | 000820-71-3 | 2-methylprop-2-enyl acetate | ACE | 47 | 0 | 0 | 0.38 | * | 0.43 | * | 0.04 | 0.17 | * | **** | 79 | ||
64 | 000066-25-1 | Hexanal | ALD | 48 | 19.68 | 19.64 | 8.27 | 8.37 | * | 15.04 | 13.39 | * | 90 | ||||
65 | NID2 | NID2 (LRI 908; RT 8.645) (m/z 71, 41, 58, 55, 56) | NID | 54 | 0 | 0 | 0.1 | * | 0 | 0 | 0 | **** | - | ||||
66 | 005271-38-5 | 2-Methylsulfanylethanol | SDC | 56 | 0 | 0 | 0.01 | 0.02 | * | 0.01 | 0.05 | * | **** | 86 | |||
67 | 018729-48-1 | 3-Methylcyclopentan-1-ol | ALC | 57 | 0.08 | 0.04 | 0.01 | * | 0.03 | 0.05 | 0.06 | * | 52 | ||||
68 | 007452-79-1 | Ethyl 2-methylbutanoate | NAE | 58 | 0.01 | 0.24 | 0.24 | * | 0 | 0.19 | 0 | *** | 95 | ||||
69 | 000816-11-5 | Methyl 2-ethylbutanoate | NAE | 59 | 0.01 | 0 | 0 | 0.27 | * | 0 | 0.06 | ** | 96 | ||||
70 | 000540-42-1 | 2-Methylpropyl propanoate | NAE | 62 | 0 | 0.02 | 0.06 | * | 0.06 | * | 0.04 | 0.23 | * | **** | 82 | ||
71 | 000929-22-6 | (E)-Hept-4-enal | ALD | 69 | 0.03 | 0.05 | * | 0 | 0 | 0.04 | * | 0.04 | * | **** | 67 | ||
72 | 000628-63-7 | Pentyl acetate | ACE | 71 | 0 | 0 | 0.18 | * | 0.29 | * | 0.02 | 0.04 | * | **** | 78 | ||
73 | 000591-23-1 | 3-Methylcyclohexan-1-ol | ALC | 76 | 0.23 | 0.15 | 0.14 | * | 0.11 | * | 0.17 | 0.16 | ** | 80 | |||
74 | 000105-68-0 | 1-Butanol, 3-methyl-, propanoate | NAE | 77 | 0 | 0 | 0 | 0.02 | 0.01 | 0.04 | * | *** | 75 | ||||
75 | 000100-52-7 | Benzaldehyde | ALD | 79 | 0.39 | 0.34 | 0.07 | * | 0.21 | 0.42 | 0.34 | **** | 81 | ||||
76 | 000108-83-8 | 2,6-Dimethylheptan-4-one | KET | 81 | 0.03 | 0.01 | 0.01 | * | 0 | * | 0.02 | 0.01 | * | 64 | |||
77 | 005441-52-1 | 3,5-Dimethylcyclohexan-1-ol | ALC | 90 | 0.38 | 0.31 | 0.19 | * | 0.23 | 0.27 | 0.32 | ** | 74 | ||||
78 | 000104-76-7 | 2-Acetyloxypropyl acetate | ACE | 99 | 1.32 | 2.25 | 2.03 | 1.45 | 1.6 | 2.72 | * | *** | 90 | ||||
79 | 000623-84-7 | 1-Acetyloxypropan-2-yl acetate | ACE | 100 | 0.01 | 0.03 | 0.07 | * | 0.04 | 0.01 | 0.02 | ** | 72 | ||||
80 | 001193-81-3 | (2-Methylcyclohexyl)methanol | ALC | 102 | 0.85 | 0.65 | 0.43 | 0.51 | * | 0.59 | 0.68 | * | 74 | ||||
81 | 001114-92-7 (meso) | 3-Acetyloxybutan-2-yl acetate, meso | ACE | 104 | 0.07 | 0.09 | 0.16 | 0.35 | * | 0.08 | 0.04 | * | - | ||||
82 | 000098-86-2 | 1-Phenylethanone | KET | 105 | 1.17 | 0.51 | 0.11 | * | 0.53 | 1.11 | 0.86 | * | 65 | ||||
83 | 001114-92-7 (rac) | 3-Acetyloxybutan-2-yl acetate, rac | ACE | 107 | 0 | 0 | 0.05 | * | 0.14 | * | 0 | 0 | **** | 88 | |||
84 | 000617-94-7 | 2-Phenylpropan-2-ol | ALC | 109 | 2.53 | 2.06 | 0.35 | * | 1.71 | 1.77 | 1.94 | *** | 72 | ||||
85 | 001565-75-9 | 2-Phenylbutan-2-ol | ALC | 111 | 0.33 | 0 | 0.94 | * | 0 | 0 | 0 | **** | 72 | ||||
86 | 000104-87-0 | 4-Methylbenzaldehyde | ALD | 112 | 0 | 0.12 | * | 0 | 0.06 | * | 0.06 | 0.04 | ** | 83 | |||
87 | 061193-21-3 | Undecane | AHA | 117 | 0.1 | 0.3 | 0.04 | * | 0.14 | 0.21 | 0.18 | * | 64 | ||||
88 | 000628-66-0 | 3-Acetyloxypropyl acetate | ACE | 120 | 0 | 0 | 0.02 | 0.07 | 0 | 0.01 | **** | 60 | |||||
89 | 000112-06-1 | Heptyl acetate | ACE | 121 | 0.01 | 0 | 0.02 | 0.3 | * | 0 | 0.02 | *** | 60 | ||||
90 | 000577-16-2 | 1-(2-methylphenyl)ethanone | KET | 127 | 0.36 | 0.35 | 0.05 | * | 0.29 | 0.29 | 0.28 | *** | 70 | ||||
91 | 004621-04-10 | 4-Propan-2-ylcyclohexan-1-ol | ALC | 128 | 0.3 | 0.3 | 0.14 | 0.27 | 0 | * | 0.25 | * | **** | 70 | |||
92 | 000464-49-3 | 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one | TER | 129 | 0.98 | 0.66 | 0.37 | * | 0.58 | 0.75 | 0.8 | **** | 98 | ||||
93 | 31502-19-9 | (E)-Non-6-en-1-ol | ALC | 130 | 0.04 | 0.19 | * | 0 | 0 | 0 | 0 | **** | 83 | ||||
94 | 018829-56-6 | (E)-Non-2-enal | ALD | 133 | 0.14 | 0.46 | * | 0.07 | 0.02 | 0.15 | 0.16 | * | ** | 80 | |||
95 | 000103-09-3 | 2-Ethylhexyl acetate | ACE | 134 | 0 | 0.4 | * | 0.26 | * | 0.14 | * | 0 | 0.01 | **** | 86 | ||
96 | 000557-48-2 | (2E,6E)-Nona-2,6-dienal | ALD | 135 | 0.09 | 0 | * | 0 | * | 0 | * | 0 | * | 0.15 | *** | 72 | |
97 | 143-08-8 | Nonan-1-ol | AHA | 138 | 0.03 | 0 | 0.07 | * | 0 | 0 | 0.06 | ** | 79 | ||||
98 | 002040-07-5 | 1-(2,4,5-Trimethylphenyl)ethanone | KET | 140 | 0 | 0 | 0.16 | * | 0 | 0 | 0 | **** | 83 | ||||
99 | 93-92-5 | 1-Phenylethyl acetate | ACE | 142 | 0.22 | 0.05 | * | 0.12 | 0.24 | 0.22 | 0.19 | * | 81 | ||||
100 | 094094-93-6 | Dodecane | AHA | 143 | 0.03 | 0.45 | * | 0.03 | 0.07 | 0.05 | 0.08 | ** | 87 | ||||
101 | 000112-31-2 | Decanal | ALD | 144 | 0.49 | 0.13 | * | 0.26 | 0.27 | 0.32 | 0.45 | **** | 97 | ||||
102 | 000112-14-1 | Octyl acetate | ACE | 145 | 0.03 | 0.47 | * | 0 | 0.05 | 0 | 0.02 | **** | 86 | ||||
103 | 052844-21-0 | 1-Cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl- | ALD | 147 | 0 | 0.07 | * | 0 | 0 | 0.01 | 0.05 | * | ** | 95 | |||
104 | NID3 | NID3 (LRI 1258, RT 22.147) (m/z 175, 190, 176, 57, 147) | ALD | 150 | 0.06 | 0 | 0.17 | * | 0 | 0 | 0 | ** | - | ||||
105 | 000629-62-9 | Pentadecane | AHA | 159 | 0.07 | 0.14 | 0.01 | 0.02 | 0.01 | 0.07 | ** | 96 | |||||
106 | 000767-54-4 | 3,3,5-trimethylcyclohexan-1-ol | ALC | 100 | 0.07 | 0.09 | 0.05 | * | 0.07 | 0.11 | 0.1 | *** | 55 | ||||
107 | 471-01-2 | 3,5,5-trimethylcyclohex-3-en-1-one | KET | 123 | 0.28 | 0.14 | 0.03 | 0.18 | 0.25 | 0.18 | * | 57 | |||||
108 | 492-37-5 | 2-phenylpropanoic acid | ACD | 125 | 0.43 | 0.49 | 0.19 | * | 0.4 | 0.41 | 0.41 | * | 66 | ||||
109 | 10340-23-5 | (Z)-non-3-en-1-ol | ALC | 135 | 0.15 | 0.08 | 0.27 | 0.27 | 0.28 | 0.41 | * | * | 81 | ||||
110 | 74367-31-0 | 2-Ethyl-3-hydroxyhexyl 2-methylpropanoate | NAE | 153 | 2.28 | 1.35 | 0.6 | * | 0.9 | * | 1.69 | 1.69 | *** | 75 |
Molecular Marker Position | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Distance in the Genetic Map | 20,373,958 | 20,816,308 | 24,346,383 | 24,668,302 | 24,780,842 | 24,926,308 | 24,931,945 | 25,197,968 | 26,205,074 | 26,328,662 | 26,434,021 | 26,788,316 | 26,801,772 | 27,143,907 | 27,145,624 | |||||||||||
Compound Classes | CMPSNP556 | A_21-C11 | ECM208 | mc296EST | CMPSNP8 | CMCTN5 | CMN22-85 | CMPSNP374 | ECM60c | AI_06_G01 | AI_14-F04 | ECM205 | MC215 | TJ10 | ECM125 | N Confirmed > PS | N Confirmed < PS | N QTLclim > PS | N QTLclim < PS | Significance (p < 0.05) | Ethylene I/D | |||||
Acetate Esters | 1 | − | 1 | − | **** | 1 | ||||||||||||||||||||
Sulfur Derived Compounds | 1 | − | 1 | − | **** | 1 | ||||||||||||||||||||
Aldehydes | − | 1 | − | − | *** | −1 | ||||||||||||||||||||
Ketones | − | 1 | − | − | **** | −1 | ||||||||||||||||||||
Climacteric QTL position (ETHQB3.5) |
IUPAC a Name of Aroma Volatile Compounds | CMPSNP556 | A_21−C11 | ECM208 | mc296EST | CMPSNP8 | CMCTN5 | CMN22−85 | CMPSNP374 | ECM60c | AI_06−G01 | AI_14−F04 | ECM205 | MC215 | TJ10 | ECM125 | N QTL Confirmed > PS | N QTL Confirmed < PS | N QTL in ETHQB3.5 Region > PS | N QTL in ETHQB3.5 Region < PS | CAS Number b | Ethylene I/D c | |||||||
ETHQB3.5 | Colocalization with ETHQB3.5 | |||||||||||||||||||||||||||
IDN d Climacteric QTL | ||||||||||||||||||||||||||||
position | ||||||||||||||||||||||||||||
1 | Methyl propanoate | 1 | − | 1 | − | 000554-12-1 | 1 | |||||||||||||||||||||
2 | 1-Methylethyl acetate | 1 | − | 1 | − | 000108-21-4 | 1 | |||||||||||||||||||||
3 | S-Methylmet ethanethioate | 1 | − | − | − | 001534-08-3 | −1 | |||||||||||||||||||||
5 | Methyl butanoate | 1 | − | 1 | − | 000623-42-7 | 1 | |||||||||||||||||||||
6 | 2-Methylbutan-1-ol | 1 | − | 1 | − | 000137-32-6 | 1 | |||||||||||||||||||||
7 | 2-methylpropyl acetate | 1 | − | 1 | − | 000110-19-0 | 1 | |||||||||||||||||||||
8 | Methyl 2-methylbutanoate | 1 | − | − | − | 000868-57-5 | −1 | |||||||||||||||||||||
10 | Propyl propanoate | 1 | − | 1 | − | 000106-36-5 | 1 | |||||||||||||||||||||
11 | Butyl acetate | 1 | − | 1 | − | 000123-86-4 | 1 | |||||||||||||||||||||
12 | 1-Methylsulfanylbutan-1-one | 1 | − | 1 | − | 002432-51-1 | 1 | |||||||||||||||||||||
13 | 3-Methylbutyl acetate | 1 | − | 1 | − | 000123-92-2 | 1 | |||||||||||||||||||||
14 | 2-Methylbutyl acetate | 1 | − | − | − | 000624-41-9 | −1 | |||||||||||||||||||||
15 | Ethenylbenzene | − | 1 | − | 1 | 000100-42-5 | 1 | |||||||||||||||||||||
16 | Methyl 2-methylsulfanylacetate | 1 | − | 1 | − | 016630-66-3 | 1 | |||||||||||||||||||||
17 | 3-Methylbut-2-enyl acetate | 1 | − | − | − | 001191-16-8 | −1 | |||||||||||||||||||||
18 | 3-Methyl-1-methylsulfanyl-butan-1-one | 1 | − | 1 | − | 023747-45-7 | 1 | |||||||||||||||||||||
20 | 1-(3-Hydroxypropylsulfanyl)ethanone | 1 | − | 1 | − | 115051-66-6 | 1 | |||||||||||||||||||||
21 | Hexyl acetate | 1 | − | − | − | 000142-92-7 | −1 | |||||||||||||||||||||
22 | 1,8,8-Trimethyl-7-oxabicyclo[2-2-2]octane | 1 | − | 1 | − | 000470-82-6 | 1 | |||||||||||||||||||||
24 | NID1 (LRI 1143; RT 20.871) (m/z 43, 88, 73, 61, 148, 41, 45) | 1 | − | 1 | − | NID1 | 1 | |||||||||||||||||||||
26 | Benzyl acetate | 1 | − | 1 | − | 000140-11-4 | 1 | |||||||||||||||||||||
30 | 2-Phenylethyl acetate | 1 | − | − | − | 000103-45-7 | −1 | |||||||||||||||||||||
31 | (1-Hydroxy-2,4,4-trimethyl-pentan-3-yl) 2-methylpropanoate | − | 1 | − | − | 074367-33-2 | −1 | |||||||||||||||||||||
39 | (E)-4-(2,6,6-Trimethyl-1-cyclohexenyl)but-3-en-2-one | 1 | − | − | − | 000079-77-6 | −1 | |||||||||||||||||||||
41 | Methanethiol | − | 1 | − | − | 000074-93-1 | −1 | |||||||||||||||||||||
46 | Butanal | − | 1 | − | − | 000123-72-8 | −1 | |||||||||||||||||||||
49 | But-2-enal | − | 1 | − | − | 000123-73-9 | −1 | |||||||||||||||||||||
54 | Pent-1-en-3-one | − | 1 | − | − | 017528-72-2 | −1 | |||||||||||||||||||||
57 | 4-Methylpentan-2-one | − | 1 | − | 1 | 000108-10-1 | 1 | |||||||||||||||||||||
58 | Methyldisulfanylmethane | − | 1 | − | − | 068920-64-9 | −1 | |||||||||||||||||||||
60 | NID4 (LRI 734; RT 3.229) (m/z 41, 98, 69, 55, 83) | 1 | − | − | − | NID4 | −1 | |||||||||||||||||||||
61 | Butan-2-yl acetate | 1 | − | 1 | − | 000105-46-4 | 1 | |||||||||||||||||||||
63 | 2-methylprop-2-enyl acetate | 1 | − | 1 | − | 000820-71-3 | 1 | |||||||||||||||||||||
64 | Hexanal | − | 1 | − | − | 000066-25-1 | −1 | |||||||||||||||||||||
69 | Methyl 2-ethylbutanoate | 1 | − | − | − | 000816-11-5 | −1 | |||||||||||||||||||||
70 | 2-Methylpropyl propanoate | 1 | − | 1 | − | 000540-42-1 | 1 | |||||||||||||||||||||
72 | Pentyl acetate | 1 | − | 1 | − | 000628-63-7 | 1 | |||||||||||||||||||||
73 | 3-Methylcyclohexan-1-ol | − | 1 | − | − | 000591-23-1 | −1 | |||||||||||||||||||||
76 | 2,6-Dimethylheptan-4-one | − | 1 | − | − | 000108-83-8 | −1 | |||||||||||||||||||||
80 | (2-Methylcyclohexyl)methanol | − | 1 | − | − | 001193-81-3 | −1 | |||||||||||||||||||||
81 | 3-Acetyloxybutan-2-yl acetate, meso | 1 | − | − | − | 001114-92-7 (meso) | −1 | |||||||||||||||||||||
83 | 3-Acetyloxybutan-2-yl acetate, rac | 1 | − | − | − | 001114-92-7 (rac) | −1 | |||||||||||||||||||||
89 | Heptyl acetate | 1 | − | − | − | 000112-06-1 | −1 | |||||||||||||||||||||
110 | 2-Ethyl-3-hydroxyhexyl 2-methylpropanoate | − | 1 | − | − | 74367-31-0 | −1 | |||||||||||||||||||||
Total QTLs | 31 | 13 | 19 | 2 |
Order a | CAS b and Group | IUPAC c Name |
---|---|---|
Group 1 | ||
1 | 000079-20-9 | Methyl acetate |
2 | 000078-83-1 | 2-Methylpropan-1-ol |
3 | 000554-12-1 | Methyl propanoate |
4 | 001534-08-3 | S-Methyl ethanethioate |
5 | 000109-60-4 | Propyl acetate |
6 | 000623-42-7 | Methyl butanoate |
7 | 000137-32-6 | 2-Methylbutan-1-ol |
8 | 000110-19-0 | 2-Methylpropyl acetate |
9 | 000868-57-5 | Methyl 2-methylbutanoate |
10 | 000820-71-3 | 2-Methylprop-2-enyl acetate |
11 | 000106-36-5 | Propyl propanoate |
12 | 000123-86-4 | Butyl acetate |
13 | 002432-51-1 | 1-Methylsulfanylbutan-1-one |
14 | 005271-38-5 | 2-Methylsulfanylethanol |
15 | 000540-42-1 | 2-Methylpropyl propanoate |
16 | 000123-92-2 | 3-Methylbutyl acetate |
17 | 000624-41-9 | 2-Methylbutyl acetate |
18 | 000628-63-7 | Pentyl acetate |
19 | 016630-66-3 | Methyl 2-methylsulfanylacetate |
20 | 001191-16-8 | 3-Methylbut-2-enyl acetate |
21 | 023747-45-7 | 3-Methyl-1-methylsulfanyl-butan-1-one |
22 | 115051-66-6 | 1-(3-Hydroxypropylsulfanyl)ethanone |
23 | 000142-92-7 | Hexyl acetate |
24 | 000470-82-6 | 1,8,8-Trimethyl-7-oxabicyclo[2-2-2]octane |
25 | NID1 d | NID1 (LRI 1143; RT 20.871) (m/z 43, 88, 73, 61, 148, 41, 45) |
26 | 000140-11-4 | Benzyl acetate |
27 | 007371-86-0 | 4-Acetyloxypentan-2-yl acetate |
28 | 000103-45-7 | 2-Phenylethyl acetate |
Group 2 | ||
1 | 000123-72-8 | Butanal |
2 | 000123-73-9 | But-2-enal |
3 | 000616-25-1 | Pent-1-en-3-ol |
4 | 017528-72-2 | Pent-1-en-3-one |
5 | 000565-69-5 | 2-Methylpentan-3-one |
6 | 000066-25-1 | Hexanal |
Group 3 | ||
1 | 068411-77-8 | Cyclohexane |
2 | 000108-88-3 | Methylbenzene |
3 | 018729-48-1 | 3-Methylcyclopentan-1-ol |
4 | 000105-54-4 | Ethyl butanoate |
Group 4 | ||
1 | NID2 d | NID2 (LRI 908; RT 8.645) (m/z 71, 41, 58, 55, 56) |
2 | 001565-75-9 | 2-Phenylbutan-2-ol |
3 | 002040-07-5 | 1-(2,4,5-Trimethylphenyl)ethanone |
Group 5 | ||
1 | 000100-42-5 | Ethenylbenzene |
2 | 000591-23-1 | 3-Methylcyclohexan-1-ol |
3 | 005441-52-1 | 3,5-Dimethylcyclohexan-1-ol |
4 | 001193-81-3 | (2-Methylcyclohexyl)methanol |
5 | 000464-49-3 | 1,7,7-Trimethylnorbornan-2-one |
6 | 074367-33-2 | (1-Hydroxy-2,4,4-trimethyl-pentan-3-yl) 2-methylpropanoate |
7 | 74367-31-0 | 2-Ethyl-3-hydroxyhexyl 2-methylpropanoate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos-Santos, N.; Bueso, M.C.; Díaz, A.; Moreno, E.; Garcia-Mas, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods 2023, 12, 376. https://doi.org/10.3390/foods12020376
Dos-Santos N, Bueso MC, Díaz A, Moreno E, Garcia-Mas J, Monforte AJ, Fernández-Trujillo JP. Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods. 2023; 12(2):376. https://doi.org/10.3390/foods12020376
Chicago/Turabian StyleDos-Santos, Noelia, María C. Bueso, Aurora Díaz, Eduard Moreno, Jordi Garcia-Mas, Antonio J. Monforte, and Juan Pablo Fernández-Trujillo. 2023. "Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition" Foods 12, no. 2: 376. https://doi.org/10.3390/foods12020376
APA StyleDos-Santos, N., Bueso, M. C., Díaz, A., Moreno, E., Garcia-Mas, J., Monforte, A. J., & Fernández-Trujillo, J. P. (2023). Thorough Characterization of ETHQB3.5, a QTL Involved in Melon Fruit Climacteric Behavior and Aroma Volatile Composition. Foods, 12(2), 376. https://doi.org/10.3390/foods12020376