Physicochemical Evaluation of Cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection Site
2.2. Physical and Chemical Analysis of the Water Where the Collection Took Place
2.3. Physical Analysis of Samples
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Physicochemical Analysis of Water
3.2. Physical Characteristics of N. sphaericum
3.3. Chemical Characteristics of N. sphaericum
3.4. Correlations Established between Water and Chemical Characteristics of N. sphaericum
4. Discussion
4.1. Quality of the Water Where Sampling Was Performed
4.2. Physical Characteristics of N. sphaericum
4.3. Chemical Characteristics of N. sphaericum
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Desarrollo e Inclusión Social—MIDIS. Plan Multisectorial de Lucha Contra la Anemia, 1st ed.; Gobierno del Perú: Lima, Peru, 2018; 124p. Available online: https://cdn.www.gob.pe/uploads/document/file/307159/plan-multisectorial-de-lucha-contra-la-anemia-v3.pdf (accessed on 23 July 2018).
- National Institute of Statistics and Informatics. Demographic and Family Health Survey. Breastfeeding, Nutrition and Early Childhood Development (ECD) of Girls and Boys and Nutrition of Women. ENDES. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1838/index.html (accessed on 13 July 2021).
- National Institute of Statistics and Informatics. Demographic and Family Health Survey. Breastfeeding, Nutrition and Early Childhood Development (ECD) of Girls and Boys and Nutrition of Women. DHS. Available online: https://m.inei.gob.pe/prensa/noticias/la-sierra-presenta-los-mayores-niveles-de-anemia-del-pais-en-el-ano-12223/ (accessed on 10 November 2019).
- Zavaleta, N.; Astete-Robilliard, L. Effect of anemia on child development: Long-term consequences. Rev. Peru. De Med. Exp. Y Salud Publica 2017, 34, 716–722. [Google Scholar] [CrossRef]
- Rosales-Loaiza, N.; Laugeny, L.; Aiello-Mazzarri, C.; Morales-Avendaño, E. Open cultures of the cyanobacteria Nostoc LAUN0015 and Anabaena MOF015 for the production of enriched biomass. Pilot tests for mass cultures. CENIC J. Biol. Sci. 2017, 48, 81–86. Available online: https://revista.cnic.cu/index.php/RevBiol/article/view/11/11 (accessed on 19 March 2023).
- Ponce, E. Nostoc: A different food and its presence in the Arica foothills. IDESIA (Arica) 2014, 32, 119–121. [Google Scholar] [CrossRef]
- Neyra, F.A. Nutritional quality and acceptability of an extruded product based on nostoc (Nostoc commune). Bachelor’s Thesis, National University of the Altiplano, Puno, Peru, 2019; 93p. Available online: http://repositorio.unap.edu.pe/handle/20.500.14082/11937 (accessed on 22 April 2023).
- Nesse, K.O.; Nagalakshmi, A.P.; Marimuthu, P.; Singh, M. Efficacy of a fish protein hydrolysate in malnourished children. Indian J. Clin. Biochem. 2011, 26, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Ponce, E. Nostoc: Un alimento diferente y su presencia en la precordillera de Arica. IDESIA 2014, 32, 115–118. Available online: https://scielo.conicyt.cl/pdf/idesia/v32n2/art15.pdf (accessed on 5 January 2022). [CrossRef]
- Jurado, B.; Fuertes, C.M.; Tomas, G.E.; Ramos, E.; Arroyo, J.L.; Cáceres, J.R.; Inocente, M.A.; Alvarado, B.; Rivera, B.M.; Ramírez, M.A.; et al. Estudio fisicoquímico, microbiológico y toxicológico de los polisacáridos del Nostoc commune y Nostoc sphaericum. Rev. Peru. De Química E Ing. Química 2014, 17, 15–22. Available online: https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/11310 (accessed on 8 January 2022).
- Celis-Plá, P.S.M.; Rearte, T.A.; Neori, A.; Masojídek, J.; Bonomi-Barufi, J.; Álvarez-Gómez, F.; Ranglová, K.; Carmo da Silva, J.; Abdala, R.; Gómez, C.; et al. A new approach for cultivating the cyanobacterium Nostoc calcicola (MACC-612) to produce biomass and bioactive compounds using a thin-layer raceway pond. Algal Res. 2021, 59, 102421. [Google Scholar] [CrossRef]
- Chili-Rodriguez, E.; Terrazas-Viza, I. Evaluation of the Drying Kinetics and Biological Value of Cushuro (Nostoc sphaericum). Bachelor’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2010. [Google Scholar]
- Alegre, R.E.; Ojeda, M.C.; Acuña, A.Y. Proximal analysis and iron and calcium content of dehydrated Nostoc sphaericum “cushuro” from the Conococha lagoon, Catac-Huaraz. UCV-Scientia 2020, 12, 137–149. [Google Scholar] [CrossRef]
- Macário, I.P.E.; Veloso, T.; Romão, J.; Gonçalves, F.J.M.; Pereira, J.L.; Duarte, I.F.; Ventura, S.P.M. Metabolic composition of the cyanobacterium Nostoc muscorum as a function of culture time: A 1H NMR metabolomics study. Algal Res. 2022, 66, 102792. [Google Scholar] [CrossRef]
- Corpus-Gomez, A.; Alcantara-Callata, M.; Celis-Teodoro, H.; Echevarria-Alarcón, B.; Paredes-Julca, J.; Paucar-Menacho, L.M. Cushuro (Nostoc sphaericum): Habitat, physicochemical characteristics, nutritional composition, forms of consumption and medicinal properties. Agroind. Sci. 2021, 11, 231–238. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Fuentes, J.L.; Mendiola, J.A.; Cerezal-Mezquita, P.; Morales, J.; Vílchez, C.; Ibáñez, E. Bioprospecting of cyanobacterium in Chilean coastal desert, Geitlerinema sp. molecular identification and pressurized liquid extraction of bioactive compounds. Food Bioprod. Process. 2021, 128, 227–239. [Google Scholar] [CrossRef]
- Xu, J.; Zhub, S.; Zhang, M.; Cao, P.; Adhikari, B. Combined radio frequency and hot water pasteurization of Nostoc sphaeroides: Effect on temperature uniformity, nutrients content, and phycocyanin stability. LWT 2021, 141, 110880. [Google Scholar] [CrossRef]
- Li, M.; Guo, C.; Wang, Y.; Du, Z.; Chen, S.; Wang, Y.; Ding, K. Nostoc sphaeroids Kütz polysaccharide and powder enrich a core bacterial community on C57BL/6j mice. Int. J. Biol. Macromol. 2020, 162, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Villavicencio-Guardia, M.; Alvares, L.; Fonseca, A.; Ibazeta, A.; Alvarado, E. Nutritional effects of nostoc (cushuro) in malnourished children aged 1–3 years in the district of Amarilis-2007. Investig. Valdizana 2009, 3, 1–4. Available online: https://revistas.unheval.edu.pe/index.php/riv/article/view/649 (accessed on 5 January 2022).
- Alvarado-López, S.M.; Rodriguez-Flores, B.E. Effect of Iron Consumption Contained in Murmunta (Nostoc sphaericum) on the Recovery of Rats with Induced Anemia. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2017. [Google Scholar]
- Gomes, D.; Pereira, L.; Valadares, A. Cyanobacterial polyhydroxy alkanoates: A sustainable alternative in circular economy. Molecules 2020, 25, 4331. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Mojo-Quisani, A.; Ligarda-Samanez, C.A.; Calla-Florez, M.; Ramos-Pacheco, B.S.; Zamalloa-Puma, L.M.; Peralta-Guevara, D.E.; Solano-Reynoso, A.M.; Choque-Quispe, Y.; Zamalloa-Puma, A.; et al. Preliminary Characterization of a Spray-Dried Hydrocolloid from a High Andean Algae (Nostoc sphaericum). Foods 2022, 11, 1640. [Google Scholar] [CrossRef]
- Bornet, É.; Flahault, C. Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France. In Annales Des Sciences Naturelles; Botanique, Septième Série: Paris, Francia, 1886; Volume 7, pp. 177–262. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase; Global Electronic Publication, National University of Ireland: Galway, Ireland, 2022. Available online: http://www.algaebase.org (accessed on 5 January 2022).
- Cobelas, M.Á.; Gallardo, T. Catálogo de las algas continentales españolas. V. Cyanophyceae Schaffner 1909. Acta Bot. Malacit. 1988, 13, 53–75. [Google Scholar] [CrossRef]
- Capcha Orihuela, K.M.; Naventa Villanueva, E.L.; Rios Velasquez, C.; Sisa Huaccha, N.Y. Evaluación de tres Niveles de Temperatura de Secado del Cushuro (Nostoc sp) en el Color y Porcentaje de Proteína. 2020. Available online: https://repositorio.usil.edu.pe/handle/usil/10059 (accessed on 8 January 2022).
- Association of Official Analytical Chemists—AOAC. Manuals of Food Quality Control. FAO Food and Nutrition Paper 14/7. 1984. Available online: https://www.fao.org/3/AM808E/AM808E.pdf (accessed on 8 January 2022).
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Am. Public Health Assoc: Washington, DC, USA, 2017. [Google Scholar]
- Environmental Protection Agency. Determination on Inorganic Ions by Ion Chromatography; Method 300.0 United States Environmental Protection Agency: Cincinnati, OH, USA, 1993. [Google Scholar]
- Latimer, G. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Torres-Maza, A.; Yupanqui-Bacilio, C.; Castro, V.; Aguirre, E.; Villanueva, E.; Rodríguez, G. Comparison of the hydrocolloids Nostoc commune and Nostoc sphaericum: Drying, spectroscopy, rheology and application in nectar. Sci. Agropecu. 2020, 11, 583–589. [Google Scholar] [CrossRef]
- Carranza-Gallardo, J.; Manejo de las Fórmulas de Diferencias de Color vs. Límites de Aceptabilidad. In Memorias del Simposio de Metrología. 2002. Available online: https://www.cenam.mx/memorias/descarga/simposio%202002/doctos/te017.pdf (accessed on 23 July 2018).
- Bhering, L.L. Rbio: A Tool for Biometric and Statistical Analysis Using The R Platform. Crop. Breed. Appl. Biotechnol. 2017, 17, 187–190. [Google Scholar] [CrossRef]
- Obana, S.; Miyamoto, K.; Morita, S.; Ohmori, M.; Inubushi, K. Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. J. Appl. Phycol. 2007, 19, 641–646. [Google Scholar] [CrossRef]
- Sirajunnisa, A.R.; Surendhiran, D. Algae—A quintessential and positive resource of bioethanol production: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 248–267. [Google Scholar] [CrossRef]
- Li, Z.; Guo, M. Healthy efficacy of Nostoc commune Vaucher. Oncotarget 2017, 9, 14669–14679. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, H.B.; Gao, K.; Qiu, B.S. Acclimation to low ultraviolet-B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides. Environ. Microbiol. 2020, 22, 183–197. [Google Scholar] [CrossRef]
- Liu, Y.; Su, P.; Xu, J.; Chen, S.; Zhang, J.; Zhou, S. Structural characterization of a bioactive water-soluble heteropolysaccharide from Nostoc sphaeroides kutz. Carbohydr. Polym. 2018, 200, 552–559. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Kamaraj, B.; Chi, N.T.L.; Cornejo, P. Cultivation of Nostoc sp. LS04 in municipal wastewater for biodiesel production and its deoiled biomass cell extracts as biostimulants for growth enhancement of Lactuca sativa. Chemosphere 2021, 280, 130644. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, S.; Bhosale, R.; Nguyen, D.D.; Pugazhendhi, A.; Tsai, P.-C.; Chang, S.W.; Ponnusamy, V.K.; Kumar, G. Nitrogen-fixing cyanobacteria as a potential resource for efficient biodiesel production. Fuel 2020, 279, 118440. [Google Scholar] [CrossRef]
- Khan, S.A.; Sharma, G.K.; Malla, F.A.; Kumar, A.; Rashmi, G.N. Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. J. Clean. Prod. 2019, 211, 1412–1419. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating microalgae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Makki, A.; Khudhair, B. Correlation between BOD5 and COD for Al-diwaniyah wastewater treatment plants to obtain the biodigrability indices. Pak. J. Biotechnol. 2018, 15, 423–427. [Google Scholar]
- Soto, M.F.; Diaz, C.A.; Zapata, A.M.; Higuita, J.C. BOD and COD removal in vinasses from sugarcane alcoholic distillation by Chlorella vulgaris: Environmental evaluation. Biochem. Eng. J. 2021, 176, 108191. [Google Scholar] [CrossRef]
- García, M.R.; Prieto, I.G.S.; Barrientos, C.E.; Rebatta, F.B.; Morón, L.G. Tablas peruanas de composición de alimentos. In Instituto Nacional de Salud (Perú), 8th ed.; Ministerio de Salud: Lima, Peru, 2009; 64p, Available online: http://bvs.minsa.gob.pe/local/INS/843_MS-INS77.pdf (accessed on 19 March 2023).
- Gao, K. Chinese studies on the edible blue–green alga, Nostoc flagelliforme: A review. J. Appl. Phycol. 1998, 10, 37–49. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferrari, S.; Knudtson, M. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lloréns, J.L. Microalgae: From staple foodstuff to avant-garde cuisine. Int. J. Gastron. Food Sci. 2020, 21, 00221. [Google Scholar] [CrossRef]
- Mullins, J.M. Discovery of Mullin’s Yellow Seedling; Editor: Clay County, WV, USA, 1890. [Google Scholar]
- Kjellman, F.R. Om några nya eller mindre kända slägten och arter af algfamiljen Bangiaceae. Kongliga Sven. Vetensk.-Akad. Handl. 1897, 30, 1–80. [Google Scholar]
- Li, H.; Zhang, M.; Zheng, X.; Han, F.; Jin, T. Effect of combined storage of 1-methylcyclopropene and high oxygen on fruit quality and antioxidant capacity of ‘Golden Delicious’ apples. Food Chem. 2017, 231, 207–214. [Google Scholar] [CrossRef]
- Olguin-Santana, Y.E.; Jacobo-Velázquez, D.A. Growth dynamics and chemical composition of the edible seaweed Porphyra tenera (Kjellman, 1897) (Rhodophyta) cultured in an integrated multitrophic aquaculture system. Aquaculture 2015, 435, 131–138. [Google Scholar] [CrossRef]
- Capcha, K.; Naventa, E.; Rios, C.; Sisa, N. Evaluation of Three Drying Temperature Levels of Cushuro (Nostoc sp) on Color and Protein Percentage. Bachelor’s Thesis, San Ignacio de Loyola University, Lima, Peru, 2020. [Google Scholar]
- Li, H.; Liu, Y.; Zhou, J.; Liu, S.; Liu, Y.; Yang, Y.; Wang, W.; Che, Y.; Inam, M.; Guan, L. The protective mechanism of a novel polysaccharide from Lactobacillus-fermented Nostoc commune Vauch. on attenuating cadmium-induced kidney injury in mice. Int. J. Biol. Macromol. 2023, 226, 1444–1454. [Google Scholar] [CrossRef]
- Guo, M.; Li, Z. Polysaccharides isolated from Nostoc commune vaucher inhibit colitis-associated colonic tumorigenesis in mice and modulate gut microbiota. Food Funct. 2019, 10, 6873–6881. [Google Scholar] [CrossRef]
- Pinazo-Duran, M.D.; Boscá-Gomar, L. Anti-inflammatory properties of omega-3 polyunsaturated fatty acids. Indications in ophthalmology. Arch. De La Soc. Española De Oftalmol. 2012, 87, 203–205. [Google Scholar] [CrossRef]
- Bover, R.; Villacastín, J.; Pérez-Castellano, N.; Moreno, J.; Morales, R.; Macaya, C. Suppression of supraventricular and ventricular arrhythmias. What role can omega-3 fatty acids play? Rev. Española De Cardiol. Supl. 2006, 6, 38D–51D. [Google Scholar] [CrossRef]
- Castro, D.H.; Llamoca, E.; Anthony, J.; Castillo, Y.K.; Méndez, S. Color variation of Lessonia trabeculata macroalgae dehydrated with infrared ray dryer. Rev. De Investig. Altoandinas 2022, 24, 37–44. Available online: https://huajsapata.unap.edu.pe/index.php/ria/article/view/309 (accessed on 5 January 2022).
- Márquez, B.M. Cenizas y Grasas. Tesis para Optar el Título Profesional; San Agustín de Arequipa: Arequipa, Peru, 2014. [Google Scholar]
- Hurrell, R.; Egli, I. Iron Nutrition Foundation. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Monsen, E.R.; Balintfy, J.L. Calculating dietary iron bioavailability: Refinement of the formula. Am. J. Clin. Nutr. 2005, 81, 639–640. [Google Scholar] [CrossRef]
- Tontisirin, K.; Nantel, G. Bhutanese red rice: A source of iron, zinc and vitamin B. Food Nutr. Bull. 2004, 25, 361–366. [Google Scholar] [CrossRef]
- Boath, E.H.; Bradley, M.; Houghton, J.; Scott, H. Nutritional deficiencies in the vegan diet: Iron, zinc, and vitamin B12. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Academic Press: London, UK, 2017; pp. 57–70. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Jaouen, P. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci. Technol. 2002, 13, 166–178. [Google Scholar] [CrossRef]
- Ganesan, K.; Kumar, G. An in vivo study on the hemopoietic and anti-anemic effect of sulfated polysaccharides extracted from the red seaweed Gracilaria corticata (Gmelin) Silva. J. Food Biochem. 2018, 42, e12444. [Google Scholar]
- Negi, S.; Shukla, P.; Gupta, R.K.; Khan, S.; Kumar, R.; Tiwari, A. Nostoc sphaericum (Cyanobacteria) as a potential source of valuable biocompounds: An overview. J. Appl. Phycol. 2015, 27, 217–225. [Google Scholar]
- Sahoo, D.; Gupta, S. Microalgae and cyanobacteria: A positive approach toward sustainable development. J. Environ. Manag. 2020, 268, 110638. [Google Scholar]
- Chen, J.; Chen, Y. Microalgae and cyanobacteria as a sustainable food source: A review. J. Food Nutr. Res. 2020, 8, 233–241. [Google Scholar]
Analysis | p Value | Significance | CV (%) |
---|---|---|---|
pH | 7.342 | 0.0536 | 2.13 |
Conductivity (µS cm−1) | 697.7 | 1.22 × 10−5 | 0.06 |
Dissolved solids (mg L−1) | 180,000 | 1.85 × 10−10 | 0.01 |
Acidity (mg L−1) | 14.31 | 0.0194 | 0.81 |
Sulfates (mg L−1) | 20.55 | 0.0106 | 0.93 |
Phosphates (mg L−1) | 867 | 7.92 × 10−6 | 2.57 |
Ammonia nitrogen (mg L−1) | 2.804 × 1032 | <2 × 10−16 | 1.46 |
Total nitrogen (mg L−1) | 1.215 × 1032 | <2 × 10−16 | 6.05 |
BOD5 (mg L O2−1) | 8.769 × 1030 | <2 × 10−16 | 6.36 |
COD (mg L O2−1) | 1.482 × 1030 | <2 × 10−16 | 1.01 |
Nitrates (as N) (*) (mg L−1) | 1.239 × 1031 | <2 × 10−16 | 6.03 |
Nitrates NO3 (*) (mg L−1) | 1.268 × 1031 | <2 × 10−16 | 6.05 |
Analysis | Unit | Aruntaya Spring Water | N. sphaericum Growth Water (Reservoir) |
---|---|---|---|
pH | 7.61 | 7.98 NS | |
Conductivity | µS cm−1 | 89.99 b | 91.20 a |
Dissolved solids | mg L−1 | 53.00 b | 55.00 a |
Alkalinity | mg L−1 CaCO3 | 20.85 | 20.85 NS |
Acidity | mg L−1 | 6.30 b | 6.46 a |
Sulfates | mg L−1 | 21.96 a | 21.21 b |
Phosphates | mg L−1 | 0.36 a | 0.19 b |
Total hardness | mg L−1 | 30.32 | 30.32 NS |
Ammonia nitrogen | mg L−1 | 0.00 b | 0.15 a |
Total nitrogen | mg L−1 | 2.11 b | 3.69 a |
BOD5 | mg L O2−1 | 42.00 b | 49.00 a |
COD | mg L O2−1 | 217.56 b | 240.51 a |
Nitrates (as N) (*) | mg L−1 | 0.140 a | 0.01 b |
Nitrates NO3 (*) | mg L−1 | 0.622 a | 0.04 b |
Nitrites (as N) (*) | mg L−1 | <0.001 | <0.001 NS |
Nitrites NO2 (*) | mg L−1 | <0.004 | <0.004 NS |
Authors | Present Study | a 1 | b | c | d | e | f | g | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain Type | N. sphaericum | Nostoc | N. sphaericum | Nostoc | N. TISTR 8872 | N. TISTR 8873 | N. LAUN0015 | N. UAM206 | N. commune | N. sphaericum | N. calcicola | |
Dry weight | 0.98 ± 0.10 | 0.75 ± 0.10 | ||||||||||
% Protein | 28.18 ± 0.33 | 20.00 | 0.60 | 25.40 | 31.23 ± 3.07 | 25.15 ± 1.56 | 1.21 ± 0.02 | 1.14 ± 0.03 | 47.71 ± 0.30 | |||
% Carbohydrates | 62.07 ± 0.69 | 74.20 | 2.23 | 62.40 | 30.70 | 32.90 | 43.62 ± 3.59 | 46.40 ± 0.59 | 2.48 ± 0.03 | 2.26 ± 0.01 | 33.95 ± 6.66 | |
% Fat | 0.71 ± 0.02 | 0.30 | 0.01 | 0.80 | 1.05 ± 0.45 | 0.74 ± 0.49 | 0.31 ± 0.02 | 0.31 ± 0.00 | 5.22 ± 1.74 | |||
% Fiber | 0.91 ± 0.02 | 0.90 | 0.03 | 1.64 ± 0.57 | 1.31 ± 0.76 | 0.02 ± 0.03 | 0.03 ± 0.07 | |||||
Calcium mg/100 g | 377.80 ± 1.43 | 145 ± 8.80 | 1.08 | |||||||||
Iron mg/100 g | 4.76 ± 0.08 | 0.75 ± 0.09 | 19.60 | |||||||||
Phosphorus | 258.00 | |||||||||||
% Ash | 7.68 ± 0.10 | 4.60 | 0.14 | 5.10 | 19.33 ± 2.76 | 26.40 ± 3.40 | 0.20 ± 0.00 | 0.13 ± 0.01 | ||||
% Humidity | 0.22 ± 0.01 | 97.00 | 11.73 ± 1.30 | 12.80 ± 1.79 | 95.77 ± 1.60 | 96.12 ± 1.22 | ||||||
Observation | Dry matter | Dry matter | Dry matter | Wet matter | Dry matter | Dry matter | Dry matter | Wet matter | Dry matter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Ancca, S.; Pepe-Victoriano, R.; Gonzales, H.H.S.; Zambrano-Cabanillas, A.W.; Marín-Machuca, O.; Rojas, J.C.Z.; Maquera, M.M.; Huanca, R.F.; Aguilera, J.G.; Zuffo, A.M.; et al. Physicochemical Evaluation of Cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes. Foods 2023, 12, 1939. https://doi.org/10.3390/foods12101939
Méndez-Ancca S, Pepe-Victoriano R, Gonzales HHS, Zambrano-Cabanillas AW, Marín-Machuca O, Rojas JCZ, Maquera MM, Huanca RF, Aguilera JG, Zuffo AM, et al. Physicochemical Evaluation of Cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes. Foods. 2023; 12(10):1939. https://doi.org/10.3390/foods12101939
Chicago/Turabian StyleMéndez-Ancca, Sheda, Renzo Pepe-Victoriano, Hebert Hernán Soto Gonzales, Abel Walter Zambrano-Cabanillas, Olegario Marín-Machuca, José Carlos Zapata Rojas, Maribel Maquera Maquera, Rosmery Fernandez Huanca, Jorge González Aguilera, Alan Mario Zuffo, and et al. 2023. "Physicochemical Evaluation of Cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes" Foods 12, no. 10: 1939. https://doi.org/10.3390/foods12101939
APA StyleMéndez-Ancca, S., Pepe-Victoriano, R., Gonzales, H. H. S., Zambrano-Cabanillas, A. W., Marín-Machuca, O., Rojas, J. C. Z., Maquera, M. M., Huanca, R. F., Aguilera, J. G., Zuffo, A. M., & Ratke, R. F. (2023). Physicochemical Evaluation of Cushuro (Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes. Foods, 12(10), 1939. https://doi.org/10.3390/foods12101939