Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Plastic Pouches Preparation
2.3. High-Pressure Processes
2.4. Microbial Count for the Natural Flora
2.5. Culture and Inoculation of Escherichia coli
2.6. Texture Measurement
2.7. pH Measurement
2.8. Color Measurement
2.9. Microbiological Storage Test
2.10. Statistical Analysis
3. Results and Discussion
3.1. Microbial Inactivation
3.2. Texture, pH, and Color Analysis
3.3. Microbiological Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sgroi, F.; Piraino, F.; Donia, E. Determinants of Ready-to-Eat Products Purchase Intentions: An Empirical Study among the Italian Consumers. HortScience 2018, 53, 656–660. [Google Scholar] [CrossRef] [Green Version]
- De Corato, U. Improving the Shelf-Life and Quality of Fresh and Minimally-Processed Fruits and Vegetables for a Modern Food Industry: A Comprehensive Critical Review from the Traditional Technologies into the Most Promising Advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.D.; Stanley, R.A.; Eyles, A.; Ross, T. Innovative Processes and Technologies for Modified Atmosphere Packaging of Fresh and Fresh-Cut Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2019, 59, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ghidelli, C.; Pérez-Gago, M.B. Recent Advances in Modified Atmosphere Packaging and Edible Coatings to Maintain Quality of Fresh-Cut Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 662–679. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.R.B.; Forauer, E.C.; D’Amico, D.J. Effect of Modified Atmosphere Packaging on the Growth of Spoilage Microorganisms and Listeria monocytogenes on Fresh Cheese. J. Dairy Sci. 2018, 101, 7768–7779. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.-J.; Opara, U.L. Modified Atmosphere Packaging Technology of Fresh and Fresh-Cut Produce and the Microbial Consequences—A Review. Food Bioprocess Technol. 2013, 6, 303–329. [Google Scholar] [CrossRef]
- Stoops, J.; Ruyters, S.; Busschaert, P.; Spaepen, R.; Verreth, C.; Claes, J.; Lievens, B.; Van Campenhout, L. Bacterial Community Dynamics during Cold Storage of Minced Meat Packaged under Modified Atmosphere and Supplemented with Different Preservatives. Food Microbiol. 2015, 48, 192–199. [Google Scholar] [CrossRef]
- Choi, D.S.; Park, S.H.; Choi, S.R.; Kim, J.S.; Chun, H.H. The Combined Effects of Ultraviolet-C Irradiation and Modified Atmosphere Packaging for Inactivating Salmonella Enterica Serovar Typhimurium and Extending the Shelf Life of Cherry Tomatoes during Cold Storage. Food Packag. Shelf Life 2015, 3, 19–30. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and Safety Aspects of Irradiated Foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef]
- Reale, A.; Sorrentino, E.; Iaffaldano, N.; Rosato, M.P.; Ragni, P.; Coppola, R.; Capitani, D.; Sobolev, A.P.; Tremonte, P.; Succi, M.; et al. Effects of Ionizing Radiation and Modified Atmosphere Packaging on the Shelf Life of Aqua-Cultured Sea Bass (Dicentrarchus Labrax). World J. Microbiol. Biotechnol. 2008, 24, 2757–2765. [Google Scholar] [CrossRef]
- Al-Nehlawi, A.; Guri, S.; Guamis, B.; Saldo, J. Synergistic Effect of Carbon Dioxide Atmospheres and High Hydrostatic Pressure to Reduce Spoilage Bacteria on Poultry Sausages. LWT Food Sci. Technol. 2014, 58, 404–411. [Google Scholar] [CrossRef]
- Sterr, J.; Fleckenstein, B.S.; Langowski, H.-C. The Effect of High-Pressure Processing on Tray Packages with Modified Atmosphere. Food Eng. Rev. 2015, 7, 209–221. [Google Scholar] [CrossRef]
- Galati, A.; Tulone, A.; Moavero, P.; Crescimanno, M. Consumer Interest in Information Regarding Novel Food Technologies in Italy: The Case of Irradiated Foods. Food Res. Int. 2019, 119, 291–296. [Google Scholar] [CrossRef]
- Hu, X.; Ma, T.; Ao, L.; Kang, H.; Hu, X.; Song, Y.; Liao, X. Effect of High Hydrostatic Pressure Processing on Textural Properties and Microstructural Characterization of Fresh-Cut Pumpkin (Cucurbita Pepo). J. Food Process Eng. 2020, 43, e13379. [Google Scholar] [CrossRef]
- Silva, E.K.; Meireles, M.A.A.; Saldaña, M.D.A. Supercritical Carbon Dioxide Technology: A Promising Technique for the Non-Thermal Processing of Freshly Fruit and Vegetable Juices. Trends Food Sci. Technol. 2020, 97, 381–390. [Google Scholar] [CrossRef]
- Ferrentino, G.; Spilimbergo, S. High Pressure Carbon Dioxide Pasteurization of Solid Foods: Current Knowledge and Future Outlooks. Trends Food Sci. Technol. 2011, 22, 427–441. [Google Scholar] [CrossRef]
- Ferrentino, G.; Spilimbergo, S. High Pressure Carbon Dioxide Combined with High Power Ultrasound Pasteurization of Fresh Cut Carrot. J. Supercrit. Fluids 2015, 105, 170–178. [Google Scholar] [CrossRef]
- Zhong, Q.; Black, D.G.; Davidson, P.M.; Golden, D.A. Nonthermal Inactivation of Escherichia Coli K-12 on Spinach Leaves, Using Dense Phase Carbon Dioxide. J. Food Prot. 2008, 71, 1015–1017. [Google Scholar] [CrossRef]
- Ferrentino, G.; Belscak-Cvitanovic, A.; Komes, D.; Spilimbergo, S. Quality Attributes of Fresh-Cut Coconut after Supercritical Carbon Dioxide Pasteurization. J. Chem. 2013, 2013, 703057. [Google Scholar] [CrossRef] [Green Version]
- Marszałek, K.; Woźniak, Ł.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, Physicochemical, Nutritional and Phytochemical Profile Changes of Apple (Golden Delicious L.) Juice under Supercritical Carbon Dioxide and Long-Term Cold Storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef]
- González-Alonso, V.; Cappelletti, M.; Bertolini, F.M.; Lomolino, G.; Zambon, A.; Spilimbergo, S. Research Note: Microbial Inactivation of Raw Chicken Meat by Supercritical Carbon Dioxide Treatment Alone and in Combination with Fresh Culinary Herbs. Poult. Sci. 2020, 99, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, B.; Ge, D.; Dai, J. Effect of Combined Treatment with Supercritical CO2 and Rosemary on Microbiological and Physicochemical Properties of Ground Pork Stored at 4 °C. Meat Sci. 2017, 125, 114–120. [Google Scholar] [CrossRef]
- Bourdoux, S.; Zambon, A.; Van der Linden, I.; Spilimbergo, S.; Devlieghere, F.; Rajkovic, A. Inactivation of Foodborne Pathogens on Leek and Alfalfa Seeds with Supercritical Carbon Dioxide. J. Supercrit. Fluids 2022, 180, 105433. [Google Scholar] [CrossRef]
- Manzocco, L.; Ignat, A.; Valoppi, F.; Burrafato, K.R.; Lippe, G.; Spilimbergo, S.; Nicoli, M.C. Inactivation of Mushroom Polyphenoloxidase in Model Systems Exposed to High-Pressure Carbon Dioxide. J. Supercrit. Fluids 2016, 107, 669–675. [Google Scholar] [CrossRef]
- Tomic, N.; Djekic, I.; Zambon, A.; Spilimbergo, S.; Bourdoux, S.; Holtze, E.; Hofland, G.; Sut, S.; Dall’Acqua, S.; Smigic, N.; et al. Challenging Chemical and Quality Changes of Supercritical Co2 Dried Apple during Long-Term Storage. LWT 2019, 110, 132–141. [Google Scholar] [CrossRef]
- Spilimbergo, S.; Zambon, A.; Michelino, F.; Polato, S. Method for Food Pasteurization. PCT/IB2017/055465, 11 September 2017. [Google Scholar]
- Zambon, A.; Michelino, F.; Bourdoux, S.; Devlieghere, F.; Sut, S.; Dall’Acqua, S.; Rajkovic, A.; Spilimbergo, S. Microbial Inactivation Efficiency of Supercritical CO2 Drying Process. Dry. Technol. 2018, 36, 2016–2021. [Google Scholar] [CrossRef] [Green Version]
- Bourdoux, S.; Rajkovic, A.; De Sutter, S.; Vermeulen, A.; Spilimbergo, S.; Zambon, A.; Hofland, G.; Uyttendaele, M.; Devlieghere, F. Inactivation of Salmonella, Listeria Monocytogenes and Escherichia Coli O157:H7 Inoculated on Coriander by Freeze-Drying and Supercritical CO2 Drying. Innov. Food Sci. Emerg. Technol. 2018, 47, 180–186. [Google Scholar] [CrossRef]
- Spilimbergo, S.; Komes, D.; Vojvodic, A.; Levaj, B.; Ferrentino, G. High Pressure Carbon Dioxide Pasteurization of Fresh-Cut Carrot. J. Supercrit. Fluids 2013, 79, 92–100. [Google Scholar] [CrossRef]
- Ferrentino, G.; Balzan, S.; Dorigato, A.; Pegoretti, A.; Spilimbergo, S. Effect of Supercritical Carbon Dioxide Pasteurization on Natural Microbiota, Texture, and Microstructure of Fresh-Cut Coconut. J. Food Sci. 2012, 77, E137–E142. [Google Scholar] [CrossRef]
- Ferrentino, G.; Balzan, S.; Spilimbergo, S. Supercritical Carbon Dioxide Processing of Dry Cured Ham Spiked with Listeria Monocytogenes: Inactivation Kinetics, Color, and Sensory Evaluations. Food Bioprocess Technol. 2013, 6, 1164–1174. [Google Scholar] [CrossRef]
- Spilimbergo, S.; Mantoan, D. Kinetic Analysis of Microorganisms Inactivation in Apple Juice by High Pressure Carbon Dioxide. Int. J. Food Eng. 2006, 2, 1065. [Google Scholar] [CrossRef]
- Barberi, G.; González-Alonso, V.; Spilimbergo, S.; Barolo, M.; Zambon, A.; Facco, P. Optimization of the Appearance Quality in CO2 Processed Ready-to-Eat Carrots through Image Analysis. Foods 2021, 10, 2999. [Google Scholar] [CrossRef] [PubMed]
- Galvanin, F.; De Luca, R.; Ferrentino, G.; Barolo, M.; Spilimbergo, S.; Bezzo, F. Bacterial Inactivation on Solid Food Matrices through Supercritical CO2: A Correlative Study. J. Food Eng. 2014, 120, 146–157. [Google Scholar] [CrossRef]
- Tamburini, S.; Foladori, P.; Ferrentino, G.; Spilimbergo, S.; Jousson, O. Accurate Flow Cytometric Monitoring of Escherichia Coli Subpopulations on Solid Food Treated with High Pressure Carbon Dioxide. J. Appl. Microbiol. 2014, 117, 440–450. [Google Scholar] [CrossRef]
- Ferrentino, G.; Komes, D.; Spilimbergo, S. High-Power Ultrasound Assisted High-Pressure Carbon Dioxide Pasteurization of Fresh-Cut Coconut: A Microbial and Physicochemical Study. Food Bioprocess Technol. 2015, 8, 2368–2382. [Google Scholar] [CrossRef]
- Mangalassary, S.; Dawson, P.L.; Rieck, J.; Han, I.Y. Thickness and Compositional Effects on Surface Heating Rate of Bologna during In-Package Pasteurization. Poult. Sci. 2004, 83, 1456–1461. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Duncan, L.K.; Marcy, J.A.; Berrang, M.E.; Driscoll, K.H. Effect of Packaging-Film Thicknesses on Thermal Inactivation of Salmonella and Listeria Innocua in Fully Cooked Chicken Breast Meat. J. Food Sci. 2002, 67, 3435–3440. [Google Scholar] [CrossRef]
- Valverde, M.T.; Marín-Iniesta, F.; Calvo, L. Inactivation of Saccharomyces Cerevisiae in Conference Pear with High Pressure Carbon Dioxide and Effects on Pear Quality. J. Food Eng. 2010, 98, 421–428. [Google Scholar] [CrossRef]
- Haas, G.J.; Prescott, H.E.; Dudley, E.; Dik, R.; Hintlian, C.; Keane, L. Inactivation of Microorganisms by Carbon Dioxide under Pressure. J. Food Saf. 1989, 9, 253–265. [Google Scholar] [CrossRef]
- Michelino, F.; Zambon, A.; Vizzotto, M.T.; Cozzi, S.; Spilimbergo, S. High Power Ultrasound Combined with Supercritical Carbon Dioxide for the Drying and Microbial Inactivation of Coriander. J. CO2 Util. 2018, 24, 516–521. [Google Scholar] [CrossRef]
- Préstamo, G.; Arroyo, G. High Hydrostatic Pressure Effects on Vegetable Structure. J. Food Sci. 1998, 63, 878–881. [Google Scholar] [CrossRef]
- Denoya, G.I.; Polenta, G.A.; Apóstolo, N.M.; Budde, C.O.; Sancho, A.M.; Vaudagna, S.R. Optimization of High Hydrostatic Pressure Processing for the Preservation of Minimally Processed Peach Pieces. Innov. Food Sci. Emerg. Technol. 2016, 33, 84–93. [Google Scholar] [CrossRef]
- Sun, Y.; Kang, X.; Chen, F.; Liao, X.; Hu, X. Mechanisms of Carrot Texture Alteration Induced by Pure Effect of High Pressure Processing. Innov. Food Sci. Emerg. Technol. 2019, 54, 260–269. [Google Scholar] [CrossRef]
- Barry-ryan, C.; Beirne, D.O. Engineering/Processing MS 5857 Quality and Shelf-Life of Fresh Cut Carrot Slices as Affected by Slicing Method. J. Food Sci. 1998, 63, 851–856. [Google Scholar] [CrossRef]
- Trejo Araya, X.I.; Smale, N.; Zabaras, D.; Winley, E.; Forde, C.; Stewart, C.M.; Mawson, A.J. Sensory Perception and Quality Attributes of High Pressure Processed Carrots in Comparison to Raw, Sous-Vide and Cooked Carrots. Innov. Food Sci. Emerg. Technol. 2009, 10, 420–433. [Google Scholar] [CrossRef]
- Ranjitha, K.; Sudhakar Rao, D.V.; Shivashankara, K.S.; Oberoi, H.S.; Roy, T.K.; Bharathamma, H. Shelf-Life Extension and Quality Retention in Fresh-Cut Carrots Coated with Pectin. Innov. Food Sci. Emerg. Technol. 2017, 42, 91–100. [Google Scholar] [CrossRef]
- Sinigaglia, M.; Corbo, M.R.; Amato, D.D.; Campaniello, D.; Altieri, C. Shelf-Life Modelling of Ready-to-Eat Coconut. J. Food Sci. Technol. 2003, 38, 547–552. [Google Scholar] [CrossRef]
- Iqbal, T.; Rodrigues, F.A.S.; Mahajan, P.V.; Kerry, J.P. Mathematical Modeling of the Influence of Temperature and Gas Composition on the Respiration Rate of Shredded Carrots. J. Food Eng. 2009, 91, 325–332. [Google Scholar] [CrossRef]
Treatment | Carrot (N) | Coconut (N) | Carrot (J) | Coconut (J) |
---|---|---|---|---|
MAP-air | 77.56 (12.29) a | 31.34 (3.93) a | 0.17 (0.02) a | 0.14 (0.02) a |
MAP-CO2 | 76.27 (11.48) a | 31.21 (3.11) a | 0.16 (0.01) a | 0.14 (0.02) a |
HPMAP-CO2 | 79.17 (12.39) a | 30.81 (4.62) a | 0.16 (0.03) a | 0.15 (0.03) a |
HPCO2 | 61.69 (11.72) b | 32.23 (6.15) a | 0.14 (0.02) a | 0.14 (0.03) a |
L* | a* | b* | Chroma | Hue | |
---|---|---|---|---|---|
Carrot | |||||
MAP-air | 62.46 (1.33) a | 31.70 (0.86) a | 42.65 (1.37) a | 53.15 (1.37) a | 53.37 (0.94) a |
MAP-CO2 | 60.24 (1.67) a | 33.59 (0.95) a | 45.74 (3.75) ab | 56.77 (3.42) ab | 53.62 (1.88) a |
HPMAP-CO2 | 60.44 (3.58) a | 28.31 (2.10) b | 49.42 (2.78) b | 56.98 (2.97) b | 60.19 (1.87) b |
HPCO2 | 57.99 (1.23) b | 26.90 (1.18) b | 50.33 (5.91) b | 57.12 (5.48) b | 61.68 (2.52) b |
Coconut | |||||
MAP-air | 83.26 (2.48) a | −0.65 (0.16) a | 3.66 (0.60) a | 3.72 (0.59) a | 100.47 (3.54) a |
MAP-CO2 | 82.86 (2.34) a | −0.78 (0.09) ac | 3.63 (0.63) a | 3.72 (0.61) a | 102.40 (2.53) ab |
HPMAP-CO2 | 81.70 (1.62) ab | −0.87 (0.18) bc | 3.43 (0.89) a | 3.55 (0.86) a | 105.08 (4.07) b |
HPCO2 | 79.82 (2.54) b | −0.98 (0.17) b | 4.38 (1.24) a | 4.49 (1.23) a | 103.25 (3.06) ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambon, A.; González-Alonso, V.; Lomolino, G.; Zulli, R.; Rajkovic, A.; Spilimbergo, S. Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process. Foods 2023, 12, 21. https://doi.org/10.3390/foods12010021
Zambon A, González-Alonso V, Lomolino G, Zulli R, Rajkovic A, Spilimbergo S. Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process. Foods. 2023; 12(1):21. https://doi.org/10.3390/foods12010021
Chicago/Turabian StyleZambon, Alessandro, Víctor González-Alonso, Giovanna Lomolino, Riccardo Zulli, Andreja Rajkovic, and Sara Spilimbergo. 2023. "Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process" Foods 12, no. 1: 21. https://doi.org/10.3390/foods12010021
APA StyleZambon, A., González-Alonso, V., Lomolino, G., Zulli, R., Rajkovic, A., & Spilimbergo, S. (2023). Increasing the Safety and Storage of Pre-Packed Fresh-Cut Fruits and Vegetables by Supercritical CO2 Process. Foods, 12(1), 21. https://doi.org/10.3390/foods12010021