Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Analytical Methods
2.3. Total Protein, Polysaccharides and Mannoprotein Quantification
2.4. Total Phenolic Content
- total phenolics (a.u.): ((Abs 280 nm * 51) − 4);
- total hydroxycinnamates (a.u.): ((Abs 320 nm * 11) − 1.4);
- total flavonoids (a.u.): [((Abs 280 nm * 51) − 4)) − ((0.66 * Abs 320 nm * 11) − 1.4)];
- brown pigments (a.u.): (Abs 420 nm * 11).
2.5. Determination of Phenolic Compounds by High-Performance Liquid Chromatography
2.6. Organic Acids by High-Performance Liquid Chromatography
2.7. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.8. Foaming Properties
2.9. Viscosity Analysis
2.10. Sensory Assessment
2.11. Statistical Analyses
3. Results and Discussion
3.1. Yeast Strain Effect on Wine Chemical Composition
3.2. Yeast Strain Effect on Wine Color and Phenolic Profiles
3.3. Yeast Strain Effect on Wine Macromolecular Composition and Wine Viscosity
3.4. Yeast Strain Effect on Wine Foamability
3.5. Yeast Strain Effect on Wine Sensory Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. International Code of Oenological Practices; Section 4: Sparkling Wines; OIV: Paris, France, 2022. [Google Scholar]
- OIV. OIV Focus: The Global Sparking Wine Market; OIV: Paris, France, 2020; pp. 1–21. [Google Scholar]
- Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. Effect of Production Phase on Bottle-Fermented Sparkling Wine Quality. J. Agric. Food Chem. 2015, 63, 19–38. [Google Scholar] [CrossRef]
- Ivit, N.N.; Kemp, B. The Impact of Non-Saccharomyces Yeast on Traditional Method Sparkling Wine. Fermentation 2018, 4, 73. [Google Scholar] [CrossRef]
- Alexandre, H. Yeasts and Sparkling Wine Production. In Yeasts in the Production of Wine; Romano, P., Ciani, M., Fleet, G., Eds.; Springer: New York, NY, USA, 2019; pp. 395–432. ISBN 978-1-4939-9782-4. [Google Scholar]
- Tofalo, R.; Perpetuini, G.; Rossetti, A.P.; Gaggiotti, S.; Piva, A.; Olivastri, L.; Cichelli, A.; Compagnone, D.; Arfelli, G. Impact of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts to Improve Traditional Sparkling Wines Production. Food Microbiol. 2022, 108, 104097. [Google Scholar] [CrossRef] [PubMed]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological Consequences of Sequential Inoculation with Non-Saccharomyces Yeasts (Torulaspora Delbrueckii or Metschnikowia Pulcherrima) and Saccharomyces cerevisiae in Base Wine for Sparkling Wine Production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora Delbrueckii for Secondary Fermentation in Sparkling Wine Production. Food Microbiol. 2018, 74, 100–106. [Google Scholar] [CrossRef]
- Capozzi, V.; Tufariello, M.; Berbegal, C.; Fragasso, M.; De Simone, N.; Spano, G.; Russo, P.; Venerito, P.; Bozzo, F.; Grieco, F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation 2022, 8, 275. [Google Scholar] [CrossRef]
- Bellon, J.R.; Schmid, F.; Capone, D.L.; Dunn, B.L.; Chambers, P.J. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae. PLoS ONE 2013, 8, e62053. [Google Scholar] [CrossRef]
- Bellon, J.R.; Ford, C.M.; Borneman, A.R.; Chambers, P.J. A Novel Approach to Isolating Improved Industrial Interspecific Wine Yeasts Using Chromosomal Mutations as Potential Markers for Increased Fitness. Front. Microbiol. 2018, 9, 1442. [Google Scholar] [CrossRef] [PubMed]
- Borneman, A.R.; Forgan, A.H.; Kolouchova, R.; Fraser, J.A.; Schmidt, S.A. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae. G3 2016, 6, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Crumpton, M.; Rice, C.J.; Atkinson, A.; Taylor, G.; Marangon, M. The Effect of Sucrose Addition at Dosage Stage on the Foam Attributes of a Bottle-Fermented English Sparkling Wine. J. Sci. Food Agric. 2018, 98, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Iland, P.; Bruer, N.; Edwards, G.; Weeks, S.; Wilkes, E. Chemical Analysis of Grapes and Wine: Techniques and Concepts; Patrick Iland Wine Promotions: Campbelltown, Australia, 2004; p. 120. [Google Scholar]
- Kwiatkowski, M.J.; Skouroumounis, G.K.; Lattey, A.A.; Waters, E.J. The Impact of Closures, Including Screw Cap with Three Different Headspace Volumes, on the Composition, Colour and Sensory Properties of a Cabernet Sauvignon Wine during Two Years’ Storage. Aust. J. Grape Wine Res. 2007, 13, 81–94. [Google Scholar] [CrossRef]
- Vincenzi, S.; Mosconi, S.; Zoccatelli, G.; Pellegrina, C.D.; Veneri, G.; Chignola, R.; Peruffo, A.; Curioni, A.; Rizzi, C. Development of a New Procedure for Protein Recovery and Quantification in Wine. Am. J. Enol. Vitic. 2005, 56, 182–187. [Google Scholar] [CrossRef]
- Segarra, I.; Lao, C.; López-Tamames, E.; De La Torre-Boronat, M.C. Spectrophotometric Methods for the Analysis of Polysaccharide Levels in Winemaking Products. Am. J. Enol. Vitic. 1995, 46, 564–570. [Google Scholar] [CrossRef]
- Marassi, V.; Marangon, M.; Zattoni, A.; Vincenzi, S.; Versari, A.; Reschiglian, P.; Roda, B.; Curioni, A. Characterization of Red Wine Native Colloids by Asymmetrical Flow Field-Flow Fractionation with Online Multidetection. Food Hydrocoll. 2021, 110, 106204. [Google Scholar] [CrossRef]
- Marangon, M.; Vegro, M.; Vincenzi, S.; Lomolino, G.; De Iseppi, A.; Curioni, A. A Novel Method for the Quantification of White Wine Mannoproteins by a Competitive Indirect Enzyme-Linked Lectin Sorbent Assay (CI-ELLSA). Molecules 2018, 23, 3070. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High Throughput Analysis of Red Wine and Grape Phenolics—Adaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. J. Agric. Food Chem. 2007, 55, 4651–4657. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Ricci, A.; Nedelkovski, D.; Dimovska, V.; Parpinello, G.P.; Versari, A. Targeted Analysis of Bioactive Phenolic Compounds and Antioxidant Activity of Macedonian Red Wines. Food Chem. 2015, 171, 412–420. [Google Scholar] [CrossRef]
- Marangon, M.; Lucchetta, M.; Waters, E.J. Protein Stabilisation of White Wines Using Zirconium Dioxide Enclosed in a Metallic Cage. Aust. J. Grape Wine Res. 2011, 17, 28–35. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Blum, H.; Beier, H.; Gross, H.J. Improved Silver Staining of Plant Proteins, RNA and DNA in Polyacrylamide Gels. Electrophoresis 1987, 8, 93–99. [Google Scholar] [CrossRef]
- Doerner, K.C.; White, B.A. Detection of Glycoproteins Separated by Nondenaturing Polyacrylamide Gel Electrophoresis Using the Periodic Acid-Schiff Stain. Anal. Biochem. 1990, 187, 147–150. [Google Scholar] [CrossRef]
- Brissonet, F.; Maujean, A. Characterization of Foaming Proteins in a Champagne Base Wine. Am. J. Enol. Vitic. 1993, 44, 297–301. [Google Scholar] [CrossRef]
- Crumpton, M.; Atkinson, A.; Marangon, M. Effect of Carboxymethyl Cellulose Added at the Dosage Stage on the Foamability of a Bottle-Fermented Sparkling Wine. Beverages 2018, 4, 27. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estellé, P.; Aladag, B.; Doner, N.; Maré, T. Viscosity of Carbon Nanotubes Water-Based Nanofluids: Influence of Concentration and Temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Chapman and Hall: New York, NY, USA, 1998. [Google Scholar]
- ISO 3591:1977; Sensory Analysi Apparatus: Wine-Tasting Glass. International Organization for Standardization: Genève, Switzerland, 1977.
- Sawyer, S.; Longo, R.; Solomon, M.; Nicolotti, L.; Westmore, H.; Merry, A.; Gnoinski, G.; Ylia, A.; Dambergs, R.; Kerslake, F. Autolysis and the Duration of Ageing on Lees Independently Influence the Aroma Composition of Traditional Method Sparkling Wine. Aust. J. Grape Wine Res. 2022, 28, 146–159. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Vilela, A. Use of Nonconventional Yeasts for Modulating Wine Acidity. Fermentation 2019, 5, 27. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, W.; Meng, Y.; Zhang, Y.; Jin, G.; Fang, Z. Wine Phenolic Profile Altered by Yeast: Mechanisms and Influences. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3579–3619. [Google Scholar] [CrossRef]
- Mekoue Nguela, J.; Poncet-Legrand, C.; Sieczkowski, N.; Vernhet, A. Interactions of Grape Tannins and Wine Polyphenols with a Yeast Protein Extract, Mannoproteins and β-Glucan. Food Chem. 2016, 210, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magariño, S. Changes in Polysaccharide Composition during Sparkling Wine Making and Aging. J. Agric. Food Chem. 2013, 61, 12362–12373. [Google Scholar] [CrossRef]
- Pons-Mercadé, P.; Giménez, P.; Vilomara, G.; Conde, M.; Cantos, A.; Rozès, N.; Ferrer, S.; Canals, J.M.; Zamora, F. Monitoring Yeast Autolysis in Sparkling Wines from Nine Consecutive Vintages Produced by the Traditional Method. Aust. J. Grape Wine Res. 2022, 28, 347–357. [Google Scholar] [CrossRef]
- Jones-Moore, H.R.; Jelley, R.E.; Marangon, M.; Fedrizzi, B. The Polysaccharides of Winemaking: From Grape to Wine. Trends Food Sci. Technol. 2021, 111, 731–740. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; p. 464. [Google Scholar]
- Pérez-Magariño, S.; Martínez-Lapuente, L.; Bueno-Herrera, M.; Ortega-Heras, M.; Guadalupe, Z.; Ayestarán, B. Use of Commercial Dry Yeast Products Rich in Mannoproteins for White and Rosé Sparkling Wine Elaboration. J. Agric. Food Chem. 2015, 63, 5670–5681. [Google Scholar] [CrossRef] [PubMed]
- Junior, W.J.F.L.; Nadai, C.; Rolle, L.; da Silva Gulão, E.; da Rocha Leão, M.H.M.; Giacomini, A.; Corich, V.; Vincenzi, S. Influence of the Mannoproteins of Different Strains of Starmenella bacillaris Used in Single and Sequential Fermentations on Foamability, Tartaric and Protein Stabilities of Wines. Oeno One 2020, 54, 231–243. [Google Scholar] [CrossRef]
- Juega, M.; Nunez, Y.P.; Carrascosa, A.V.; Martinez-Rodriguez, A.J. Influence of Yeast Mannoproteins in the Aroma Improvement of White Wines. J. Food Sci. 2012, 77, M499–M504. [Google Scholar] [CrossRef] [PubMed]
- Caridi, A. Enological Functions of Parietal Yeast Mannoproteins. Antonie Van Leeuwenhoek 2006, 89, 417–422. [Google Scholar] [CrossRef]
- Neto, F.S.; de Castilhos, M.B.; Telis, V.R.; Telis-Romero, J. Effect of Ethanol, Dry Extract and Reducing Sugars on Density and Viscosity of Brazilian Red Wines. J. Sci. Food Agric. 2015, 95, 1421–1427. [Google Scholar] [CrossRef]
- Yanniotis, S.; Kotseridis, G.; Orfanidou, A.; Petraki, A. Effect of Ethanol, Dry Extract and Glycerol on the Viscosity of Wine. J. Food Eng. 2007, 81, 399–403. [Google Scholar] [CrossRef]
- Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.A.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030. [Google Scholar] [CrossRef]
- Kemp, B.; Condé, B.; Jégou, S.; Howell, K.; Vasserot, Y.; Marchal, R. Chemical Compounds and Mechanisms Involved in the Formation and Stabilization of Foam in Sparkling Wines. Crit. Rev. Food Sci. Nutr. 2019, 59, 2070–2094. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Role of Major Wine Constituents in the Foam Properties of White and Rosé Sparkling Wines. Food Chem. 2015, 174, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z. Influence of Wine Chemical Compounds on the Foaming Properties of Sparkling Wines. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; Jordão, A.M., Cosme, F., Eds.; InTech: London, UK, 2018. [Google Scholar]
- Andres-Lacueva, C.; Gallart, M.; Lopez-Tamames, E.; Lamuela-Raventos, R.M.; Andrés-Lacueva, C. Influence of Variety and Aging on Foaming Properties of Sparkling Wine (Cava). J. Agric. Food Chem. 1996, 44, 3826–3829. [Google Scholar] [CrossRef]
- Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martín-Álvarez, P.J.; Polo, M.C. Influence of the Polysaccharides and the Nitrogen Compounds on Foaming Properties of Sparkling Wines. Food Chem. 2000, 70, 309–317. [Google Scholar] [CrossRef]
Commercial Name | Yeast Strain | Producer |
---|---|---|
IOC 18-2007 | Saccharomyces cerevisiae | Institut Œnologique de Champagne, Mardeuil, France |
AWRI 1616 (PDM) | Saccharomyces cerevisiae | AB Mauri Yeast, Camellia, Australia |
AWRI 2526 | Saccharomyces cerevisiae x mikatae | AB Mauri Yeast, Camellia, Australia |
AWRI 1572 | Saccharomyces cerevisiae x bayanus | AB Mauri Yeast, Camellia, Australia |
AWRI 1571 | Saccharomyces cerevisiae x bayanus | AB Mauri Yeast, Camellia, Australia |
AWRI 1502 | Saccharomyces cerevisiae x cariocanus | AB Mauri Yeast, Camellia, Australia |
Wine A—Blanc de Blancs | Wine B—Blanc de Blancs | Wine C—Rosé | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1502 | IOC 18- 2007 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | |
Ethanol (% vol) | 12.80 a | 12.60 a | 12.67 a | 12.47 a | 12.73 a | 12.87 a | 12.83 a | 12.87 a | 12.83 a | 13.40 a | 13.23 a | 13.33 a | 13.37 a |
Glucose (g/L) | 0.10 d | 0.13 c | 0.16 b | 0.20 a | 0.11 d | 0.11 c | 0.15 ab | 0.18 a | 0.13 bc | 0.14 c | 0.21 ab | 0.27 a | 0.18 bc |
Fructose (g/L) | 0.35 e | 0.71 c | 0.80 b | 1.37 a | 0.48 d | 0.36 c | 0.57 bc | 0.95 a | 0.65 b | 0.48 c | 1.21 b | 1.7 a | 1.16 b |
SO2 (free) (mg/L) | 29 a | 31 a | 29 a | 28 a | 29 a | 15 a | 15 a | 18 a | 16 a | 17 a | 18 a | 18 a | 16 a |
SO2 (total) (mg/L) | 118 a | 116 a | 112 a | 114 a | 133 a | 69 a | 70 a | 70 a | 70 a | 83 a | 83 a | 96 a | 86 a |
pH | 3.22 a | 3.23 a | 3.24 a | 3.21 a | 3.23 a | 3.28 a | 3.29 a | 3.28 a | 3.28 a | 3.14 a | 3.14 a | 3.14 a | 3.14 a |
Titratable acidity (g/L) | 9.18 a | 8.70 a | 9.10 a | 8.90 a | 9.20 a | 8.11 a | 7.90 a | 7.87 a | 8.11 a | 9.00 a | 9.10 a | 9.00 a | 9.00 a |
Citric acid (g/L) | 0.17 a | 0.17 a | 0.17 a | 0.18 a | 0.19 a | 0.04 a | 0.04 a | 0.04 a | 0.04 a | 0.13 a | 0.13 a | 0.12 a | 0.12 a |
Tartaric acid (g/L) | 2.4 1a | 2.37 a | 2.39 a | 2.40 a | 2.37 a | 1.82 a | 1.83 a | 1.84 a | 1.85 a | 1.80 a | 1.78 a | 1.80 a | 1.78 a |
Malic acid (g/L) | 4.67a | 4.67 a | 4.61 a | 4.65 a | 4.45 a | 2.28 a | 2.27 a | 2.29 a | 2.31 a | 4.87 a | 4.86 a | 4.88 a | 4.88 a |
Succinic acid (g/L) | 1.69a | 1.68 a | 1.71 a | 1.67 a | 1.66 a | 3.10 a | 3.14 a | 3.17 a | 3.19 a | 1.29 a | 1.29 a | 1.33 a | 1.30 a |
Lactic acid (g/L) | 1.02 a | 0.99 a | 1.01 a | 1.04 a | 1.00 a | 3.82 a | 3.63 a | 3.72 a | 3.81 a | 1.41 a | 1.52 a | 1.40 a | 1.40 a |
Acetic acid (g/L) | 0.19 a | 0.30 a | 0.23 a | 0.22 a | 0.20 a | 0.36 a | 0.26 a | 0.30 a | 0.36 a | 0.19 a | 0.16 a | 0.21 a | 0.22 a |
Wine A—Blanc de Blancs | ΔE*ab | Wine B—Blanc de Blancs | ΔE*ab | Wine C—Rosé | ΔE*ab |
---|---|---|---|---|---|
AWRI 1616 vs. AWRI 1571 | 0.4 | AWRI 1616 vs. AWRI 1571 | 0.2 | AWRI 1616 vs. AWRI 1571 | 0.5 |
AWRI 1616 vs. AWRI 2526 | 0.0 | AWRI 1616 vs. AWRI 2526 | 0.2 | AWRI 1616 vs. AWRI 2526 | 0.4 |
AWRI 1616 vs. AWRI 1502 | 0.2 | AWRI 1616 vs. AWRI 1572 | 0.1 | AWRI 1616 vs. AWRI 1572 | 0.4 |
AWRI 1616 vs. IOC 18-2007 | 0.1 | AWRI 1571 vs. AWRI 2526 | 0.4 | AWRI 1571 vs. AWRI 2526 | 0.3 |
AWRI 1571 vs. AWRI 2526 | 0.4 | AWRI 1571 vs. AWRI 1572 | 0.2 | AWRI 1571 vs. AWRI 1572 | 0.2 |
AWRI 1571 vs. AWRI 1502 | 0.5 | AWRI 2526 vs. AWRI 1572 | 0.2 | AWRI 2526 vs. AWRI 1572 | 0.2 |
AWRI 1571 vs. IOC 18-2007 | 0.3 | ||||
AWRI 2526 vs. AWRI 1502 | 0.2 | ||||
AWRI 2526 vs. IOC 18-2007 | 0.1 | ||||
AWRI 1502 vs. IOC 18-2007 | 0.3 |
Wine A—Blanc de Blancs | Wine B—Blanc de Blancs | Wine C—Rosé | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1502 | IOC 18- 2007 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | |
Brown pigments | 0.088 a | 0.125 a | 0.084 a | 0.099 a | 0.084 a | 0.044 a | 0.062 a | 0.051 a | 0.059 a | 0.073 a | 0.073 a | 0.084 a | 0.095 a |
Total phenolics (AU) | 3.319 a | 2.538 a | 3.385 a | 3.168 a | 3.051 a | 1.236 a | 1.368 a | 1.082 a | 0.924 a | 1.581 a | 1.372 a | 1.045 a | 1.581 a |
Total Hydroxycinnamates (AU) | 2.373 a | 2.168 a | 2.329 a | 2.384 a | 2.520 a | 1.141 a | 1.181 a | 1.108 a | 1.277 a | 1.878 a | 1.827 a | 1.786 a | 1.900 a |
Total flavonoids (AU) | 1.752 a | 1.107 a | 1.848 a | 1.595 a | 1.388 a | 0.483 a | 0.588 a | 0.351 a | 0.082 a | 0.341 a | 0.166 a | 0.134 a | 0.327 a |
Wine A—Blanc de Blancs | Wine B—Blanc de Blancs | Wine C—Rosé | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1502 | IOC 18- 2007 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | AWRI 1616 | AWRI 1571 | AWRI 2526 | AWRI 1572 | |
Protein (mg/L) | 63.1 a | 60.8 a | 63.7 a | 91.1 b | 69.3 a | 1.5 ab | 0.4 a | 2.9 b | 5.1 c | 20.9 b | 15.1 a | 21.9 b | 20.5 b |
Polysaccharides (mg/L) | 352.4 a | 332.8 a | 327.2 a | 334.5 a | 361.3 a | 218.5 a | 227.9 ab | 246.4 b | 246.1 b | 243.7 a | 243.1 a | 263.9 a | 241.5 a |
Mannoproteins (mg/L) | 303.2 a | 167.8 b | 158.9 b | 199.1 b | 123.8 d | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. | n.m. |
Viscosity (mPa/s) | 1.91 a | 1.92 a | 1.98 a | 1.96 a | 2.02 a | 1.96 a | 1.98 a | 1.98 a | 1.96 a | 1.99 a | 1.98 a | 2.00 a | 1.97 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marangon, M.; Seeley, P.; Barocci, E.; Milanowski, T.; Mayr Marangon, C.; Ricci, A.; Bellon, J.; Parpinello, G.P. Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods 2023, 12, 1995. https://doi.org/10.3390/foods12101995
Marangon M, Seeley P, Barocci E, Milanowski T, Mayr Marangon C, Ricci A, Bellon J, Parpinello GP. Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods. 2023; 12(10):1995. https://doi.org/10.3390/foods12101995
Chicago/Turabian StyleMarangon, Matteo, Poppy Seeley, Erica Barocci, Tony Milanowski, Christine Mayr Marangon, Arianna Ricci, Jennifer Bellon, and Giuseppina P. Parpinello. 2023. "Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines" Foods 12, no. 10: 1995. https://doi.org/10.3390/foods12101995
APA StyleMarangon, M., Seeley, P., Barocci, E., Milanowski, T., Mayr Marangon, C., Ricci, A., Bellon, J., & Parpinello, G. P. (2023). Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods, 12(10), 1995. https://doi.org/10.3390/foods12101995