Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Potato Protein Hydrolysate
2.3. Preparation of Composite Protein Gel
2.4. Dynamic Rheological Properties
2.5. Textural Profile Analysis (TPA)
2.6. IDDSI Testing
2.7. Water-Holding Capacity (WHC)
2.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.9. Chemical Forces in Protein Gels
2.10. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.11. Confocal Laser Scanning Microscopy (CLSM)
2.12. Scanning Electron Microscopy (SEM)
2.13. Swelling Ratio
2.14. In Vitro Digestion
2.15. Statistical Analysis
3. Results
3.1. Rheological Properties
3.2. Textural Profile Analysis
3.3. Appearance and IDDSI Testing
3.4. Water-Holding Capacity (WHC)
3.5. FTIR
3.6. Forces in Protein Gels
3.7. LF-NMR Analysis
3.8. Microstructure of Composite Gels
3.9. Proposed Composite Gel Forming Mechanism
3.10. Swelling Ratio
3.11. In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wirth, R.; Dziewas, R.; Beck, A.M.; Clave, P.; Heppner, H.J.; Langmore, S.; Leischker, A.; Martino, R.; Pluschinski, P.; Rösler, A.; et al. Oropharyngeal Dysphagia in Older Persons – from Pathophysiology to Adequate Intervention: A Review and Summary of an International Expert Meeting. CIA 2016, 11, 189–208. [Google Scholar] [CrossRef]
- Rashid, I.; Tiwari, P.; Lehl, S.S. Malnutrition among Elderly a Multifactorial Condition to Flourish: Evidence from a Cross-Sectional Study. Clin. Epidemiol. Glob. Health 2020, 8, 91–95. [Google Scholar] [CrossRef]
- Kaae, J.K.; Spejlborg, M.L.; Spork, U.; Bjørndal, K.; Eriksen, J.G. Reducing Late Dysphagia for Head and Neck Cancer Survivors with Oral Gel: A Feasibility Study. Dysphagia 2020, 35, 231–241. [Google Scholar] [CrossRef]
- Sharma, M.; Duizer, L. Characterizing the Dynamic Textural Properties of Hydrocolloids in Pureed Foods—A Comparison Between TDS and TCATA. Foods 2019, 8, 184. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hu, J.; Liang, Y.; Huang, X.; Seah, G.L.; Li, J.; Liu, D.; Tan, C. Protein Gel with Designed Network and Texture Regulated via Building Blocks to Study Dysphagia Diet Classifications. Food Hydrocoll. 2023, 140, 108640. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of Mixed Polysaccharide-Protein Systems in Fabricating Multi-Structures of Binary Food Gels—A Review. Trends Food Sci. Technol. 2021, 109, 197–210. [Google Scholar] [CrossRef]
- Wu, C.; Wang, T.; Ren, C.; Ma, W.; Wu, D.; Xu, X.; Wang, L.; Du, M. Advancement of Food-derived Mixed Protein Systems: Interactions, Aggregations, and Functional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 627–651. [Google Scholar] [CrossRef]
- Jose, J.; Pouvreau, L.; Martin, A.H. Mixing Whey and Soy Proteins: Consequences for the Gel Mechanical Response and Water Holding. Food Hydrocoll. 2016, 60, 216–224. [Google Scholar] [CrossRef]
- Wong, D.; Vasanthan, T.; Ozimek, L. Synergistic Enhancement in the Co-Gelation of Salt-Soluble Pea Proteins and Whey Proteins. Food Chem. 2013, 141, 3913–3919. [Google Scholar] [CrossRef]
- Andlinger, D.J.; Rampp, L.; Tanger, C.; Kulozik, U. Viscoelasticity and Protein Interactions of Hybrid Gels Produced from Potato and Whey Protein Isolates. ACS Food Sci. Technol. 2021, 1, 1304–1315. [Google Scholar] [CrossRef]
- Ainis, W.N.; Ersch, C.; Ipsen, R. Partial Replacement of Whey Proteins by Rapeseed Proteins in Heat-Induced Gelled Systems: Effect of PH. Food Hydrocoll. 2018, 77, 397–406. [Google Scholar] [CrossRef]
- Chen, N.; Yang, B.; Wang, Y.; Zhang, N.; Li, Y.; Qiu, C.; Wang, Y. Improving the Colloidal Stability and Emulsifying Property of Flaxseed 11S Globulin by Heat Induced Complexation with Soy 7S Globulin. LWT 2022, 161, 113364. [Google Scholar] [CrossRef]
- Cheng, Y.; Ofori Donkor, P.; Yeboah, G.B.; Ayim, I.; Wu, J.; Ma, H. Modulating the in Vitro Digestion of Heat-Set Whey Protein Emulsion Gels via Gelling Properties Modification with Sequential Ultrasound Pretreatment. LWT 2021, 149, 111856. [Google Scholar] [CrossRef]
- Peng, J.; Calabrese, V.; Ainis, W.N.; Scager, R.; Velikov, K.P.; Venema, P.; van der Linden, E. Mixed Gels from Whey Protein Isolate and Cellulose Microfibrils. Int. J. Biol. Macromol. 2019, 124, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhu, L.; Delahaije, R.J.B.M.; Cheng, Z.; Zhou, X.; Sagis, L.M.C. Acid-Induced Gels from Soy and Whey Protein Thermally-Induced Mixed Aggregates: Rheology and Microstructure. Food Hydrocoll. 2022, 125, 107376. [Google Scholar] [CrossRef]
- Mao, C.; Wu, J.; Zhang, X.; Ma, F.; Cheng, Y. Improving the Solubility and Digestibility of Potato Protein with an Online Ultrasound-Assisted PH Shifting Treatment at Medium Temperature. Foods 2020, 9, 1908. [Google Scholar] [CrossRef]
- Nascimento, L.G.L.; Queiroz, L.S.; Petersen, H.O.; Marie, R.; Silva, N.F.N.; Mohammadifar, M.A.; de Sá Peixoto Júnior, P.P.; Delaplace, G.; de Carvalho, A.F.; Casanova, F. High-Intensity Ultrasound Treatment on Casein: Pea Mixed Systems: Effect on Gelling Properties. Food Chem. 2023, 422, 136178. [Google Scholar] [CrossRef]
- Wu, J.; Mao, C.; Zhang, W.; Cheng, Y. Prediction and Identification of Antioxidant Peptides in Potato Protein Hydrolysate. J. Food Qual. 2020, 2020, 8889555. [Google Scholar] [CrossRef]
- Li, L.; He, H.; Wu, D.; Lin, D.; Qin, W.; Meng, D.; Yang, R.; Zhang, Q. Rheological and Textural Properties of Acid-Induced Soybean Protein Isolate Gel in the Presence of Soybean Protein Isolate Hydrolysates or Their Glycosylated Products. Food Chem. 2021, 360, 129991. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zhang, W.; Liu, C.; Jauregi, P.; Huang, M. Modification of Heat-Induced Whey Protein Gels by Basic Amino Acids. Food Hydrocoll. 2020, 100, 105397. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Lorieau, L.; Halabi, A.; Ligneul, A.; Hazart, E.; Dupont, D.; Floury, J. Impact of the Dairy Product Structure and Protein Nature on the Proteolysis and Amino Acid Bioaccessibility during in Vitro Digestion. Food Hydrocoll. 2018, 82, 399–411. [Google Scholar] [CrossRef]
- Homer, S.; Williams, R.; Williams, A.; Logan, A. WPI Gel Microstructure and Mechanical Behaviour and Their Influence on the Rate of In Vitro Digestion. Foods 2021, 10, 1066. [Google Scholar] [CrossRef] [PubMed]
- Somaratne, G.; Nau, F.; Ferrua, M.J.; Singh, J.; Ye, A.; Dupont, D.; Singh, R.P.; Floury, J. Characterization of Egg White Gel Microstructure and Its Relationship with Pepsin Diffusivity. Food Hydrocoll. 2020, 98, 105258. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Wu, J.; Donkor, P.O.; Li, T.; Ma, H. Improving the Enzymolysis Efficiency of Potato Protein by Simultaneous Dual-frequency Energy-gathered Ultrasound Pretreatment: Thermodynamics and Kinetics. Ultrason. Sonochem. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Cheng, Y.; Yeboah, G.B.; Guo, X.; Donkor, P.O.; Wu, J. Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers 2022, 14, 2054. [Google Scholar] [CrossRef]
- He, Z.; Liu, C.; Zhao, J.; Guo, F.; Wang, Y. Enhanced Gelling Properties and Hydration Capacity of Ginkgo Seed Proteins by Genipin Cross-Linking. Food Chem. 2023, 399, 133924. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, G.; Han, T.; Li, R.; Liu, H.; Gao, B.; Tu, Y.; Zhao, Y. Improvement of Gel Properties and Digestibility of the Water-Soluble Polymer of Tea Polyphenol-Egg White under Thermal Treatment. Food Chem. 2022, 372, 131319. [Google Scholar] [CrossRef]
- Cichero, J.A.Y.; Lam, P.; Steele, C.M.; Hanson, B.; Chen, J.; Dantas, R.O.; Duivestein, J.; Kayashita, J.; Lecko, C.; Murray, J.; et al. Development of International Terminology and Definitions for Texture-Modified Foods and Thickened Fluids Used in Dysphagia Management: The IDDSI Framework. Dysphagia 2017, 32, 293–314. [Google Scholar] [CrossRef]
- Mao, C.; Wu, J.; Cheng, Y.; Chen, T.; Ren, X.; Ma, H. Physicochemical Properties and Digestive Kinetics of Whey Protein Gels Filled with Potato and Whey Protein Mixture Emulsified Oil Droplets: Effect of Protein Ratios. Food Funct. 2021, 12, 5927–5939. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Extreme PH Treatments Enhance the Structure-Reinforcement Role of Soy Protein Isolate and Its Emulsions in Pork Myofibrillar Protein Gels in the Presence of Microbial Transglutaminase. Meat Sci. 2013, 93, 469–476. [Google Scholar] [CrossRef]
- Yan, J.-N.; Zhang, M.; Zhao, J.; Tang, Y.; Han, J.-R.; Du, Y.-N.; Jiang, H.; Jin, W.-G.; Wu, H.-T.; Zhu, B.-W. Gel Properties of Protein Hydrolysates from Trypsin-Treated Male Gonad of Scallop (Patinopecten yessoensis). Food Hydrocoll. 2019, 90, 452–461. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Zhang, M.; Zhai, Y.; Zhou, B.; Su, Y.; Yang, Y. Effects of Selected Phosphate Salts on Gelling Properties and Water State of Whole Egg Gel. Food Hydrocoll. 2018, 77, 1–7. [Google Scholar] [CrossRef]
- Ozel, B.; Uguz, S.S.; Kilercioglu, M.; Grunin, L.; Oztop, M.H. Effect of Different Polysaccharides on Swelling of Composite Whey Protein Hydrogels: A Low Field (LF) NMR Relaxometry Study. J. Food Process Eng. 2017, 40, e12465. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Xiao, L.; Ould Eleya, M.M. Whey Protein Concentrate Hydrogels as Bioactive Carriers. J. Appl. Polym. Sci. 2006, 99, 2470–2476. [Google Scholar] [CrossRef]
- He, Z.; Ma, T.; Zhang, W.; Su, E.; Cao, F.; Huang, M.; Wang, Y. Heat-Induced Gel Formation by Whey Protein Isolate-Lycium Barbarum Polysaccharides at Varying PHs. Food Hydrocoll. 2021, 115, 106607. [Google Scholar] [CrossRef]
- Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of Ultrasound Treatment for Improving the Physicochemical, Functional and Rheological Properties of Myofibrillar Proteins. Int. J. Biol. Macromol. 2018, 111, 139–147. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Liu, C.; Li, W. Influence of γ-Aminobutyric Acid on Gelling Properties of Heat-Induced Whey Protein Gels. Food Hydrocoll. 2019, 94, 287–293. [Google Scholar] [CrossRef]
- Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Comparative Study of the Structural Properties, Color, Bioactive Compounds Content and Antioxidant Capacity of Aerated Gelatin Gels Enriched with Cryoconcentrated Blueberry Juice during Storage. Polymers 2020, 12, 2769. [Google Scholar] [CrossRef]
- Wendin, K.; Ekman, S.; Bülow, M.; Ekberg, O.; Johansson, D.; Rothenberg, E.; Stading, M. Objective and Quantitative Definitions of Modified Food Textures Based on Sensory and Rheological Methodology. Food Nutr. Res. 2010, 54, 5134. [Google Scholar] [CrossRef]
- Wada, S.; Kawate, N.; Mizuma, M. What Type of Food Can Older Adults Masticate?: Evaluation of Mastication Performance Using Color-Changeable Chewing Gum. Dysphagia 2017, 32, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, D.-K.; Lee, S.Y.; Park, K.-H. The Effect of Aging on Mastication and Swallowing Parameters According to the Hardness Change of Solid Food. J. Texture Stud. 2017, 48, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Min, C.; Ma, W.; Kuang, J.; Huang, J.; Xiong, Y.L. Textural Properties, Microstructure and Digestibility of Mungbean Starch–Flaxseed Protein Composite Gels. Food Hydrocoll. 2022, 126, 107482. [Google Scholar] [CrossRef]
- Chu, L.; Yang, L.; Li, J.; Lin, L.; Zheng, G. Effect of Smilax china L. Starch on the Gel Properties and Interactions of Calcium Sulfate-Induced Soy Protein Isolate Gel. Int. J. Biol. Macromol. 2019, 135, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, C.; Zhao, J.; Guo, F.; You, J.; Zhang, L.; Wang, Y. Alkali-Induced Phenolic Acid Oxidation Enhanced Gelation of Ginkgo Seed Protein. Foods 2023, 12, 1506. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef]
- Gao, X.; Kang, Z.; Zhang, W.; Li, Y.; Zhou, G. Combination of Kappa-Carrageenan and Soy Protein Isolate Effects on Functional Properties of Chopped Low-Fat Pork Batters During Heat-Induced Gelation. Food Bioprocess Technol. 2015, 8, 1524–1531. [Google Scholar] [CrossRef]
- Alting, A.C.; Hamer, R.J.; de Kruif, C.G.; Visschers, R.W. Formation of Disulfide Bonds in Acid-Induced Gels of Preheated Whey Protein Isolate. J. Agric. Food Chem. 2000, 48, 5001–5007. [Google Scholar] [CrossRef]
- Yu, B.; Ren, F.; Zhao, H.; Cui, B.; Liu, P. Effects of Native Starch and Modified Starches on the Textural, Rheological and Microstructural Characteristics of Soybean Protein Gel. Int. J. Biol. Macromol. 2020, 142, 237–243. [Google Scholar] [CrossRef]
- Mezzenga, R.; Fischer, P. The Self-Assembly, Aggregation and Phase Transitions of Food Protein Systems in One, Two and Three Dimensions. Rep. Prog. Phys. 2013, 76, 046601. [Google Scholar] [CrossRef]
- Joeres, E.; Schölzel, H.; Drusch, S.; Töpfl, S.; Heinz, V.; Terjung, N. Ohmic vs. Conventional Heating: Influence of Moderate Electric Fields on Properties of Egg White Protein Gels. Food Hydrocoll. 2022, 127, 107519. [Google Scholar] [CrossRef]
- McCann, T.H.; Guyon, L.; Fischer, P.; Day, L. Rheological Properties and Microstructure of Soy-Whey Protein. Food Hydrocoll. 2018, 82, 434–441. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Malekjani, N.; Jafari, S.M. Modeling the Release of Food Bioactive Ingredients from Carriers/Nanocarriers by the Empirical, Semiempirical, and Mechanistic Models. Compr. Rev. Food. Sci. Food Saf. 2021, 20, 3–47. [Google Scholar] [CrossRef]
- Romano, A.; Giosafatto, C.V.L.; Masi, P.; Mariniello, L. Impact of Dehulling on the Physico-Chemical Properties and in Vitro Protein Digestion of Common Beans (Phaseolus vulgaris L.). Food Funct. 2015, 6, 1345–1351. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–Lipid and Starch–Lipid–Protein Complexes: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef]
- Luo, N.; Ye, A.; Wolber, F.M.; Singh, H. Effect of Gel Structure on the In Vitro Gastrointestinal Digestion Behaviour of Whey Protein Emulsion Gels and the Bioaccessibility of Capsaicinoids. Molecules 2021, 26, 1379. [Google Scholar] [CrossRef]
Sample | Hardness (g) | Resilience (%) | Cohesiveness | Springiness | Chewiness |
---|---|---|---|---|---|
8/5 | 23.89 ± 1.09 e | 73.87 ± 0.94 c | 0.97 ± 0.01 a | 130.37 ± 15.7 c | 29.29 ± 4.62 c |
9/4 | 26.82 ± 0.16 d | 78.35 ± 0.4 b | 0.95 ± 0.01 ab | 154.52 ± 14.92 b | 42.52 ± 1.7 b |
10/3 | 28.64 ± 0.54 d | 77.53 ± 0.65 b | 0.95 ± 0.01 ab | 174.93 ± 10.78 ab | 42.44 ± 5.71 b |
11/2 | 32.58 ± 0.84 c | 77.94 ± 0.71 b | 0.96 ± 0.01 a | 182.29 ± 1.31 a | 47.50 ± 5.36 b |
12/1 | 53.26 ± 1.08 b | 77.94 ± 0.44 b | 0.95 ± 0.01 ab | 97.2 ± 0.13 d | 49.61 ± 1.46 b |
Control | 80.87 ± 0.6 a | 81.73 ± 0.51 a | 0.93 ± 0.01 b | 96.07 ± 2.2 d | 76.30 ± 3.01 a |
Sample | T2b (%) | T22 (%) | T23 (%) |
---|---|---|---|
8/5 | 2.65 ± 0.81 | 97.23 ± 0.72 | 0.11 ± 0.10 b |
9/4 | 2.84 ± 0.41 | 97.06 ± 0.39 | 0.10 ± 0.07 b |
10/3 | 2.64 ± 0.48 | 97.18 ± 0.47 | 0.19 ± 0.02 b |
11/2 | 2.74 ± 0.28 | 97.06 ± 0.33 | 0.20 ± 0.06 b |
12/1 | 2.06 ± 0.16 | 97.48 ± 0.20 | 0.46 ± 0.08 a |
Control | 2.86 ± 0.52 | 97.11 ± 0.49 | 0.51 ± 0.15 a |
WPI/PPH | 8/5 | 9/4 | 10/3 | 11/2 | 12/1 | Control |
---|---|---|---|---|---|---|
logK | −1.4219 | −1.3990 | −1.3816 | −1.4080 | −1.3509 | −1.3459 |
n | 0.5322 | 0.5223 | 0.5096 | 0.5252 | 0.5120 | 0.5172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wu, J.; Cheng, Y. Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels. Foods 2023, 12, 2040. https://doi.org/10.3390/foods12102040
Zhang H, Wu J, Cheng Y. Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels. Foods. 2023; 12(10):2040. https://doi.org/10.3390/foods12102040
Chicago/Turabian StyleZhang, Haowei, Juan Wu, and Yu Cheng. 2023. "Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels" Foods 12, no. 10: 2040. https://doi.org/10.3390/foods12102040
APA StyleZhang, H., Wu, J., & Cheng, Y. (2023). Mechanical Properties, Microstructure, and In Vitro Digestion of Transglutaminase-Crosslinked Whey Protein and Potato Protein Hydrolysate Composite Gels. Foods, 12(10), 2040. https://doi.org/10.3390/foods12102040