Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives
Abstract
:1. Introduction
2. Nutritional Comparison of Cow’s Milk and PBMA
2.1. What Is A PBMA, and How Is It Made?
2.2. Carbohydrates
2.2.1. Total Energy Content
2.2.2. Total Carbohydrate Content
2.2.3. Fiber Content
2.2.4. Total Sugar Content and Sugar Profile
2.2.5. Glycemic Index (GI) and Glycemic Load (GL)
2.3. Protein
2.3.1. Total Protein Content
2.3.2. Protein Quality Evaluation
2.4. Lipids
2.4.1. Total Cholesterol Content
2.4.2. Total Lipid Content
2.4.3. Fatty Acid Profile
2.5. Minerals
2.5.1. Macromineral Contents
2.5.2. Trace Element Contents
2.6. Vitamins
2.6.1. Fat-Soluble Vitamin Contents
Cow’s Milk | Oat PBMA | Almond PBMA | Soya PBMA | Rice PBMA | Coconut PBMA | ||
---|---|---|---|---|---|---|---|
Fat−soluble vitamins | A 1 | 34.17–203.3 (155.3) | 62.50–208.0 (141.6) | 107.1–208.3 (195.4) | 45.23–208.8 (154.2) | 93.77–208.8 (185.3) | 83.33–208.3 (190.2) |
D 1 | 4.00–51.67 (22.8) | 42.00 (−) | 3.23–62.50 (38.49) | 2.60–75.0 (42.4) | 2.90–75.0 (40.79) | 4.07–62.50 (42.95) | |
E 2 | 0.01–0.07 (0.04) | − | 1.60 (−) | 1.67 (−) | 1.25 (−) | − | |
K 3 | 0.20–0.30 (0.26) | − | − | − | − | − | |
Water−soluble vitamins | C 2 | 0.20–1.54 (0.87) | 0.70 (−) | − | − | − | − |
B1 2 | 0.04–0.05 (0.04) | − | − | 0.03 (−) | − | − | |
B2 2 | 0.17–0.19 (0.18) | 0.13–0.21 (0.18) | 0.01–0.18 (0.08) | 0.10–0.21 (0.17) | 0.13–0.21 (0.17) | 0.17 (−) | |
B3 2 | 0.08–0.09 (0.09) | − | − | 0.12 (−) | − | − | |
B6 2 | 0.04 (–) | − | − | 0.04 (−) | − | − | |
B9 3 | 5.00–5.15 (5.03) | − | 8.00 (−) | 10.13–14.00 (12.1) | 10.13 (−) | 8.00–10.0 (9.5) | |
B12 3 | 0.37–0.54 (0.47) | 0.25 (−) | 0.42–1.25 (0.97) | 0.28–1.25 (0.76) | 0.42–0.62 (0.55) | 0.31–1.25 (1.03) | |
References | [8,24,26,27] | [8,26,31] | [8,24,26,32] | [8,24,26] | [8,26,28,96] | [8,24,26,35] |
2.6.2. Water-Soluble Vitamin Contents
3. Health Issues Related to Cow’s Milk Consumption
3.1. Adverse Reaction to Cow’s Milk Consumption
3.1.1. Cow’s Milk Protein Allergy
3.1.2. Lactose Intolerance
3.1.3. A1 β-Casein and A2 β-Casein
3.2. Chronic Diseases
3.2.1. Obesity
3.2.2. Cardiovascular Diseases
3.2.3. Diabetes
3.2.4. Bone Health
3.2.5. Cancer
3.3. Neurological Diseases
4. Health Issues Related to PBMA Consumption
4.1. Isoflavones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fardellone, P.; Séjourné, A.; Blain, H.; Cortet, B.; Thomas, T. Osteoporosis: Is Milk a Kindness or a Curse? Jt. Bone Spine 2017, 84, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Gaucheron, F. Milk and Dairy Products: A Unique Micronutrient Combination. J. Am. Coll. Nutr. 2011, 30, 400S–409S. [Google Scholar] [CrossRef] [PubMed]
- Muehlhoff, E.; Bennett, A.; McMahon, D. Milk and Dairy Products in Human Nutrition; FAO: Rome, Italy, 2013. [Google Scholar]
- Zhang, X.; Chen, X.; Xu, Y.; Yang, J.; Du, L.; Li, K.; Zhou, Y. Milk Consumption and Multiple Health Outcomes: Umbrella Review of Systematic Reviews and Meta-Analyses in Humans. Nutr. Metab. 2021, 18, 7. [Google Scholar] [CrossRef]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, Present and Future: The Strength of Plant-Based Dairy Substitutes Based on Gluten-Free Raw Materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Bridges, M. Moo-Ove Over, Cow’s Milk: The Rise of Plant-Based Dairy Alternatives. Pract. Gastroenterol. 2018, 21, 20–27. [Google Scholar]
- Röös, E.; Garnett, T.; Watz, V.; Sjörs, C. The Role of Dairy and Plant Based Dairy Alternatives in Sustainable Diets; SLU Future Food Reports 3; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018. [Google Scholar]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission Council Regulation (EC) No 1234/2007 of 22 October 2007 Establishing a Common Organisation of Agricultural Markets and on Specific Provisions for Certain Agricultural Products (Single CMO Regulation). Off. J. Eur. Union 2007, 3, 61–209. [Google Scholar]
- European Commission. Commission Decision of 20 December 2010 Listing the Products Referred to in the Second Subparagraph of Point III (1) of Annex XII to Council Regulation (EC) No 1234/2007. Off. J. Eur. Union 2010, 40, 287–291. [Google Scholar]
- FDA. Subpart B-Requirements for Specific Standardized Milk and Cream. Code of Federal Regulations - 21 CFR 131.110. 2022; pp. 475–476. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-131/subpart-B/section-131.110 (accessed on 9 December 2022).
- FSSAI. Food Safety and Standards (Food Products Standards and Food Additives) Amendment Regulations, 2020. The Gazette of India Part III-Sec.4. 2020. Available online: https://www.fssai.gov.in/upload/uploadfiles/files/Draft_Notification_Dairy_Analogue_30_07_2020.pdf (accessed on 8 December 2022).
- Government of Canada Food and Drug Regulations (C.R.C., c. 870) 2022. Available online: https://laws-lois.justice.gc.ca/eng/regulations/c.r.c.,_c._870/FullText.html (accessed on 8 December 2022).
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Pilar Vaquero, M. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Rev. Int. 2021, 1–32. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Cummings, J.H.; Stephen, A.M. Carbohydrate Terminology and Classification. Eur. J. Clin. Nutr. 2007, 61, S5–S18. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R. Carbohydrate Metabolism. Surgery 2009, 27, 6–10. [Google Scholar] [CrossRef]
- Slavin, J.; Carlson, J. Carbohydrates. Adv. Nutr. 2014, 5, 760–761. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Commission Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2011, 20, 18–63. [Google Scholar]
- Vanga, S.K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Uniacke-Lowe, T.; O’Mahony, J.A.; Arendt, E.K. Physicochemical and Acid Gelation Properties of Commercial UHT-Treated Plant-Based Milk Substitutes and Lactose Free Bovine Milk. Food Chem. 2015, 168, 630–638. [Google Scholar] [CrossRef]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef] [PubMed]
- USDA. Cow’s Milk FDC_ID: 781084, 781093, 781089. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- Vitoria, I. The Nutritional Limitations of Plant-Based Beverages in Infancy and Childhood. Nutr. Hosp. 2017, 34, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and Health Attributes of Milk and Milk Imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Rosi, A.; Vici, G.; Russo, M.D.; Pellegrini, N.; Martini, D. Nutritional Quality of Plant-Based Drinks Sold in Italy: The Food Labelling of Italian Products (FLIP) Study. Foods 2020, 9, 682. [Google Scholar] [CrossRef]
- USDA. Oat Beverage - FDC_ID: 695862, 456526, 477013, 695860. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- USDA. Almond Beverage - FDC_ID: 498942, 495557, 555565, 535272. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- USDA. Soy Beverage - FDC_ID: 554007, 498774, 498779, 671460. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- USDA. Rice Beverage - FDC_ID: 498917, 498906, 554016, 706416. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- USDA. Coconut Beverage - FDC_ID: 498904, 411644, 411708, 501836. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- Bell, S.J.; Sears, B. Low-Glycemic-Load Diets: Impact on Obesity and Chronic Diseases. Crit. Rev. Food Sci. Nutr. 2003, 43, 357–377. [Google Scholar] [CrossRef]
- Jenkins, A.L.; Jenkins, D.J.A.; Zdravkovic, U.; Würsch, P.; Vuksan, V. Depression of the Glycemic Index by High Levels of Beta-Glucan Fiber in Two Functional Foods Tested in Type 2 Diabetes. Eur. J. Clin. Nutr. 2002, 56, 622–628. [Google Scholar] [CrossRef]
- Elmståhl, H.L.; Björck, I. Milk as a Supplement to Mixed Meals May Elevate Postprandial Insulinaemia. Eur. J. Clin. Nutr. 2001, 55, 994–999. [Google Scholar] [CrossRef]
- Kung, B.; Anderson, G.H.; Paré, S.; Tucker, A.J.; Vien, S.; Wright, A.J.; Goff, H.D. Effect of Milk Protein Intake and Casein-to-Whey Ratio in Breakfast Meals on Postprandial Glucose, Satiety Ratings, and Subsequent Meal Intake. J. Dairy Sci. 2018, 101, 8688–8701. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Luhovyy, B.; Akhavan, T.; Panahi, S. Milk Proteins in the Regulation of Body Weight, Satiety, Food Intake and Glycemia. In General Aspects of Milk: Milk in Adult Nutrition; Clemens, R., Hernell, O., Michaelsen, K., Eds.; Nestec Ltd., Vevey/S. Karger AG: Basel, Switzerland, 2011; Volume 67, pp. 147–159. [Google Scholar]
- Östman, E.M.; Liljeberg Elmståhl, H.G.M.; Björck, I.M.E. Inconsistency between Glycemic and Insulinemic Responses to Regular and Fermented Milk Products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International Table of Glycemic Index and Glycemic Load Values:2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- WHO. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Nilsson, M.; Stenberg, M.; Frid, A.H.; Holst, J.J. Glycemia and Insulinemia in Healthy Subjects after Lactose- Equivalent Meals of Milk and Other Food Proteins: The Role of Plasma Amino Acids and Incretins. Am. J. Clin. Nutr. 2004, 80, 1246–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joye, I. Protein Digestibility of Cereal Products. Foods 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; FAO: Rome, Italy, 2013. [Google Scholar]
- Rutherfurd, S.M.; Fanning, A.C.; Miller, B.J.; Moughan, P.J. Protein Digestibility-Corrected Amino Acid Scores and Digestible Indispensable Amino Acid Scores Differentially Describe Protein Quality in Growing Male Rats. J. Nutr. 2015, 145, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Han, F.; Wang, Y.; Fan, L.; Song, G.; Chen, X.; Jiang, P.; Miao, H.; Han, Y. Digestible Indispensable Amino Acid Scores of Nine Cooked Cereal Grains. Br. J. Nutr. 2019, 121, 30–41. [Google Scholar] [CrossRef]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for Digestible Indispensable Amino Acid Scores (DIAAS) for Some Dairy and Plant Proteins May Better Describe Protein Quality than Values Calculated Using the Concept for Protein Digestibility-Corrected Amino Acid Scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- FAO. Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO: Rome, Italy, 2010; Volume 91. [Google Scholar]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, W.M.N.; Galli, C. Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. Ann. Nutr. Metab. 2009, 55, 8–43. [Google Scholar] [CrossRef]
- Dietschy, J. Regulation of Cholesterol Metabolism in Man and in Other Species. Klin. Wochenschr. 1984, 62, 338–345. [Google Scholar] [CrossRef]
- Ikonen, E. Cellular Cholesterol Trafficking and Compartmentalization. Nat. Rev. Mol. Cell Biol. 2008, 9, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, A.; Sanhueza, J.; Nieto, S. Cholesterol Oxidized Products in Foods: Potential Health Hazards and the Role of Antioxidants in Prevention. Grasas Aceites 2004, 55, 312–320. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell-Megaro, A.M.; Barbano, D.M.; Bauman, D.E. Survey of the Fatty Acid Composition of Retail Milk in the United States Including Regional and Seasonal Variations. J. Dairy Sci. 2011, 94, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.G. Invited Review: The Composition of Bovine Milk Lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef] [PubMed]
- Månsson, H.L. Fatty Acids in Bovine Milk Fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Bauman, D.E. Modifying Milk Fat Composition of Dairy Cows to Enhance Fatty Acids Beneficial to Human Health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Derr, J.; Etherton, T.D.; Kris-Etherton, P.M. Plasma Cholesterol-Predictive Equations Demonstrate That Stearic Acid Is Neutral and Monounsaturated Fatty Acids Are Hypocholesterolemic. Am. J. Clin. Nutr. 1995, 61, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Givens, D.I.; Kliem, K.E.; Gibbs, R.A. The Role of Meat as a Source of N-3 Polyunsaturated Fatty Acids in the Human Diet. Meat Sci. 2006, 74, 209–218. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Belewu, M.A.; Belewu, K.Y. Comparative Physico-Chemical Evaluation of Tiger-Nut, Soybean and Coconut Milk Sources. Int. J. Agric. Builogy 2007, 5, e787. [Google Scholar]
- EFSA NDA Panel. Tolerable Upper Intake Levels for Vitamins and Minerals; EFSA: Parma, Italy, 2006. [Google Scholar]
- Fraga, C.G. Relevance, Essentiality and Toxicity of Trace Elements in Human Health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Macroelements, Nutritional Significance. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 925–932. [Google Scholar]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative Elemental Analysis of Dairy Milk and Plant-Based Milk Alternatives. Food Control 2020, 116, 107327. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Phosphorus. EFSA J. 2015, 13, 4185. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on the Essential Composition of Infant and Follow-on Formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef] [Green Version]
- Cooke, A. Dietary Food-Additive Phosphate and Human Health Outcomes. Compr. Rev. Food Sci. Food Saf. 2017, 16, 906–1021. [Google Scholar] [CrossRef]
- FDA 21 CFR 107.100(e). Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-107/subpart-D/section-107.100#p-107.100(e) (accessed on 9 December 2022).
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Calcium. EFSA J. 2015, 13, 4101. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Magnesium. EFSA J. 2015, 13, 4186. [Google Scholar] [CrossRef] [Green Version]
- Rude, R.K. Magnesium Deficiency: A Cause of Heterogenous Disease in Humans. J. Bone Miner. Res. 1998, 13, 749–758. [Google Scholar] [CrossRef]
- Rosanoff, A. Magnesium and Hypertension. Clin. Calcium 2005, 15, 255–260. [Google Scholar]
- WHO. Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Potassium. EFSA J. 2016, 14, 4592. [Google Scholar] [CrossRef]
- Flynn, A. Minerals and Trace Elements in Milk. Adv. Food Nutr. Res. 1992, 36, 209–252. [Google Scholar] [CrossRef] [PubMed]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Samaržija, D. Mineral Elements in Milk and Dairy Products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Guéguen, L.; Pointillart, A. The Bioavailability of Dietary Calcium. J. Am. Coll. Nutr. 2000, 19, 119S–136S. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13, 4254. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Manganese. EFSA J. 2013, 11, 3419. [Google Scholar] [CrossRef]
- Yaman, M.; Çatak, J.; Ugur, H.; Gürbüz, M.; Belli, I.; Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Yavuz, B.B.; Kismiroglu, C.; et al. The Bioaccessibility of Water-Soluble Vitamins: A Review. Trends Food Sci. Technol. 2021, 109, 552–563. [Google Scholar] [CrossRef]
- Lešková, E.; Kubíková, J.; Kováčiková, E.; Košická, M.; Porubská, J.; Holčíková, K. Vitamin Losses: Retention during Heat Treatment and Continual Changes Expressed by Mathematical Models. J. Food Compos. Anal. 2006, 19, 252–276. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current Understanding of the Molecular Actions of Vitamin D. Physiol. Rev. 1998, 78, 1193–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Vitamin E as α-Tocopherol. EFSA J. 2015, 13, 4149. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Vitamin K. EFSA J. 2017, 15, 4780. [Google Scholar] [CrossRef]
- Ravisankar, P.; Reddy, A.A.; Nagalakshmi, B.; Koushik, O.S.; Kumar, B.V.; Anvith, P.S. The Comprehensive Review on Fat Soluble Vitamins. J. Pharm. 2015, 5, 12–28. [Google Scholar]
- EFSA NDA Panel Scientific Opinion on Dietary Reference Values for Vitamin D. EFSA J. 2016, 14, 4547. [CrossRef]
- USDA. Rice Beverage-FDC_ID: 498917, 498906. Available online: https://fdc.nal.usda.gov/ (accessed on 25 May 2020).
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Thiamin. EFSA J. 2016, 14, 4653. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Riboflavin. EFSA J. 2017, 15, 4919. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Niacin. EFSA J. 2014, 12, 3759. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Pantothenic Acid. EFSA J. 2014, 12, 3581. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Vitamin B6. EFSA J. 2016, 14, 4485. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Biotin. EFSA J. 2014, 12, 3580. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Folate. EFSA J. 2014, 12, 3893. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.H. Causes of Vitamin B12 and Folate Deficiency. Food Nutr. Bull. 2008, 29, S20–S34. [Google Scholar] [CrossRef] [Green Version]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; Von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.B.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. WAO J. 2010, 3, 57–161. [Google Scholar]
- EFSA. Scientific Opinion on Lactose Thresholds in Lactose Intolerance and Galactosaemia. EFSA J. 2010, 8, 1777. [Google Scholar] [CrossRef]
- Heyman, M.B. Lactose Intolerance in Infants, Children, and Adolescents. Pediatrics 2006, 118, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Farrell, H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J. Dairy Sci. 2004, 87, 1641–1674. [Google Scholar] [CrossRef]
- Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of Milk Containing Only A2 Beta Casein versus Milk Containing Both A1 and A2 Beta Casein Proteins on Gastrointestinal Physiology, Symptoms of Discomfort, and Cognitive Behavior of People with Self-Reported Intolerance to Traditional Cows’ Milk. Nutr. J. 2016, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Cieślińska, A.; Kostyra, E.; Kostyra, H.; Oleński, K.; Fiedorowicz, E.; Kamiński, S. Milk from Cows of Different β-Casein Genotypes as a Source of β-Casomorphin-7. Int. J. Food Sci. Nutr. 2012, 63, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, C.; Arcangeli, C.; Ciullo, M.; Torricelli, M.; Cinti, G.; Fisichella, S.; Biagetti, M. Frequencies Evaluation of β-Casein Gene Polymorphisms in Dairy Cows Reared in Central Italy. Animals 2020, 10, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 July 2021).
- Stonehouse, W.; Wycherley, T.; Luscombe-Marsh, N.; Taylor, P.; Brinkworth, G.; Riley, M. Dairy Intake Enhances Bodyweight and Composition Changes during Energy Restriction in 18–50-Year-Old Adults—A Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougkas, A.; Reynolds, C.K.; Givens, I.D.; Elwood, P.C.; Minihane, A.M. Associations between Dairy Consumption and Body Weight: A Review of the Evidence and Underlying Mechanisms. Nutr. Res. Rev. 2011, 24, 72–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderhout, S.M.; Aglipay, M.; Torabi, N.; Jüni, P.; Costa, B.R.; Birken, C.S.; O’Connor, D.L.; Thorpe, K.E.; Maguire, J.L. Whole Milk Compared with Reduced-Fat Milk and Childhood Overweight: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2020, 111, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Abargouei, A.S.; Janghorbani, M.; Salehi-Marzijarani, M.; Esmaillzadeh, A. Effect of Dairy Consumption on Weight and Body Composition in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Int. J. Obes. 2012, 36, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of Dairy Intake on Body Weight and Fat: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.W.; Tong, X.; Wan, Z.; Wang, Y.; Qin, L.Q.; Szeto, I.M.Y. Effect of Whey Protein on Blood Lipid Profiles: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2016, 70, 879–885. [Google Scholar] [CrossRef]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 25 April 2021).
- Elwood, P.C.; Pickering, J.E.; Hughes, J.; Fehily, A.M.; Ness, A.R. Milk Drinking, Ischaemic Heart Disease and Ischaemic Stroke II. Evindence from Cohort Studies. Eur. J. Clin. Nutr. 2004, 58, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Bylsma, L.C.; Vargas, A.J.; Cohen, S.S.; Doucette, A.; Mohamed, M.; Irvin, S.R.; Miller, P.E.; Watson, H.; Fryzek, J.P. Dairy Consumption and CVD: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2016, 115, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Soedamah-Muthu, S.S.; Ding, E.L.; Al-Delaimy, W.K.; Hu, F.B.; Engberink, M.F.; Willett, W.C.; Geleijnse, J.M. Milk and Dairy Consumption and Risk of Cardiovascular Diseases and All-Cause Mortality: Dose–Response Meta-Analysis of Prospective Cohort Studies. Am. J. Clin. Nutr. 2011, 93, 158–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Goede, J.; Soedamah-Muthu, S.S.; Pan, A.; Gijsbers, L.; Geleijnse, J.M. Dairy Consumption and Risk of Stroke: A Systematic Review and Updated Dose-Response Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2016, 5, e002787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 14 June 2021).
- WHO. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; De Goede, J.; Geleijnse, J.M.; Soedamah-muthu, S.S. Consumption of Dairy Foods and Diabetes Incidence: A Dose-Response Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavrusova, M.; Skibsted, L.H. Calcium Nutrition. Bioavailability and Fortification. LWT Food Sci. Technol. 2014, 59, 1198–1204. [Google Scholar] [CrossRef]
- Kanis, J.A.; Johansson, H.; Oden, A.; De Laet, C.; Johnell, O.; Eisman, J.A.; McCloskey, E.; Mellstrom, D.; Pols, H.; Reeve, J.; et al. A Meta-Analysis of Milk Intake and Fracture Risk: Low Utility for Case Finding. Osteoporos. Int. 2005, 16, 799–804. [Google Scholar] [CrossRef]
- Malmir, H.; Larijani, B.; Esmaillzadeh, A. Consumption of Milk and Dairy Products and Risk of Osteoporosis and Hip Fracture: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1722–1737. [Google Scholar] [CrossRef]
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 23 July 2021).
- Aune, D.; Lau, R.; Chan, D.S.M.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dairy Products and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Ann. Oncol. 2012, 23, 37–45. [Google Scholar] [CrossRef]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and Beverages and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies, an Update of the Evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Dai, Y.; Lin, Y.W.; Qin, J.; Xie, L.P.; Zheng, X.Y. Milk Consumption and Bladder Cancer Risk: A Meta-Analysis of Published Epidemiological Studies. Nutr. Cancer 2011, 63, 1263–1271. [Google Scholar] [CrossRef]
- Guo, Y.; Shan, Z.; Ren, H.; Chen, W. Dairy Consumption and Gastric Cancer Risk: A Meta-Analysis of Epidemiological Studies. Nutr. Cancer 2015, 67, 555–568. [Google Scholar] [CrossRef]
- Aune, D.; Navarro Rosenblatt, D.A.; Chan, D.S.M.; Vieira, A.R.; Vieira, R.; Greenwood, D.C.; Vatten, L.J.; Norat, T. Dairy Products, Calcium, and Prostate Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies. Am. J. Clin. Nutr. 2015, 101, 87–117. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Chen, H.; Niu, Y.; Wu, H.; Xia, D.; Wu, Y. Dairy Products Intake and Cancer Mortality Risk: A Meta-Analysis of 11 Population-Based Cohort Studies. Nutr. J. 2016, 15, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Li, H.; Xu, K.; Li, X.; Hu, C.; Wei, H.; Zeng, X.; Jing, X. Dairy Consumption and Lung Cancer Risk: A Meta-Analysis of Prospective Cohort Studies. OncoTargets Ther. 2015, 9, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, X.; Yao, Q.; Qin, L.; Xu, C. Dairy Product, Calcium Intake and Lung Cancer Risk: A Systematic Review with Meta-Analysis. Sci. Rep. 2016, 6, 20624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; He, Y.; Wang, K.; Wang, C.; Wu, H.; Gao, L.; Hu, A.; Yang, W.; Wang, S. Dairy Consumption and Liver Cancer Risk: A Systematic Review and Dose–Response Meta-Analysis of Observational Studies. Nutr. Cancer 2021, 73, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Barati-Boldaji, R.; Soltani, S.; Mohammadipoor, N.; Esmaeilinezhad, Z.; Clark, C.C.T.; Babajafari, S.; Akbarzadeh, M. Intake of Various Food Groups and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2021, 12, 809–849. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.Q.; Xu, J.Y.; Wang, P.Y.; Hashi, A.; Hoshi, K.; Sato, A. Milk/Dairy Products Consumption, Galactose Metabolism and Ovarian Cancer: Meta-Analysis of Epidemiological Studies. Eur. J. Cancer Prev. 2005, 14, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, W.; Sang, L.; Dai, X.; Wei, D.; Luo, Y.; Zhang, J. Milk, Yogurt, and Lactose Intake and Ovarian Cancer Risk: A Meta-Analysis. Nutr. Cancer 2014, 67, 68–72. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Milk, Milk Products and Lactose Intake and Ovarian Cancer Risk: A Meta-Analysis of Epidemiological Studies. Int. J. Cancer 2006, 118, 431–441. [Google Scholar] [CrossRef]
- WHO. Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 21 July 2021).
- Wu, L.; Sun, D. Meta-Analysis of Milk Consumption and the Risk of Cognitive Disorders. Nutrients 2016, 8, 824. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ju, C.; Jiang, H.; Zhang, D. Dairy Foods Intake and Risk of Parkinson’s Disease: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Epidemiol. 2014, 29, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.C.; Gao, X.; Kim, I.Y.; Wang, M.; Weisskopf, M.G.; Schwarzschild, M.A.; Ascherio, A. Intake of Dairy Foods and Risk of Parkinson Disease. Neurology 2017, 89, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Doron, D.; Hershkop, K.; Granot, E. Nutritional Deficits Resulting from an Almond-Based Infant Diet. Clin. Nutr. 2001, 20, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.F.; Kenney, R.D.; Carrington, P.H.; Hall, D.E. Severe Nutritional Deficiencies in Toddlers Resulting from Health Food Milk Alternatives. Pediatrics 2001, 107, e46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Louer, B.; Lemale, J.; Garcette, K.; Orzechowski, C.; Chalvon, A.; Girardet, J.P.; Tounian, P. Severe Nutritional Deficiencies in Young Infants with Inappropriate Plant Milk Consumption. Arch. Pédiatr. 2014, 21, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Serranti, D.; Barni, S.; Pucci, N.; Rossi, M.E.; De Martino, M.; Novembre, E. A Kwashiorkor Case Due to the Use of an Exclusive Rice Milk Diet to Treat Atopic Dermatitis. Nutr. J. 2015, 14, 83. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D.; Barreto-chang, O.; Shepard, W.E.; Greene, A.; Longhurst, C. Vitamin D–Deficient Rickets in a Child with Cow’s Milk Allergy. Nutr. Clin. Pract. 2010, 25, 394–399. [Google Scholar] [CrossRef]
- Fourreau, D.; Peretti, N.; Hengy, B.; Gillet, Y.; Courtil-Teyssedre, S.; Hess, L.; Loras-duclaux, I.; Caron, N.; Didier, C.; Cour-Andlauer, F.; et al. Complications Carentielles Suite à l’utilisation de “Laits” Végétaux, Chez Des Nourrissons de Deux Mois et Demi à 14 Mois (Quatre Cas). Presse Med. 2013, 42, e37–e43. [Google Scholar] [CrossRef]
- Vitoria, I.; López, B.; Gómez, J.; Torres, C.; Guasp, M.; Calvo, I.; Dalmau, J. Improper Use of a Plant-Based Vitamin C—Deficient Beverage Causes Scurvy in an Infant. Pediatrics 2016, 137, e20152781. [Google Scholar] [CrossRef]
- Kanaka, C.; Schlitz, B.; Zuppinger, K.A. Risks of Alternative Nutrition in Infancy: A Case Report of Severe Iodine and Carnitine Deficiency. Eur. J. Pediatr. 1992, 151, 786–788. [Google Scholar] [CrossRef]
- Imataka, G.; Mikami, T.; Yamanouchi, H.; Kano, K.; Eguchi, M. Vitamin D Deficiency Rickets Due to Soybean Milk. J. Paediatr. Child Health 2004, 40, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Katz, K.A.; Mahlberg, M.H.; Honig, P.J.; Yan, A.C. Rice Nightmare: Kwashiorkor in 2 Philadelphia-Area Infants Fed Rice Dream Beverage. J. Am. Acad. Dermatol. 2005, 52, S69–S72. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R.J.; Fleet, S.E.; Fifi, A.; Jump, C.; Schwartz, S.; Sentongo, T.; Duro, D.; Rudolph, J.; Turner, J. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper: Plant-Based Milks. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 276–281. [Google Scholar] [CrossRef]
- EFSA ANS Panel. Risk Assessment for Peri- and Post-Menopausal Women Taking Food Supplements Containing Isolated Isoflavones. EFSA J. 2015, 13, 4246. [Google Scholar] [CrossRef]
- Krížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oseni, T.; Patel, R.; Pyle, J.; Jordan, V.C. Selective Estrogen Receptor Modulators and Phytoestrogens. Planta Med. 2008, 74, 1656–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA NDA Panel. Scientific Opinion on the Substantiation of Health Claims Related to Soy Isoflavones and Protection of DNA, Proteins and Lipids from Oxidative Damage (ID 1286, 4245), Maintenance of Normal Blood LDL Cholesterol Concentrations (ID 1135, 1704a, 3093a), Reduction of Vasomotor Symptoms Associated with Menopause (ID 1654, 1704b, 2140, 3093b, 3154, 3590), Maintenance of Normal Skin Tonicity (ID 1704a), Contribution to Normal Hair Growth (ID 1704a, 4254), “Cardiovascular Health” (ID 3587), Treatment of Prostate Cancer (ID 3588) and “Upper Respiratory Tract” (ID 3589) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2264. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on the Substantiation of Health Claims Related to Soy Isoflavones and Maintenance of Bone Mineral Density (ID 1655) Pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1270. [Google Scholar] [CrossRef]
Cow’s Milk | Oat PBMA | Almond PBMA | Soya PBMA | Rice PBMA | Coconut PBMA | ||
---|---|---|---|---|---|---|---|
Total energy content | 34.0–65.8 (54.0) | 29.0–103.0 (52.7) | 15.2–40.2 (24.3) | 32.0–58.0 (41.2) | 47.0–60.0 (54.2) | 19.0–178.0 (54.0) | |
Carbohydrates | Total content | 4.58–5.33 (4.88) | 3.33–18.8 (8.99) | 0.20–4.40 (1.95) | 0.20–7.08 (2.94) | 9.17–12.2 (10.82) | 0.42–5.00 (2.28) |
Fiber | – | 0.40–4.70 (1.27) | 0.27–1.60 (0.52) | 0.40–0.80 (0.52) | 0.10 (−) | 0.10–0.42 (0.34) | |
Sugar | 3.38–5.15 (4.81) | 0.42–10.9 (5.61) | 0.05–4.58 (1.82) | 0.10–6.25 (2.23) | 2.50–7.02 (5.13) | 0.00–3.75 (1.62) | |
Sugar profile | Maltose | − | 2.75–3.34 (3.05) | − | 0.66 (−) | 2.41–4.88 (3.37) | 1.05 (−) |
Sucrose | − | − | 0.16–3.42 (1.80) | 0.35–2.88 (1.13) | − | − | |
Glucose | 2.06 (−) | 0.01 (−) | 0.06–0.87 (0.38) | 0.01–0.52 (0.33) | 0.11–4.12 (2.43) | 0.81 (−) | |
Fructose | − | − | 0.06–0.61 (0.34) | 0.06–1.27 (0.78) | 0.07–0.10 (0.09) | − | |
Galactose | 2.55 (−) | − | − | − | − | − | |
Protein | 3.15–3.70 (3.35) | 0.4–3.24 (1.10) | 0.41–2.40 (0.75) | 2.08–3.70 (3.10) | 0.07–0.42 (0.30) | 0.08–1.60 (0.64) | |
Lipids | Total content | 0.08–4.17 (2.81) | 0.28–2.65 (1.21) | 1.04–10.4 (2.42) | 1.25–2.11 (1.76) | 0.83–1.20 (0.96) | 0.84–18.5 (4.55) |
SFA 1 | 0.06–2.35 (1.45) | 0.00–1.47 (0.35) | 0.10–0.20 (0.15) | 0.17–0.42 (0.27) | 0.07–0.21 (0.16) | 1.67–12.6 (3.15) | |
MUFA 2 | 0.02–1.09 (0.66) | 0.83 (−) | 0.70–0.83 (0.79) | 0.35 (−) | 0.48–0.62 (0.57) | − | |
PUFA 3 | 0.00–0.20 (0.12) | 0.21–0.42 (0.32) | 0.21–0.28 (0.23) | 1.00 (−) | 0.21–0.35 (0.26) | − | |
References | [6,8,10,24,25,26,27] | [6,8,10,17,25,26,28,29,30,31] | [6,8,10,17,24,26,28,29,30,32] | [6,8,10,17,24,25,26,28,29,30,33] | [6,8,10,17,24,25,26,28,30,34] | [6,8,10,24,26,28,29,35] |
Food Group | Food Description | GI | GL |
---|---|---|---|
Plant-based milk alternatives 1 | Almond | 57 | 3 |
Coconut | 97 | 5 | |
Oat | 60 | 8 | |
Rice | 99 | 18 | |
Soya | 53 | 2 | |
Cow’s milk 1 | Fresh milk, pasteurized, and homogenized | 47 | 4 |
Other beverages 2 | Coca-Cola | 58 | 15 |
Apple juice unsweetened | 40 | 12 | |
Orange juice | 50 | 13 | |
Breakfast cereals 2 | Chocapic (Nestlé, France) | 84 | 21 |
Cornflakes | 81 | 21 | |
Muesli, NS (Canada) | 66 | 17 | |
Alpen Muesli (Wheetabix, France) | 55 | 10 | |
Sugar and sugar alcohols 2 | Fructose | 19 | 2 |
Glucose | 99 | 10 | |
Honey | 55 | 10 | |
Lactose | 46 | 5 | |
Maltose | 105 | 11 | |
Sucrose | 68 | 7 |
Protein Source | True Ileal Amino Acid Digestibility (%) |
---|---|
Whey protein isolate 1 | 100 |
Whey protein concentrate 1 | 98 |
Milk protein concentrate 1 | 94 |
Pea protein concentrate 1 | 98 |
Soya protein isolate 1 | 96 |
Whole wheat 2 | 93 |
Oats 2 | 89 |
Buckwheat 2 | 88 |
Brown rice 2 | 85 |
Polished rice 2 | 77 |
Protein Quality Assessment Scores | DIAAS | PDCAAS (Untruncated) | |
---|---|---|---|
Protein Source | Whey isolate protein | 125 (His) | 122 (His) |
Whey protein concentrate | 133 (His) | 134 (His) | |
Milk protein concentrate | 141 (SAA) | 142 (SAA) | |
Skimmed milk powder | 123 (SAA) | 132 (SAA) | |
Pea protein concentrate | 73 (SAA) | 84 (SAA) | |
Soya protein isolate | 98 (SAA) | 102 (SAA) | |
Soya flour | 105 (SAA) | 109 (SAA) | |
Wheat | 54 (Lys) | 51 (Lys) |
Cow’s Milk | Oat PBMA | Almond PBMA | Soya PBMA | Rice PBMA | Coconut PBMA | ||
---|---|---|---|---|---|---|---|
Macrominerals | Calcium | 113–134 (121.2) | 17.4–146 (114.1) | 20.20–188.0 (156.4) | 8.00–187.5 (74.65) | 3.90–146.0 (90.79) | 0–187.5 (65.52) |
Magnesium | 10.0–13.3 (11.1) | 6.0 (−) | 6.67–9.50 (7.78) | 14.2–20.4 (16.8) | 2.10–14.6 (8.34) | 6.67–17.1 (15.1) | |
Sodium | 34.6–50.4 (44.1) | 36.4–65.0 (46.9) | 38.3–75.0 (64.2) | 4.00–100.0 (46.04) | 25.0–75.0 (38.8) | 0.62–62.0 (23.9) | |
Potassium | 132–156 (144.2) | 17.0–50.0 (37.1) | 23.0–79.0 (62.4) | 100.0–286.0 (157.4) | 15.4–83.0 (37.1) | 14.58–204.58 (60.2) | |
Phosphorus | 48.1–101.0 (84.4) | 14.7–42.0 (24.6) | 8.00–21.4 (14.95) | 31.1–45.0 (38.1) | 7.60–62.0 (39.46) | 8.33–41.0 (24.67) | |
Trace elements | Iron | 0.02–0.05 (0.03) | 0.03–0.75 (0.39) | 0.08–0.30 (0.24) | 0.30–0.46 (0.40) | 0.01–0.45 (0.16) | 0.04–2.73 (0.62) |
Copper | 0.01–0.03 (0.01) | 0.01 (−) | 0.03 (−) | 0.11 (−) | 0.01 (−) | 0.13 (−) | |
Zinc | 0.37–0.48 (0.42) | 0.04 (−) | 0.09–0.63 (0.24) | 0.21–0.31 (0.26) | 0.05–0.31 (0.18) | 0.16–0.63 (0.30) | |
Selenium | 0.00–3.70 (2.33) | − | − | − | − | 0.0–2.0 (1.50) | |
Manganese | 0.002 (−) | 0.045 (−) | 0.069 (−) | 0.144 (−) | 0.023 (−) | 0.25 (−) | |
References | [8,24,26,27,69] | [8,26,29,31,69] | [8,24,26,32,69] | [8,24,26,29,33,69] | [8,24,26,34,69] | [8,24,26,35,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, I.C.; Bexiga, R.; Pinto, C.; Roseiro, L.C.; Quaresma, M.A.G. Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods 2023, 12, 99. https://doi.org/10.3390/foods12010099
Antunes IC, Bexiga R, Pinto C, Roseiro LC, Quaresma MAG. Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods. 2023; 12(1):99. https://doi.org/10.3390/foods12010099
Chicago/Turabian StyleAntunes, I. C., R. Bexiga, C. Pinto, L. C. Roseiro, and M. A. G. Quaresma. 2023. "Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives" Foods 12, no. 1: 99. https://doi.org/10.3390/foods12010099
APA StyleAntunes, I. C., Bexiga, R., Pinto, C., Roseiro, L. C., & Quaresma, M. A. G. (2023). Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods, 12(1), 99. https://doi.org/10.3390/foods12010099