Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching Process
2.2. Screening and Eligibility Criteria
2.3. Data Extraction
2.4. Risk of Bias
3. Results and Discussion
3.1. Overview of Extracted Research
3.2. Fish Species
3.2.1. Immediate Effect on the Reduction of the Pathogenic Microbiota
3.2.2. Effect on Overall Fish Quality during Storage at 4 ± 1 °C for 8 ± 2 Days
Microbial Parameters and Shelf-Life
Lipid Oxidation
Protein Oxidation
Instrumental Color Parameters
Instrumental Texture Parameters
Sensory Quality
3.3. Meat Products
3.3.1. Immediate Effect on the Reduction of the Pathogenic Microbiota
3.3.2. Instrumental Color Parameters
3.3.3. Lipid and Protein Oxidation
3.3.4. Instrumental Texture Parameters
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- FAO—Food and Agriculture Organization. The State of World Fisheries and Aquaculture—Sustainable in Action. 2020. Available online: http://www.fao.org/3/i9540en/I9540EN.pdf/ (accessed on 15 March 2023).
- OECD/FAO. OECD-FAO Agricultural Outlook 2019–2028. 2019. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2019-2028_agr_outlook-2019-en (accessed on 15 March 2023).
- Gonçalves, L.D.D.A.; Piccoli, R.H.; Peres, A.P.; Saúde, A.V. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Braz. J. Microbiol. 2017, 48, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.G.; Mársico, E.T.; Mano, S.B.; Alvares, T.S.; Rosenthal, A.; Lemos, M.; Ferrari, E.; Lázaro, C.A.; Conte-Junior, C.A. Combined effect of high hydrostatic pressure and ultraviolet radiation on quality parameters of refrigerated vacuum-packed tilapia (Oreochromis niloticus) fillets. Sci. Rep. 2018, 8, 9524. [Google Scholar] [CrossRef] [PubMed]
- Ocaño-Higuera, V.M.; Maeda-Martínez, A.N.; Marquez-Ríos, E.; Canizales-Rodríguez, D.F.; Castillo-Yáñez, F.J.; Ruíz-Bustos, E.; Graciano-Verdugo, A.Z.; Plascencia-Jatomea, M. Freshness assessment of ray fish stored in ice by biochemical, chemical and physical methods. Food Chem. 2011, 125, 49–54. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization. The State of Food and Agriculture—Moving Forward on Food Loss and Waste Reduction. 2019. Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 15 March 2023).
- CDC—Center for Disease Control and Prevention, Annual Report. 2017. Available online: https://www.cdc.gov/fdoss/pdf/2017_FoodBorneOutbreaks_508.pdf (accessed on 16 March 2023).
- FDA—Food and Drug Administration, Ultraviolet Radiation for the Processing and Treatment of Food. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.39/ (accessed on 16 March 2023).
- Balashov, O.A.; Sofos, J.N. Strategies for on-line decontamination of carcasses. In Safety of Meat and Processed Meat, 1st ed.; Toldrá, F., Ed.; Springer: New York, NY, USA, 2009; pp. 149–182. [Google Scholar]
- Koutchma, T. Principles and applications of UV light technology. In Ultraviolet Light in Food Technology: Principles and Applications, 2nd ed.; Koutchma, T., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–48. [Google Scholar]
- Zhao, Y.; Alba, M.; Sun, D.; Tiwari, B. Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. [Google Scholar] [CrossRef]
- Bottino, F.O.; Rodrigues, B.L.; Ribeiro, J.D.N.; Lazaro, C.A.; Conte-Junior, C.A. Influence of UV-C radiation on shelf life of vacuum package tambacu (Colossoma macropomum x Piaractus mesopotamicus) fillets. J. Food Process. Preserv. 2017, 41, e13003. [Google Scholar] [CrossRef]
- Canto, A.C.V.C.S.; Monteiro, M.L.G.; Costa-Lima, B.R.C.; Lázaro, C.A.; Marsico, E.T.; Silva, T.J.P.; Conte-Junior, C.A. Effect of UV-C radiation on Salmonella spp. reduction and oxidative stability of caiman (Caiman crocodilus yacare) meat. J. Food Saf. 2019, 39, e12604. [Google Scholar] [CrossRef]
- Isohanni, P.M.; Lyhs, U. Use of ultraviolet irradiation to reduce Campylobacter jejuni on broiler meat. Poult. Sci. 2009, 88, 661–668. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Costa, M.P.; Viana, F.M.; Silva, T.J.P.; Conte-Junior, C.A. Impact of UV-C light on the fatty acid profile and oxidative stability of Nile tilapia (Oreochromis niloticus) fillets. J. Food Sci. 2017, 82, 1028–1036. [Google Scholar] [CrossRef]
- Santos, J.S.L.; Mársico, E.T.; Lemos, M.; Cinquini, M.A.; Silva, F.A.; Dutra, Y.B.; Franco, R.M.; Conte-Junior, C.A.; Monteiro, M.L.G. Effect of the UV-C radiation on shelf life of vacuum-packed refrigerated pirarucu (Arapaima gigas) fillets. J. Aquat. Food Prod. Technol. 2018, 27, 48–60. [Google Scholar] [CrossRef]
- Koller, V.; Seinige, D.; Saathoff, J.; Kehrenberg, C.; Krischek, C. Impact of a combination of UV-C irradiation and peracetic acid spray treatment on Brochothrix thermosphacta and Yersinia enterocolitica contaminated pork. Foods 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Molina, B.; Sáez, M.I.; Martínez, T.F.; Guil-Guerrero, J.L.; Suárez, M.D. Effect of ultraviolet light treatment on microbial contamination, some textural and organoleptic parameters of cultured sea bass fillets (Dicentrarchus labrax). Innov. Food Sci. Emerg. Technol. 2014, 26, 205–213. [Google Scholar] [CrossRef]
- Ha, J.W.; Kang, D.H. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action. Appl. Environ. Microbiol. 2015, 81, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 88, 105906. [Google Scholar]
- Fabbri, S.; Hernandes, E.; Di Thommazo, A.; Belgamo, A.; Zamboni, A.; Silva, C. Managing literature reviews information through visualization. In Proceedings of the 14th International Conference on Enterprise Information Systems, Wrocław, Poland, 28 June–1 July 2012; pp. 36–45. [Google Scholar]
- Colejo, S.; Alvarez-Ordóñez, A.; Prieto, M.; González-Raurich, M.; López, M. Evaluation of ultraviolet light (UV), non-thermal atmospheric plasma (NTAP) and their combination for the control of foodborne pathogens in smoked salmon and their effect on quality attributes. Innov. Food Sci. Emerg. Technol. 2018, 50, 84–93. [Google Scholar] [CrossRef]
- Heir, E.; Liland, K.H.; Carlehög, M.; Holck, A.L. Reduction and inhibition of Listeria monocytogenes in cold-smoked salmon by Verdad N6, a buffered vinegar fermentate, and UV-C treatments. Int. J. Food Microbiol. 2019, 291, 48–58. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Monteiro, M.L.G.; Conte-Junior, C.A. Combined effect of modified atmosphere packaging and UV-C radiation on pathogens reduction, biogenic amines, and shelf life of refrigerated tilapia (Oreochromis niloticus) fillets. Molecules 2020, 25, 3222. [Google Scholar] [CrossRef]
- Lee, E.; Park, S.Y.; Ha, S. Application of combined UV-C light and ethanol treatment for the reduction of pathogenic Escherichia coli and Bacillus cereus on Gwamegi (semidried Pacific saury). J. Food Saf. 2019, 39, e12712. [Google Scholar] [CrossRef]
- Mikš-Krajnik, M.; Feng, L.X.J.; Bang, W.S.; Yuk, H. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Rosenthal, A.; Conte-Junior, C.A. Synergistic effect of ultraviolet radiation and high hydrostatic pressure on texture, color, and oxidative stability of refrigerated tilapia fillets. J. Sci. Food Agric. 2019, 99, 4474–4481. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Mársico, E.T.; Mutz, Y.S.; Castro, V.S.; Moreira, R.V.B.P.; Álvares, T.S.; Conte-Junior, C.A. Combined effect of oxygen scavenger packaging and UV-C radiation on shelf life of refrigerated tilapia (Oreochromis niloticus) fillets. Sci. Rep. 2020, 10, 4243. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.L.G.; Mársico, E.T.; Conte-Junior, C.A. Application of active packaging in refrigerated rainbow trout (Oncorhynchus mykiss) fillets treated with UV-C radiation. Appl. Sci. 2020, 10, 5787. [Google Scholar] [CrossRef]
- Reichel, J.; Kehrenberg, C.; Krischek, C. UV-C irradiation of rolled fillets of ham inoculated with Yersinia enterocolitica and Brochothrix thermosphacta. Foods 2020, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.L.; Alvares, T.S.; Sampaio, G.S.L.; Cabral, C.C.; Araujo, J.V.A.; Franco, R.M.; Mano, S.B.; Conte Junior, C.A. Infuence of vacuum and modifed atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control 2016, 60, 596–605. [Google Scholar] [CrossRef]
- Rosário, D.K.A.; Mutz, Y.S.; Castro, V.S.; Bernardes, P.C.; Rajkovic, A.; Conte-Junior, C.A. Optimization of UV-C light and lactic acid combined treatment in decontamination of sliced Brazilian dry-cured loin: Salmonella typhimurium inactivation and physicochemical quality. Meat Sci. 2021, 172, 108308. [Google Scholar] [CrossRef]
- Sommers, C.H.; Geveke, D.J.; Pulsfus, S.; Lemmenes, B. Inactivation of Listeria innocua on frankfurters by ultraviolet light and flash pasteurization. J. Food Sci. 2009, 74, M138–M141. [Google Scholar] [CrossRef]
- Sommers, C.H.; Scullen, O.J.; Sites, J.E. Inactivation of foodborne pathogens on frankfurters using ultraviolet light and GRAS antimicrobials. J. Food Saf. 2010, 30, 666–678. [Google Scholar] [CrossRef]
- Tarek, A.R.; Rasco, B.A.; Sablani, S.S. Ultraviolet-C light inactivation kinetics of E. coli on bologna beef packaged in plastic films. Food Bioprocess Technol. 2015, 8, 1267–1280. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; APHA: Washington, DC, USA, 2001. [Google Scholar]
- American Meat Science Association (AMSA). Meat Color Measurement Guidelines, 2nd ed.; AMSA: Champaign, IL, USA, 2012. [Google Scholar]
- Alkawareek, M.Y.; Gorman, S.P.; Gram, W.G.; Gilmore, B.F. Potencial cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents 2014, 43, 154–160. [Google Scholar] [CrossRef]
- Lu, H.; Patil, S.; Keener, K.M.; Cullen, P.J.; Bourke, P. Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. J. Appl. Microbiol. 2014, 116, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef] [PubMed]
- López-Caballero, M.E.; Gonçalves, A.; Nunes, M.L. Efect of CO2/O2-containing modifed atmospheres on packed deepwater pink shrimp (Parapenaeus longirostris). Eur. Food Res. Technol. 2002, 214, 192–197. [Google Scholar] [CrossRef]
- Conte-Junior, C.A.; Monteiro, M.L.G.; Patrícia, R.; Mársico, E.T.; Lopes, M.M.; Alvares, T.S.; Mano, S.B. The effect of different packaging systems on the shelf life of refrigerated ground beef. Foods 2020, 9, 495. [Google Scholar] [CrossRef]
- Sivertsvik, M.; Jeksrud, W.K.; Rosnes, J.T. A review of modified atmosphere packaging of fish and fishery productsesignificance of microbial growth, activities and safety. Int. J. Food Sci. Technol. 2002, 37, 107–127. [Google Scholar] [CrossRef]
- Remya, S.; Mohan, C.O.; Venkateshwarlu, G.; Sivaraman, G.K.; Ravishankar, C.N. Combined effect of O2 scavenger and antimicrobial film on shelf life of (Rachycentron canadum) fish steaks stored at 2 °C. Food Control 2017, 71, 71–78. [Google Scholar] [CrossRef]
- Qiu, C.; Xia, W.; Jiang, Q. Effect of high hydrostatic pressure (HHP) on myofbril-bound serine proteinases and myofbrillar protein in silver carp (Hypophthalmichthys molitrix). Food Res. Int. 2013, 52, 199–205. [Google Scholar] [CrossRef]
- Ahmed, I.; Lin, H.; Zhou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.R.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Suppakul, P. Active and intelligent packaging: The indication of quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 808–831. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Canovas, G.V. Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Dao, T.; Dantigny, P. Control of food spoilage fungi by ethanol. Food Control 2011, 22, 360–368. [Google Scholar] [CrossRef]
- Mozuraityte, R.; Kristinova, V.; Rustad, T.; Storrø, I. The role of iron in peroxidation of PUFA: Effect of pH and chelators. Eur. J. Lipid Sci. Technol. 2016, 118, 658–668. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Masniyom, P. Deterioration and shelf-life extension of fish and fishery products by modified atmosphere packaging. Songklanakarin J. Sci. Technol. 2011, 33, 181–192. [Google Scholar]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Wu, W.; Gao, X.G.; Dai, Y.; Fu, Y.; Li, X.M.; Dai, R.T. Post-mortem changes in sarcoplasmic proteome and its relationship to meat color traits in M. semitendinosus of Chinese Luxiyellow cattle. Food Res. Int. 2015, 72, 98–105. [Google Scholar] [CrossRef]
- Tazrart, K.; Zaidi, F.; Lamacchia, C.; Haros, M. Effect of durum wheat semolina substitution with broad bean flour (Vicia faba) on the maccheronccini pasta quality. Eur. Food Res. Technol. 2016, 242, 477–485. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Truong, B.Q.; Buckow, R.; Stathopoulos, C.; Nguyen, M.H. Advances in high-pressure processing of fish muscles. Food Eng. Rev. 2015, 7, 109–129. [Google Scholar] [CrossRef]
- Hoa, V.; Cho, S.; Seong, P.; Kang, S.; Kim, Y.; Moon, S.; Choi, Y.; Kim, J.; Seol, K. The significant influences of pH, temperature and fatty acids on meat myoglobin oxidation: A model study. J. Food Sci. Technol. 2021, 58, 3972–3980. [Google Scholar] [CrossRef]
- Rodrigues, B.L.; Costa, M.P.; Frasão, B.S.; Silva, F.A.; Mársico, E.T.; Alvares, T.S.; Conte Junior, C.A. Instrumental texture parameters as freshness indicators in five farmed Brazilian freshwater fish species. Food Anal. Methods 2017, 10, 3589–3599. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.; Li, J.; Niu, S.; Wang, C.; Zhang, N.; Yang, M.; Zhou, K.; Chen, S.; He, L.; et al. Effect of oxidized lipids stored under different temperatures on muscle protein oxidation in Sichuan-style sausages during ripening. Meat Sci. 2019, 147, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.W.; Ryu, S.R.; Kang, D.H. Evaluation of near-infrared pasteurization in controlling Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat sliced ham. Appl. Environ. Microbiol. 2012, 78, 6458–6465. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, K.; Khurana, H.K.; Jun, S.J.; Irudayaraj, J.; Demirci, A. Infrared heating in food processing: An overview. Compr. Rev. Food Sci. Food Saf. 2008, 7, 2–13. [Google Scholar] [CrossRef]
- Sommers, C.H.; Geveke, D.J.; Fan, X. Inactivation of Listeria innocua on frankfurters that contain potassium lactate and sodium diacatate by flash pasteurization. J. Food Sci. 2008, 73, M72–M74. [Google Scholar] [CrossRef]
- De Laat, J.; Gallard, H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling. Environ. Sci. Technol. 1999, 33, 2726–2732. [Google Scholar] [CrossRef]
- Dodson, L.G.; Savee, J.D.; Gozem, S.; Shen, L.; Krylov, A.I.; Taatjes, C.A.; Osborn, D.L.; Okumura, M. Vacuum ultraviolet photoionization cross section of the hydroxyl radical. J. Chem. Phys. 2018, 148, 184302. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Emara, A.M.; Gan, X.; Li, H. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chem. 2019, 288, 405–412. [Google Scholar] [CrossRef]
- Hu, M.; McClements, D.J.; Decker, E.A. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J. Agric. Food Chem. 2003, 51, 1435–1439. [Google Scholar] [CrossRef]
Gram-Negative Bacteria | Treatments * | Reduction (%) | Reference |
---|---|---|---|
S. typhimurium, S. enteritidis, P. shigelloides, A. hydrophila, and E. coli | 0.02 J/cm2 + NTAP 1 min | 10.91 | Colejo et al. (2018) [23] |
0.05 J/cm2 + NTAP 1 min | 12.74 | ||
0.1 J/cm2 + NTAP 1 min | 16.74 | ||
0.5 J/cm2 + NTAP 1 min | 19.43 | ||
0.02 J/cm2 + NTAP 2 min | 14.74 | ||
0.05 J/cm2 + NTAP 2 min | 16.86 | ||
0.1 J/cm2 + NTAP 2 min | 18.74 | ||
0.5 J/cm2 + NTAP 2 min | 21.49 | ||
0.02 J/cm2 + NTAP 4 min | 15.71 | ||
0.05 J/cm2 + NTAP 4 min | 18.80 | ||
0.1 J/cm2 + NTAP 4 min | 20.46 | ||
0.5 J/cm2 + NTAP 4 min | 22.97 | ||
0.02 J/cm2 + NTAP 8 min | 20.11 | ||
0.05 J/cm2 + NTAP 8 min | 22.91 | ||
0.1 J/cm2 + NTAP 8 min | 24.06 | ||
0.5 J/cm2 + NTAP 8 min | 33.83 | ||
S. typhimurium and E. coli O157:H7 | VP + 0.30 J/cm2 | 15.28 | Lázaro et al. (2020) [25] |
MAP (50% CO2 and 50% N2) + 0.30 J/cm2 | 5.51 | ||
E. coli | 0.6 J/cm2 + 35% ethanol | 1.44 | Lee et al. (2019) [26] |
1.2 J/cm2 + 35% ethanol | 13.56 | ||
2.4 J/cm2 + 35% ethanol | 22.33 | ||
0.6 J/cm2 + 70% ethanol | 5.25 | ||
1.2 J/cm2 + 70% ethanol | 7.11 | ||
2.4 J/cm2 + 70% ethanol | 17.26 | ||
Gram-Positive Bacteria | Treatments | Reduction (%) | Reference |
L. monocytogenes, L. innocua, and S. aureus | 0.02 J/cm2 + NTAP 1 min | 7.81 | Colejo et al. (2018) [23] |
0.05 J/cm2 + NTAP 1 min | 11.52 | ||
0.1 J/cm2 + NTAP 1 min | 14.48 | ||
0.5 J/cm2 + NTAP 1 min | 18.00 | ||
0.02 J/cm2 + NTAP 2 min | 10.48 | ||
0.05 J/cm2 + NTAP 2 min | 13.71 | ||
0.1 J/cm2 + NTAP 2 min | 17.05 | ||
0.5 J/cm2 + NTAP 2 min | 19.52 | ||
0.02 J/cm2 + NTAP 4 min | 12.86 | ||
0.05 J/cm2 + NTAP 4 min | 16.38 | ||
0.1 J/cm2 + NTAP 4 min | 18.38 | ||
0.5 J/cm2 + NTAP 4 min | 20.38 | ||
0.02 J/cm2 + NTAP 8 min | 16.19 | ||
0.05 J/cm2 + NTAP 8 min | 18.48 | ||
0.1 J/cm2 + NTAP 8 min | 21.05 | ||
0.5 J/cm2 + NTAP 8 min | 21.81 | ||
B. cereus | 0.6 J/cm2 + 35% ethanol | 7.77 | Lee et al. (2019) [26] |
1.2 J/cm2 + 35% ethanol | 15.54 | ||
2.4 J/cm2 + 35% ethanol | 21.88 | ||
0.6 J/cm2 + 70% ethanol | 0.89 | ||
1.2 J/cm2 + 70% ethanol | 11.53 | ||
2.4 J/cm2 + 70% ethanol | 19.29 | ||
L. monocytogenes | 3.09 J/cm2 + AEW | 11.40 | Mikš-Krajnik et al. (2017) [27] |
3.09 J/cm2 + US | 15.80 | ||
3.09 J/cm2 + US + AEW | 15.00 | ||
L. monocytogenes | 1% Verdad N6 + VP + 0.050 J/cm2 | 25.81 | Heir et al. (2019) [24] |
Treatments * | Lag Phase | µmax | LOX | PROTOX | L*/a*/b*/∆E | HA/CW/CO/SP | Reference |
---|---|---|---|---|---|---|---|
0.02 J/cm2 + NTAP 4 min + VP | NA £ | NA | ↑25.93 | NA | NA | NA | Colejo et al. (2018) [23] |
0.05 J/cm2 + NTAP 4 min + VP | NA | NA | ↑188.89 | NA | ↓1.91/↓2.04/↓4.76/2.64 | NA | |
0.1 J/cm2 + NTAP 2 min + VP | NA | NA | ↑140.74 | NA | ↓2.64/↓2.47/↓1.13/5.19 | NA | |
0.1 J/cm2 + NTAP 4 min + VP | NA | NA | ↑281.48 | NA | NA | NA | |
0.5 J/cm2 + NTAP 1 min + VP | NA | NA | ↑62.96 | NA | ↓1.80/↓1.73/↓1.17/2.80 | NA | |
0.5 J/cm2 + NTAP 4 min + VP | NA | NA | ↑577.78 | NA | NA | NA | |
0.103 J/cm2 + HHP (220 MPa/10 min) ₭ | ↓0.54 | ↓1.47 | ↓80.00 | NA | NA | NA | Monteiro et al. (2018) [5] |
0.102 J/cm2 + Ageless SS-50 € | ↑3.01 | ↑0.50 | ↓65.59 | ↓2.57 | ↓1.65/↓0.57/↓1.17/4.51 | ↑3.45/↑0.50/0.014/0.007 | Monteiro et al. (2020) [29] |
0.301 J/cm2 + Ageless SS-50 € | ↑1.01 | ↑0.02 | ↓64.52 | ↓2.58 | ↓3.84/↓0.54/↓1.13/2.89 | ↑1.30/↑0.73/0.005/0.007 | |
VP + 0.30 J/cm2 | ↑0.70 | ↓0.13 | ↓10.00 | NA | ↑0.49/↑2.15/↑0.18/5.67 | ↑0.52/↑2.33/0.022/0.015 | Lázaro et al. (2020) [25] |
MAP (50% CO2 and 50% N2) + 0.30 J/cm2 | ↑1.75 | ↓0.26 | ↑1128.57 | NA | ↑0.42/↑2.54/↑1.31/6.28 | ↑7.04/↑1.79/0.042/0.065 | |
2.4 J/cm2 + 35% ethanol | NA | NA | ↑20.00 | NA | ↑0.43/↑0.67/↓0.37/1.21 | NA | Lee et al. (2019) [26] |
2.4 J/cm2 + 70% ethanol | NA | NA | ↓80.00 | NA | ↑0.50/↑0.20/↑0.50/1.46 | NA | |
0.103 J/cm2 + HHP (220 MPa/10 min) ₩ | NA | NA | ↓8.85 | ↑0.18 | ↑14.54/↓0.25/↑7.97/17.73 | ↓7.72/↓1.51/0.030/0.010 | Monteiro et al. (2019) [28] |
0.102 J/cm2 + Ageless SS-50 ¥ | NA | NA | ↓27.12 | ↑1.20 | ↓1.17/↑0.82/↓1.62/5.85 | ↑2.82/↑0.57/0.018/0.001 | Monteiro et al. (2020) [30] |
0.301 J/cm2 + Ageless SS-50 ¥ | NA | NA | ↓25.17 | ↑2.18 | ↓0.79/↑0.82/↓1.65/6.22 | ↑2.74/↑0.51/0.002/0.011 | |
VP + 0.1 J/cm2 | ↑0.52 | ↓0.06 | ↓33.33 | NA | NA | NA | Rodrigues et al. (2016) [32] |
MAP (80% CO2 and 20% N2) + 0.1 J/cm2 | ↑4.68 | ↓0.22 | ↓6.67 | NA | NA | NA |
Gram-Negative Bacteria | Treatments * | Reduction (%) | Reference |
---|---|---|---|
E. coli O157:H7 and S. typhimurium | 0.02 J/cm2 + NIR-H | 28.36 | Ha and Kang (2015) [20] |
0.04 J/cm2 + NIR-H | 32.36 | ||
0.055 J/cm2 + NIR-H | 33.73 | ||
0.07 J/cm2 + NIR-H | 37.27 | ||
0.09 J/cm2 + NIR-H | 43.36 | ||
0.11 J/cm2 + NIR-H | 52.09 | ||
0.13 J/cm2 + NIR-H | 70.82 | ||
S. typhimurium | 0.01 J/cm2 + 6.5% LA | 13.24 | Rosário et al. (2021) [33] |
0.1 J/cm2 + 2% LA | 14.71 | ||
0.1 J/cm2 + 11% LA | 19.12 | ||
0.55 J/cm2 + 2% LA | 23.53 | ||
0.55 J/cm2 + 11% LA | 11.76 | ||
0.64 J/cm2 + 6.5% LA | 25.00 | ||
0.33 J/cm2 + 0.1% LA | 14.71 | ||
0.33 J/cm2 + 12.9% LA | 20.59 | ||
0.33 J/cm2 + 6.5% LA | 18.38 | ||
0.36 J/cm2 + 7.7% LA | 19.12 | ||
S. enteriditis, S. typhimurium, and Salmonella Senftenberg | 0.5 J/cm2 + 5% LAE + VP | 38.67 | Sommers et al. (2010) [35] |
E. coli K-12 | VP-PE + 0.045 J/cm2 | 10.40 | Tarek et al. (2015) [36] |
VP-PE + 0.070 J/cm2 | 12.13 | ||
VP-PE + 0.138 J/cm2 | 15.47 | ||
VP-PE + 0.270 J/cm2 | 18.67 | ||
VP-PE + 0.405 J/cm2 | 18.93 | ||
VP-OPP + 0.021 J/cm2 | 7.33 | ||
VP-OPP + 0.051 J/cm2 | 9.07 | ||
VP-OPP + 0.101 J/cm2 | 9.47 | ||
VP-OPP + 0.207 J/cm2 | 14.27 | ||
VP-OPP + 0.305 J/cm2 | 16.00 | ||
VP-ClearTite + 0.018 J/cm2 | 7.20 | ||
VP-ClearTite + 0.024 J/cm2 | 6.40 | ||
VP-ClearTite + 0.059 J/cm2 | 7.33 | ||
VP-ClearTite + 0.127 J/cm2 | 10.27 | ||
VP-ClearTite + 0.183 J/cm2 | 12.40 | ||
Y. enterocolitica | 0.4 J/cm2 + MAP (70% O2 and 30% N) | 8.96 | Reichel et al. (2020) [31] |
4.08 J/cm2 + MAP (70% O2 and 30% N) | 15.79 | ||
Gram-Positive Bacteria | Treatments * | Reduction (%) | Reference |
L. monocytogenes | 0.02 J/cm2 + NIR-H | 24.91 | Ha and Kang (2015) [20] |
0.04 J/cm2 + NIR-H | 30.18 | ||
0.055 J/cm2 + NIR-H | 31.45 | ||
0.07 J/cm2 + NIR-H | 35.64 | ||
0.09 J/cm2 + NIR-H | 44.55 | ||
0.11 J/cm2 + NIR-H | 49.64 | ||
0.13 J/cm2 + NIR-H | 62.36 | ||
L. innocua | 1 J/cm2 + FP (0.75 s) | 55.57 | Sommers et al. (2009) [34] |
1 J/cm2 + FP (1.5 s) | 61.15 | ||
1 J/cm2 + FP (3 s) | 63.41 | ||
2 J/cm2 + FP (0.75 s) | 59.06 | ||
2 J/cm2 + FP (1.5 s) | 60.45 | ||
2 J/cm2 + FP (3 s) | 62.02 | ||
4 J/cm2 + FP (0.75 s) | 56.10 | ||
4 J/cm2 + FP (1.5 s) | 58.89 | ||
4 J/cm2 + FP (3 s) | 67.77 | ||
VP + 1 J/cm2 + FP (1.5 s) | 55.75 | ||
VP + 2 J/cm2 + FP (3 s) | 55.75 | ||
L. monocytogenes and S. aureus | 0.5 J/cm2 + 5% LAE + VP | 43.50 | Sommers et al. (2010) [35] |
Treatments * | LOX | PROTOX | L*/a*/b*/∆E | Shear Force (g) | Reference |
---|---|---|---|---|---|
0.01 J/cm2 + 6.5% LA | 132.26 | 30.47 | ↓2.59/↓0.93/↓0.96/2.91 | NA | Rosário et al. (2021) [33] |
0.1 J/cm2 + 2% LA | 100.00 | 35.19 | ↓1.19/↓2.18/↓3.10/3.97 | NA | |
0.1 J/cm2 + 11% LA | 203.23 | 36.48 | ↓4.55/↓2.15/↓1.33/5.20 | NA | |
0.55 J/cm2 + 2% LA | 232.26 | 14.16 | ↓2.15/↓2.47/↓2.04/3.86 | NA | |
0.55 J/cm2 + 11% LA | 132.26 | 52.79 | ↓2.18/↓0.19/↓1.34/2.57 | NA | |
0.64 J/cm2 + 6.5% LA | 258.06 | 41.63 | ↓1.52/↓3.21/↓1.05/3.70 | NA | |
0.33 J/cm2 + 0.1% LA | 138.71 | 36.91 | ↓2.99/↓1.90/↓2.39/4.27 | NA | |
0.33 J/cm2 + 12.9% LA | 164.52 | 25.32 | ↓2.69/↓2.44/↓2.56/4.44 | NA | |
0.33 J/cm2 + 6.5% LA | 200.00 | 6.44 | ↓3.84/↓3.90/↓3.18/6.33 | NA | |
0.36 J/cm2 + 7.7% LA | 190.32 | 5.58 | NA | NA | |
0.4 J/cm2 + MAP (70% O2 and 30% N2) | NA £ | NA | ↓0.50/↓2.20/↓0.20/2.26 | NA | Reichel et al. (2020) [31] |
4.08 J/cm2 + MAP (70% O2 and 30% N2) | NA | NA | ↑0.20/↓3.20/↑0.70/3.28 | NA | |
1 J/cm2 + FP (1.5 s) | NA | NA | ↓7.49/↑0.20/↓0.49/7,51 | 24 | Sommers et al. (2009) [34] |
2 J/cm2 + FP (3 s) | NA | NA | ↓6.88/↓2.07/↓0.79/7,23 | 122 | |
0.5 J/cm2 + 5% LAE | NA | NA | ↓2.40/↓0.60/↓0.70/2.57 | 0.003 | Sommers et al. (2010) [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, M.L.G.; Mutz, Y.d.S.; Francisco, K.d.A.; Rosário, D.K.A.d.; Conte-Junior, C.A. Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods 2023, 12, 1961. https://doi.org/10.3390/foods12101961
Monteiro MLG, Mutz YdS, Francisco KdA, Rosário DKAd, Conte-Junior CA. Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods. 2023; 12(10):1961. https://doi.org/10.3390/foods12101961
Chicago/Turabian StyleMonteiro, Maria Lúcia Guerra, Yhan da Silva Mutz, Karen de Abreu Francisco, Denes Kaic Alves do Rosário, and Carlos Adam Conte-Junior. 2023. "Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review" Foods 12, no. 10: 1961. https://doi.org/10.3390/foods12101961
APA StyleMonteiro, M. L. G., Mutz, Y. d. S., Francisco, K. d. A., Rosário, D. K. A. d., & Conte-Junior, C. A. (2023). Combined UV-C Technologies to Improve Safety and Quality of Fish and Meat Products: A Systematic Review. Foods, 12(10), 1961. https://doi.org/10.3390/foods12101961