The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Set-Up
2.2. Sensory Analysis
2.3. Analysis of Kombucha Samples
2.3.1. High-Performance Liquid Chromatography (HPLC)
2.3.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.3.3. Phenolic Content Determination
2.4. Statistical Analyses
3. Results and Discussion
3.1. Fermentation Parameters
3.2. Aroma Components from the Kombucha Fermentation
3.3. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Adhikari, K. Current trends in Kombucha: Marketing perspectives and the need for improved sensory research. Beverages 2020, 6, 15. [Google Scholar] [CrossRef]
- Expert Market Research. Global Kombucha Tea Market Outlook; Expert Market Research: Sheridan, WY, USA, 2022. [Google Scholar]
- Morales, D. Biological activities of kombucha beverages: The need of clinical evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Vargas, B.K.; Fabricio, M.F.; Záchia Ayub, M.A. Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Bucher, T.; Deroover, K.; Stockley, C. Low-alcohol wine: A narrative review on consumer perception and behaviour. Beverages 2018, 4, 82. [Google Scholar] [CrossRef]
- Stanco, M.; Lerro, M.; Marotta, G. Consumers’ preferences for wine attributes: A best-worst scaling analysis. Sustainability 2020, 12, 2819. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Production of low-alcohol beverages: Current status and perspectives. In Food Processing for Increased Quality and Consumption; Grumezescu, A., Holban, A., Eds.; Academic Press: London, UK, 2018; pp. 347–382. ISBN 9780128114476. [Google Scholar]
- Emiljanowicz, K.E.; Malinowska-Pańczyk, E. Kombucha from alternative raw materials–The review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef]
- Sinir, G.Ö.; Tamer, C.E.; Suna, S. Kombucha tea: A promising fermented functional beverage. In Fermented Beverages; Grumezescu, A., Holban, A., Eds.; Woodhead Publishers: Duxford, UK, 2019; pp. 401–432. ISBN 9780128152713. [Google Scholar]
- Teoh, A.L.; Heard, G.; Cox, J. Yeast ecology of Kombucha fermentation. Int. J. Food Microbiol. 2004, 95, 119–126. [Google Scholar] [CrossRef]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017, 93, 1–16. [Google Scholar] [CrossRef]
- de Roos, J.; de Vuyst, L. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 2018, 49, 115–119. [Google Scholar] [CrossRef]
- Marsh, A.J.; Sullivan, O.O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014, 38, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef] [PubMed]
- Savary, O.; Mounier, J.; Thierry, A.; Poirier, E.; Jourdren, J.; Maillard, M.B.; Penland, M.; Decamps, C.; Coton, E.; Coton, M. Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Res. Int. 2021, 147, 110549. [Google Scholar] [CrossRef] [PubMed]
- Malbaša, R.V.; Loncar, E.S.; Vitas, J.S.; Canadanovic-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Scansani, S.; van Wyk, N.; Nader, K.B.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pasch, L.; Pretorius, I.S.; von Wallbrunn, C.; et al. The film-forming Pichia spp. in a winemaker’s toolbox: A simple isolation procedure and their performance in a mixed-culture fermentation of Vitis vinifera L. cv. Gewürztraminer must. Int. J. Food Microbiol. 2022, 365, 109549. [Google Scholar] [CrossRef]
- Dutraive, O.; Benito, S.; Fritsch, S.; Beisert, B.; Patz, C.-D.; Rauhut, D. Effect of sequential inoculation with non-Saccharomyces and Saccharomyces yeasts on Riesling wine chemical composition. Fermentation 2019, 5, 79. [Google Scholar] [CrossRef]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Nara Batista, N.; Lacerda Ramos, C.; Dias Ribeiro, D.; Pinheiro Marques, A.C.; Freitas Schwan, R. Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT-Food Sci. Technol. 2015, 63, 221–227. [Google Scholar] [CrossRef]
- Crafack, M.; Keul, H.; Eskildsen, C.E.; Petersen, M.A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Res. Int. 2014, 63, 306–316. [Google Scholar] [CrossRef]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef]
- Saerens, S.M.G.; Swiegers, J.H. Production of low-alcohol or alcohol-free beer with Pichia kluyveri yeast strains. AU2014224578A1, 12 September 2014. [Google Scholar]
- Kiene, F.; Pretorius, I.S.; Rauhut, D.; von Wallbrunn, C.; van Wyk, N. Construction and analysis of a yeast for the simultaneous release and esterification of the varietal thiol 3-sulfanylhexan-1-ol. J. Agric. Food Chem. 2021, 69, 11919–11925. [Google Scholar] [CrossRef] [PubMed]
- van Wyk, N.; Michling, F.; Bergamo, D.; Brezina, S.; Pretorius, I.S.; Von Wallbrunn, C.; Wendland, J. Effect of isomixing on grape must fermentations of ATF1-overexpressing wine yeast strains. Foods 2020, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Rojas, V.; Gil, J.V.; Piñaga, F.; Manzanares, P. Studies on acetate ester production by non-Saccharomyces wine yeasts. Int. J. Food Microbiol. 2001, 70, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Schmacht, M.; Troubounis, A.H.L.; Ludszuweit, M.; Rettberg, N.; Senz, M. Tradition as a stepping stone for a microbial defined water kefir fermentation process: Insights in cell growth, bioflavoring, and sensory perception. Front. Microbiol. 2021, 12, 732019. [Google Scholar] [CrossRef] [PubMed]
- Badura, J.; Kiene, F.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D.; Pretorius, I.S.; von Wallbrunn, C.; van Wyk, N. Aroma profiles of Vitis vinifera L. cv. Gewürztraminer must fermented with co-cultures of Saccharomyces cerevisiae and seven Hanseniaspora spp. Fermentation 2023, 9, 109. [Google Scholar] [CrossRef]
- Jung, R.; Kumar, K.; Patz, C.; Rauhut, D.; Tarasov, A.; Schuessler, C. Influence of transport temperature profiles on wine quality. Food Packag. Shelf Life 2021, 29, 100706. [Google Scholar] [CrossRef]
- Schlering, C.; Zinkernagel, J.; Dietrich, H.; Frisch, M.; Schweiggert, R. Alterations in the chemical composition of spinach (Spinacia oleracea L.) as provoked by season and moderately limited water supply in open field cultivation. Horticulturae 2020, 6, 25. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Pichia E.C: Hansen (1904); Elsevier B.V.: Amsterdam, The Netherlands, 2011; Volume 2, ISBN 9780444521491. [Google Scholar]
- Suna, S.; Çiftçi, K.; Tamer, C.E. Determination of physicochemical and sensory properties of kombucha beverage prepared with saffron. Gida 2019, 45, 20–30. [Google Scholar] [CrossRef]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H. Bin Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; van Gemert, L.J., Ed.; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011; ISBN 978-90-810894-0-1. [Google Scholar]
Compound | Odour Threshold Range (mg/L) 1 | Tea + SCOBY | Tea + SCOBY + P. kluyveri | Tea + P. kluyveri |
---|---|---|---|---|
Ethyl acetate (mg/L) | 7.5–60 | ND 2 | 11.2 ± 4.5 | ND |
Isoamyl acetate (µg/L) | 0.25–1.8 | ND | 2136.7 ± 312.6 | ND |
2-Methylbutyl acetate (µg/L) | 1.6 | ND | 254.8 ± 37.8 | ND |
2-Phenethyl acetate (µg/L) | 0.03–1.8 | 12.4 ± 0.6 a | 567.5 ± 27.4 b | 71.6 ± 22.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Wyk, N.; Binder, J.; Ludszuweit, M.; Köhler, S.; Brezina, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; Senz, M.; von Wallbrunn, C. The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods 2023, 12, 1938. https://doi.org/10.3390/foods12101938
van Wyk N, Binder J, Ludszuweit M, Köhler S, Brezina S, Semmler H, Pretorius IS, Rauhut D, Senz M, von Wallbrunn C. The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods. 2023; 12(10):1938. https://doi.org/10.3390/foods12101938
Chicago/Turabian Stylevan Wyk, Niël, Julia Binder, Marie Ludszuweit, Sarah Köhler, Silvia Brezina, Heike Semmler, Isak S. Pretorius, Doris Rauhut, Martin Senz, and Christian von Wallbrunn. 2023. "The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation" Foods 12, no. 10: 1938. https://doi.org/10.3390/foods12101938
APA Stylevan Wyk, N., Binder, J., Ludszuweit, M., Köhler, S., Brezina, S., Semmler, H., Pretorius, I. S., Rauhut, D., Senz, M., & von Wallbrunn, C. (2023). The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods, 12(10), 1938. https://doi.org/10.3390/foods12101938