Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of WP-Fe Chelate
2.3. Determination of Iron Content and Complex Yield
2.4. Measurement of FTIR
2.5. Scanning Electron Microscopy (SEM) and Energy Dispersion (EDS) Measurements
2.6. Determination of Particle Size Distribution and Zeta Potential
2.7. Determination of Amino Acid Composition
2.8. Identification of Peptide Chains
2.9. Determination of DPPH Free Radical Scavenging Ability
2.10. Determination of Hydroxyl Free Radical Scavenging Ability
2.11. Molecular Docking
2.12. Data Analysis
3. Results and Discussion
3.1. Iron Chelation Rate and Iron Content
3.2. FTIR
3.3. Particle Size and Zeta Potential Analysis
3.4. SEM and EDS Analysis
3.5. Amino Acid Composition
3.6. Polypeptide Sequence of WP-Fe Chelate
3.7. Molecular Docking
3.8. In Vitro Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Puig, S.; Askeland, E.; Thiele, D.J. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 2005, 120, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev. 2019, 119, 1221–1322. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Gupta, P. Anemia and Iron Deficiency in Heart Failure: Current Concepts and Emerging Therapies. Circulation 2018, 138, 80–98. [Google Scholar] [CrossRef]
- Kumar, A.; Kubota, Y.; Chernov, M.; Kasuya, H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med. Hypotheses 2020, 144, 109848. [Google Scholar] [CrossRef]
- De Jesus, J.R.; De Araujo Andrade, T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: Implications for COVID-19. Metallomics 2020, 12, 1912–1930. [Google Scholar] [CrossRef]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Martinez-Navarrete, N.; Camacho, M.M.; Martinez-Lahuerta, J.; Martinez-Monzo, J.; Fito, P. Iron deficiency and iron fortified foods—a review. Food Res. Int. 2002, 35, 225–231. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [Green Version]
- Eckert, E.; Lu, L.; Unsworth, L.D.; Chen, L.; Xie, J.; Xu, R. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. J. Funct. Foods 2016, 25, 291–301. [Google Scholar] [CrossRef]
- Li, B.; He, H.; Shi, W.; Hou, T. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. J. Sci. Food Agric. 2019, 99, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Esfandi, R.; Willmore, W.G.; Tsopmo, A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019, 279, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chunkao, S.; Youravong, W.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020, 9, 1406. [Google Scholar] [CrossRef]
- Lin, H.M.; Deng, S.G.; Huang, S.B.; Li, Y.J.; Song, R. The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats. J. Sci. Food Agric. 2016, 96, 2839–2844. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Feng, Y.; Xiong, T.; Li, Y.; Wahia, H.; Ma, H. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses. Ultrason. Sonochem. 2022, 83, 105937. [Google Scholar] [CrossRef] [PubMed]
- Yuanqing, H.; Pengyao, Y.; Yangyang, D.; Min, C.; Rui, G.; Yuqing, D.; Haihui, Z.; Haile, M. The Preparation, Antioxidant Activity Evaluation, and Iron-Deficient Anemic Improvement of Oat (Avena sativa L.) Peptides-Ferrous Chelate. Front. Nutr. 2021, 8, 687133. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Peng, F.; Wang, X.; Li, M.; Lei, H.; Xu, H. Identification and characterization of antioxidative peptides derived from simulated in vitro gastrointestinal digestion of walnut meal proteins. Food Res. Int. 2019, 116, 518–526. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.; Li, M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021, 349, 129101. [Google Scholar] [CrossRef]
- Wu, H.H.; Liu, Z.Y.; Zhao, Y.H.; Zeng, M.Y. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis. japonicus) muscle protein. Food Res. Int. 2012, 48, 435–441. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, P.; Sun, N.; Lin, S. Elucidating the Calcium-Binding Site, Absorption Activities, and Thermal Stability of Egg White Peptide-Calcium Chelate. Foods 2021, 10, 2565. [Google Scholar] [CrossRef]
- Tian, Q.; Fan, Y.; Hao, L.; Wang, J.; Xia, C.; Wang, J.; Hou, H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Liu, X.; Yu, Y.; Miao, J.; Leng, K.; Gao, H. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chem. 2021, 340, 128056. [Google Scholar] [CrossRef]
- Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chem. 2021, 345, 128713. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Ge, X.; Hao, J.; Wu, T.; Liu, R.; Sui, W.; Geng, J.; Zhang, M. Identification of high iron-chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode. Food Chem. 2022, 399, 133912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, F.; Liu, X.; Zhao, M. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 2018, 258, 269–277. [Google Scholar] [CrossRef]
- Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem. 2012, 134, 1585–1588. [Google Scholar] [CrossRef]
- Caetano-Silva, M.E.; Bertoldo-Pacheco, M.T.; Paes-Leme, A.F.; Netto, F.M. Iron-binding peptides from whey protein hydrolysates: Evaluation, isolation and sequencing by LC–MS/MS. Food Res. Int. 2015, 71, 132–139. [Google Scholar] [CrossRef]
- Meng, K.; Chen, L.; Xia, G.; Shen, X. Effects of zinc sulfate and zinc lactate on the properties of tilapia (Oreochromis Niloticus) skin collagen peptide chelate zinc. Food Chem. 2021, 347, 129043. [Google Scholar] [CrossRef]
- Sun, N.; Cui, P.; Jin, Z.; Wu, H.; Wang, Y.; Lin, S. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chem. 2017, 230, 627–636. [Google Scholar] [CrossRef]
- Seth, A.; Mahoney, R.R. Binding of iron by chicken muscle protein digests: The size of the iron-binding peptides. J. Sci. Food Agric. 2000, 80, 1595–1600. [Google Scholar]
- Caetano-Silva, M.E.; Netto, F.M.; Bertoldo-Pacheco, M.T.; Alegria, A.; Cilla, A. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit. Rev. Food Sci. Nutr. 2021, 61, 1470–1489. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem. 2018, 256, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, H.; Wang, Z.; Fan, F.; Shi, P.; Tu, M.; Du, M. Isolation and Characterization of Peptides from Mytilus edulis with Osteogenic Activity in Mouse MC3T3-E1 Preosteoblast Cells. J. Agric. Food Chem. 2019, 67, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wang, Z.; Mu, Z.; Du, M.; Jiang, L.; Ei-Seedi, H.R.; Wang, C. Characterizations of a Food Decapeptide Chelating with Zn(II). eFood 2020, 1, 326–331. [Google Scholar] [CrossRef]
- Xu, Z.; Han, S.; Chen, H.; Zhu, Z.; Han, L.; Dong, X.; Du, M.; Li, T. Characterization of Chelation and Absorption of Calcium by a Mytilus edulis Derived Osteogenic Peptide. Front. Nutr. 2022, 9, 840638. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, Z.; Chen, H.; Han, L.; Shi, P.; Dong, X.; Wu, D.; Du, M.; Li, T. Application of a Mytilus edulis-derived promoting calcium absorption peptide in calcium phosphate cements for bone. Biomaterials 2022, 282, 121390. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, S.; Wu, D.; Xu, Z.; Xu, S.; Chen, H.; Du, M. Hydrophobic peptides from oyster protein hydrolysates show better zinc-chelating ability. Food Biosci. 2021, 41, 100985. [Google Scholar] [CrossRef]
- Athira, S.; Mann, B.; Sharma, R.; Pothuraju, R.; Bajaj, R.K. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Res. Int. 2021, 141, 110133. [Google Scholar] [CrossRef]
- Huang, W.-Y.; Majumder, K.; Wu, J. Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals. Food Chem. 2010, 123, 635–641. [Google Scholar] [CrossRef]
Amino Acids | WP | WP-Fe |
---|---|---|
Asp | 9.66% | 9.62% |
Thr | 3.52% | 2.67% |
Ser | 5.34% | 5.69% |
Glu | 19.86% | 22.37% |
Gly | 4.61% | 5.22% |
Ala | 4.00% | 2.99% |
Cys | 0.74% | 0.98% |
Val | 4.08% | 2.64% |
Met | 3.09% | 2.41% |
Ile | 4.64% | 4.61% |
Leu | 7.08% | 3.99% |
Tyr | 3.19% | 2.35% |
Phe | 4.54% | 2.98% |
His | 2.78% | 3.71% |
Lys | 2.49% | 3.39% |
Arg | 12.93% | 19.06% |
Pro | 7.45% | 5.31% |
No. | Peptide Sequence | Length | Mass | Score |
---|---|---|---|---|
1 | GEHIEESR | 8 | 955.44 | 180.7 |
2 | HAVSEGTK | 8 | 827.41 | 180.18 |
3 | IMELINNVAK | 10 | 1143.63 | 145.34 |
4 | IPGDIGIKLP | 10 | 1021.62 | 104.37 |
5 | IDELDSIAPK | 10 | 1099.58 | 104.2 |
6 | IGGIGTVPVGR | 11 | 1024.60 | 154.12 |
7 | LQLWDTAGQER | 11 | 1315.65 | 140.14 |
8 | GVDLIRQGWSR | 11 | 1285.69 | 117.89 |
9 | INVIGEPIDER | 11 | 1253.66 | 117.7 |
10 | DAYVGDEAQSK | 11 | 1181.52 | 117.01 |
11 | IINVIGEPIDER | 12 | 1366.75 | 163.94 |
12 | DNIQGITKPAIR | 12 | 1324.75 | 159.79 |
13 | GLLLPSFSNAPR | 12 | 1270.70 | 109.29 |
14 | AAEVLELAGNAAR | 13 | 1283.68 | 148.32 |
15 | VSAVNVKQEHSAS | 13 | 1354.68 | 101.65 |
16 | TGLVIDSGDGVTH | 13 | 1269.62 | 99.802 |
17 | SMLLTGGSASGGL | 13 | 1149.57 | 90.657 |
18 | EVVLEKSETVKDT | 13 | 1475.77 | 85.731 |
19 | ISITDFGGVGDGR | 13 | 1292.64 | 80.755 |
20 | TTGIVLDSGDGVSH | 14 | 1356.65 | 134.66 |
21 | YLAGNPHQQQQGGR | 14 | 1552.75 | 111.31 |
22 | LAAEVLELAGNAAR | 14 | 1396.77 | 110.38 |
23 | TIHSDHEGGNVSAH | 14 | 1459.64 | 79.286 |
24 | AVFVDLEPTVIDEVR | 15 | 1700.90 | 107.83 |
25 | DSGDGVSHTVPIYEGY | 16 | 1694.74 | 125.75 |
26 | EYLAAEVLELAGNAAR | 16 | 1688.87 | 109.83 |
27 | LTDQHPEQIVTSEAKGS | 17 | 1838.90 | 42.813 |
No. | Peptide Sequence | Chelating Sites | Types | Distance |
---|---|---|---|---|
1 | GEHIEESR | Glu5; Glu2 | M-A; C-C | 2.0; 2.0; 2.0; 2.0 |
2 | HAVSEGTK | Glu7; Thr5 | M-A | 2.3; 2.4 |
3 | IMELINNVAK | Asn6: Asn7 | M-A | 2.5; 2.4 |
4 | IPGDIGIKLP | Lys8; Leu9 | M-A | 2.5; 2.4 |
5 | IDELDSIAPK | Asp2; Glu3 | M-A; C-C | 2.6; 2.6; 2.4 |
6 | IGGIGTVPVGR | Pro8; Val7 | M-A | 2.4; 2.6 |
7 | LQLWDTAGQER | Thr6; Asp5 | M-A; C-C | 2.4; 2.6; 2.6 |
8 | GVDLIRQGWSR | Leu4; Asp3 | M-A; | 2.4; 2.5 |
9 | INVIGEPIDER | Glu10; Asp9 | M-A; C-C | 2.4; 2.6; 2.6 |
10 | DAYVGDEAQSK | Ala2; Asp1 | M-A; C-C | 2.4; 2.6; 2.6 |
11 | IINVIGEPIDER | Glu11; Asp10 | M-A; C-C | 2.4; 2.6; 2.6 |
12 | DNIQGITKPAIR | Asn2; Asp1 | M-A; C-C | 2.5; 2.6; 2.7 |
13 | GLLLPSFSNAPR | Ala10; Asn9 | M-A | 2.4; 2.5 |
14 | AAEVLELAGNAAR | Ala11; Asn10 | M-A | 2.4; 2.5 |
15 | VSAVNVKQEHSAS | Val6; Asn5 | M-A | 2.4; 2.5 |
16 | TGLVIDSGDGVTH | Ser7; Asp6 | M-A; C-C | 2.4; 2.6; 2.6 |
17 | SMLLTGGSASGGL | Leu4; Thr5 | M-A | 2.4; 2.4 |
18 | EVVLEKSETVKDT | Thr13; Asp12 | M-A; C-C | 2.4; 2.6; 2.6 |
19 | ISITDFGGVGDGR | Thr4; Ile3; Ser2 | M-A | 2.7; 2.5; 2.6 |
20 | TTGIVLDSGDGVSH | Gly11; Asp10 | M-A; C-C | 2.4; 2.7; 2.5 |
21 | YLAGNPHQQQQGGR | Pro6; Asn5 | M-A | 2.4; 2.5 |
22 | LAAEVLELAGNAAR | Ala12; Asn11 | M-A | 2.4; 2.5 |
23 | TIHSDHEGGNVSAH | His6; Asp5 | M-A; C-C | 2.4; 2.6; 2.6 |
24 | AVFVDLEPTVIDEVR | Thr9; Pro8; Glu7 | M-A | 2.4; 2.5; 2.5 |
25 | DSGDGVSHTVPIYEGY | Thr9; His8; Ser7 | M-A | 2.7; 2.5; 2.7 |
26 | EYLAAEVLELAGNAAR | Leu3; Tyr2 | M-A | 2.5; 2.6 |
27 | LTDQHPEQIVTSEAKGS | Gln4; Asp3 | M-A; C-C | 2.4; 2.6; 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Wang, X.; Song, X.; Sun, R.; Liu, R.; Sui, W.; Jin, Y.; Wu, T.; Zhang, M. Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites. Foods 2023, 12, 226. https://doi.org/10.3390/foods12010226
Fan C, Wang X, Song X, Sun R, Liu R, Sui W, Jin Y, Wu T, Zhang M. Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites. Foods. 2023; 12(1):226. https://doi.org/10.3390/foods12010226
Chicago/Turabian StyleFan, Chaozhong, Xintong Wang, Xiwang Song, Ronghao Sun, Rui Liu, Wenjie Sui, Yan Jin, Tao Wu, and Min Zhang. 2023. "Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites" Foods 12, no. 1: 226. https://doi.org/10.3390/foods12010226
APA StyleFan, C., Wang, X., Song, X., Sun, R., Liu, R., Sui, W., Jin, Y., Wu, T., & Zhang, M. (2023). Identification of a Novel Walnut Iron Chelating Peptide with Potential High Antioxidant Activity and Analysis of Its Possible Binding Sites. Foods, 12(1), 226. https://doi.org/10.3390/foods12010226