Preparation and Characterization of the Composition of Volatile Compounds, Fatty Acids and Thermal Behavior of Paprika
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Description
Paprika Preparation Methods
2.3. Extraction of Lipids from Paprika Powder
2.3.1. Lipid Extraction Yield
2.3.2. Fatty Acid Methyl Esters (FAMEs)
2.3.3. Free Fatty Acid (FFA) Content from Extracted Oil
2.3.4. GC Analysis
2.4. Thermal Analysis
2.5. Volatile Composition
2.6. Antioxidant Characterization
2.7. Cellulose, Hemicellulose and Lignin Content
2.8. Statistical Analysis
3. Results and Discussion
3.1. Thermal Behavior
3.2. Cellulose, Hemicellulose and Lignin Content of Paprika Samples
3.3. HS-SPME GC-MS Analysis of Volatile Organic Compounds
3.4. Fatty Acid Content in Paprika Oil Varieties
3.5. Total Polyphenol Contents
3.6. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín, A.; Hernández, A.; Aranda, E.; Casquete, R.; Velázquez, R.; Bartolomé, T.; Córdoba, M.G. Impact of volatile composition on the sensorial attributes of dried paprika. Food Res. Int. 2017, 100, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Škrovánková, S.; Mlček, J.; Orsavová, J.; Juríková, T.; Dřímalová, P. Polyphenols content and antioxidant activity of paprika and pepper spices. Slovak. J. Food Sci. 2017, 11, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Sukchum, N.; Surasereewong, S.; Chaethong, K. Volatile compounds and physicochemical characteristics of Thai roasted chilli seasoning. Food Res. 2022, 6, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.; Hakmaoui, A.; Ouatmane, A.; Fernandez-Trujillo, J.P. Quality characteristics of Moroccan sweet paprika (Capsicum annum L.) at different sampling times. Food Sci. Technol. 2013, 33, 577–585. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Durán-Merás, I.; de la Peña, A.M.; Galeano-Díaz, T. Analytical techniques and chemometrics approaches in authenticating and identifying adulteration of paprika powder using fingerprints: A review. Microchem. J. 2022, 178, 107382. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 134, 135, 238, 239, 253, 262, 369, 492, 799, 828, 1090, 1091, 1261, 1262, 1269, 1270, 1305, 1306, 1448, 1451, 1452, 1496, 1621, 1632, 1695, 1696, 1697, 1875, 1877. [Google Scholar]
- Heng, Z.; Xu, X.; Xu, X.; Li, Y.; Wang, H.; Huang, W.; Yan, S.; Li, T. Integrated transcriptomic and metabolomic analysis of chili pepper fruits provides new insight into the regulation of the branched chain esters and capsaicin biosynthesis. Food Res. Int. 2023, 169, 112856. [Google Scholar] [CrossRef]
- Tepić, A.; Zeković, Z.; Kravić, S.; Mandić, A. Pigment content and fatty acid composition of paprika oleoresins obtained by conventional and supercritical carbon dioxide extraction. CyTA-J. Food 2009, 7, 95–102. [Google Scholar] [CrossRef]
- Abbeddou, S.; Petrakis, C.; Pérez-Gálvez, A.; Kefalas, P.; Hornero-Méndez, D. Effect of Simulated Thermo-Degradation on the Carotenoids, Tocopherols and Antioxidant Properties of Tomato and Paprikan Oleoresins. J. Am. Oil Chem. Soc. 2013, 90, 1679–1703. [Google Scholar] [CrossRef]
- Kim, J.-S.; Ha, T.-Y.; Kim, S.; Lee, S.-J.; Ahn, J. Red paprika (Capsicum annuum L.) and its main carotenoid capsanthin ameliorate impaired lipid metabolism in the liver and adipose tissue of high-fat diet-induced obese mice. J. Funct. Foods 2017, 31, 131–140. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Mazurek, B.; Kostrzewa, M. Pilot-Scale Optimization of Supercritical CO2 Extraction of Dry Paprika Capsicum annuum: Influence of Operational Conditions and Storage on Extract Composition. Molecules 2022, 27, 2090. [Google Scholar] [CrossRef]
- Matei, P.L.; Deleanu, I.; Brezoiu, A.M.; Chira, N.A.; Busuioc, C.; Isopencu, G.; Ciltea-Udrescu, M.; Alexandrescu, E.; Stoica-Guzun, A. Ultrasound-Assisted Extraction of Blackberry Seed Oil: Optimization and Oil Characterization. Molecules 2023, 28, 2486. [Google Scholar] [CrossRef]
- Pohndorf, R.S.; Camara, A.S.; Larrosa, A.P.Q.; Pinheiro, C.P.; Strieder, M.M.; Pinto, L.A.A. Production of lipids from microalgae Spirulina sp. sp.: Influence of drying, cell disruption and extraction methods. Biomass Bioener. 2016, 93, 25–32. [Google Scholar] [CrossRef]
- Petrović, M.; Kezić, N.; Bolanća, V. Optimization of the GC method for routine analysis of the fatty acid profile in several food samples. Food Chem. 2010, 122, 285–291. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Crafack, M.; Jespersen, L.; Jakobsen, M. The Microbiology of Cacao Fermentation. In Chocolate in Health and Nutrition; Humana Press: Totowa, NJ, USA, 2012; Volume 7, pp. 39–60. [Google Scholar]
- Senila, L.; Kovacs, E.; Scurtu, D.A.; Cadar, O.; Becze, A.; Senila, M.; Levei, E.A.; Dumitras, D.E.; Tenu, I.; Roman, C. Bioethanol production from vineyard waste by autohydrolysis pretreatment and chlorite delignification via simultaneous saccharification and fermentation. Molecules 2020, 25, 2606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, Z.; Lu, X.; Ma, X. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil. Bioresour. Technol. 2021, 319, 124191. [Google Scholar] [CrossRef]
- Feraz, M.C.; Procopio, F.R.; Furtado, G.F.; Hubinger, M.D. Co-encapsulation of paprika and cinnamon oleoresin by spray drying using whey protein isolate and maltodextrin as wall material: Development, characterization and storage stability. Food Res. Int. 2022, 162, 112164. [Google Scholar] [CrossRef]
- Qiu, J.; Zheng, Q.; Fang, L.; Wang, Y.; Min, M.; Shen, C.; Tong, Z.; Xiong, C. Preparation and characterization of casein-carrageenan conjugates and self-assembled microcapsules for encapsulation of red pigment from paprika. Carbohydr. Polym. 2018, 196, 322–331. [Google Scholar] [CrossRef]
- Dippong, T.; Dan, M.; Kovacs, M.H.; Kovacs, E.D.; Levei, E.A.; Cadar, O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods 2022, 11, 3146. [Google Scholar] [CrossRef]
- Dippong, T.; Mihali, C.; Vosgan, Z.; Daniel, A.; Dumuta, A. Thermal behavior of different cocoa powder varieties and their physicochemical, phytochemical and microbiological characteristics. J. Therm. Anal. Calorim. 2021, 143, 4217–4228. [Google Scholar] [CrossRef]
- Ciolacu, D.; Oprea, A.M.; Anghel, N.; Cazacu, G.; Cazacu, M. New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mater. Sci. Eng. C 2012, 32, 452–463. [Google Scholar] [CrossRef]
- Estrada, B.; Bernal, M.A.; Díaz, J.; Pomar, F.; Merino, F. Fruit development in Capsicum annum: Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. J. Agric. Food Chem. 2000, 48, 6234–6239. [Google Scholar] [CrossRef]
- Mudrić, S.Ž.; Gašić, U.M.; Dramićanin, A.M.; Ćirić, N.Ž.; Milojković-Opsenica, D.M.; Popović-Dordević, J.B.; Momirović, N.M.; Tešić, Ž.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Aguirrezábal, M.; Domínguez, C.; Zumalacárregui, J.M. Volatile Compounds in Spanish Paprika. J. Food Comp. Anal. 1997, 10, 225–232. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hayaloglu, A.A.; Atasoy, A.F. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT Food Sci. Technol. 2017, 84, 842–850. [Google Scholar] [CrossRef]
- Korkmaz, A.; Atasoy, A.F.; Hayaloglu, A.H. Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage. Food Chem. 2020, 311, 125910. [Google Scholar] [CrossRef]
- Cremer, D.R.; Eichner, K. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder. J. Agric. Food Chem. 2000, 48, 2454–2460. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Coghe, S.; Verstrepen, K.J.; Verachtert, H.; Derdelinckx, G. Evolution of chemical and sensory properties during aging of top-fermented beer. J. Agric. Food Chem. 2003, 51, 6782–6790. [Google Scholar] [CrossRef]
- Caporaso, N.; Paduano, A.; Nicoletti, G.; Sacchi, R. Capsaicinoids, antioxidant activity, and volatile compounds in olive oil flavored with dried chili pepper (Capsicum annuum). Eur. J. Lipid Sci. Technol. 2013, 115, 1434–1442. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Wang, Q.; Yang, L.; Karrar, E.; Jin, Q.; Zhang, H.; Wu, G.; Wang, X. Capsaicinoids and volatile flavor compounds profile of Sichuan hotpot as affected by cultivar of chili peppers during processing. Food Res. Int. 2023, 165, 112476. [Google Scholar] [CrossRef]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agri. 2020, 100, 3087–3098. [Google Scholar] [CrossRef]
- Block, E.; Ahmad, S.; Catalfamo, J.L.; Jain, M.K.; Apitz-Castro, R. Antithrombotic organosulfur compounds from garlic: Structural, mechanistic and synthetic studies. J. Am. Chem. Soc. 1986, 108, 7045–7055. [Google Scholar] [CrossRef]
- Wu, J.L.; Chou, C.C.; Chen, M.H.; Wu, C.M. Volatile flavor compounds from shallots. J. Food Sci. 1982, 47, 606–608. [Google Scholar] [CrossRef]
- Calvo-Gómez, O.; Morales-López, J.; López, M.G. Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation. J. Chromatogr. A 2004, 1036, 91–93. [Google Scholar] [CrossRef]
- Mazida, M.M.; Salleh, M.M.; Osman, H. Analysis of volatile aroma compounds of fresh chilli (Capsicum annuum) during stages of maturity using solid phase microextraction (SPME). J. Food Comp. Anal. 2005, 18, 427–437. [Google Scholar] [CrossRef]
- Rutkowska, J.; Stolyhwo, A. Application of carbon dioxide in subcritical state (LCO2) for extraction/fractionation of carotenoids from red paprika. Food Chem. 2009, 115, 745–752. [Google Scholar] [CrossRef]
- Sánchez, C.A.O.; Zavaleta, E.B.; García, G.R.U.; Solano, G.L.; Díaz, M.P.R. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. LWT-Food Sci. Technol. 2021, 147, 111476. [Google Scholar] [CrossRef]
- Food and Agricultural Organization of United Nations. Interim Summary of Conclusion and Dietary Recommendations on Total Fat & Fatty Acids; FAO: Roma, Italy, 2008. [Google Scholar]
- Janda, K.; Jakubczyk, K.; Baranowska-Bosiacka, I.; Kapczuk, P.; Kochman, J.; Rebacz-Maron, E.; Gutowska, I. Mineral Composition and Antioxidant Potential of Coffee Beverages Depending on the Brewing Method. Foods 2020, 9, 121. [Google Scholar] [CrossRef]
Rt (min) | Volatile Compounds | Chemical Group | Odor Types | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | 2-methylbutan-1-ol | alcohols | green | 17.2 ± 1.9 | 9.5 ± 1.0 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
5.2 | dimethyl disulfide | sulfur comp | green | <0.03 | <0.03 | <0.03 | <0.03 | 17.2 ± 1.8 | <0.03 | <0.03 | <0.03 |
6.5 | 2-methylisovalerate | esters | fruity | <0.05 | <0.05 | <0.05 | 1.3 ± 0.1 | <0.05 | <0.05 | <0.05 | <0.05 |
7.4 | hexanal | aldehydes | green | <0.02 | <0.02 | <0.02 | 2.7 ± 0.3 | <0.02 | 5.3 ± 0.7 | <0.02 | 18.6 ± 2.2 |
8.9 | furfural | aldehydes | woody | 28.1 ± 3.1 | 52.4 ± 5.9 | 44.3 ± 4.6 | <0.03 | 53.5 ± 6.1 | <0.03 | <0.03 | <0.03 |
10.2 | 2-methyloctane | hydrocarbons | gasoline | 54.7 ± 6.4 | 17.2 ± 1.8 | <0.06 | <0.06 | 11.1 ± 1.2 | <0.06 | <0.06 | <0.06 |
11.2 | 2-heptanone | ketones | fruity | <0.04 | <0.04 | 7.1 ± 0.8 | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 |
12.0 | 2-Propanone | ketones | fruity | <0.03 | 4.4 ± 0.5 | 6.7 ± 0.7 | <0.03 | 3.6 ± 0.4 | <0.03 | <0.03 | <0.03 |
12.6 | 4-carene | hydrocarbons | fruity | <0.05 | <0.05 | <0.05 | 2.1 ± 0.2 | <0.05 | 1.6 ± 0.2 | <0.05 | <0.05 |
12.8 | α-pinene | hydrocarbons | woody | <0.02 | <0.02 | <0.02 | 6.3 ± 0.7 | <0.02 | 4.9 ± 0.5 | <0.02 | <0.02 |
13.0 | 3-(bromomethyl)cyclohexane | hydrocarbons | woody | <0.03 | <0.03 | 2.5 ± 0.3 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
13.4 | camphene | hydrocarbons | green | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | 2.5 ± 0.3 | <0.02 | <0.02 |
13.8 | benzaldehyde | aldehydes | woody | <0.02 | 3.9 ± 0.4 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
14.0 | 5-methyl furfural | aldehydes | woody | <0.03 | 5.2 ± 0.5 | 6.9 ± 0.7 | <0.03 | 3.9 ± 0.4 | <0.03 | <0.03 | <0.03 |
14.1 | 2-methyl-7-norbornanol | alcohols | fruity | <0.05 | 3.3 ± 0.4 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
14.3 | β-phellandrene | hydrocarbons | fruity | <0.03 | <0.03 | <0.03 | 11.1 ± 1.2 | <0.03 | <0.03 | <0.03 | <0.03 |
14.4 | β-ocimene | hydrocarbons | fruity | <0.02 | <0.02 | <0.02 | 10.3 ± 1.1 | <0.02 | <0.02 | <0.02 | <0.02 |
14.5 | β-pinene | hydrocarbons | woody | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 | 4.2 ± 0.5 | <0.04 | <0.04 |
15.0 | (-)-cis-myrtenol | alcohols | green | <0.02 | <0.02 | 2.8 ± 0.3 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
15.0 | β-myrcene | hydrocarbons | woody | <0.02 | <0.02 | <0.02 | 3.7 ± 0.4 | <0.02 | <0.02 | <0.02 | <0.02 |
15.5 | 1.3.8-p-menthathiene | hydrocarbons | woody | <0.04 | <0.04 | <0.04 | 2.5 ± 0.3 | <0.04 | <0.04 | <0.04 | <0.04 |
15.7 | terpinyl acetate | esters | green | <0.02 | <0.02 | <0.02 | 12.1 ± 1.2 | <0.02 | 3.2 ± 0.3 | <0.02 | <0.02 |
16.2 | m-cymene | hydrocarbons | fruity | <0.05 | <0.05 | <0.05 | 8.1 ± 0.8 | <0.05 | 10.8 ± 1.1 | <0.05 | <0.05 |
16.3 | limonene | hydrocarbons | citrus | <0.04 | 4.1 ± 0.4 | 5.4 ± 0.5 | 30.2 ± 3.1 | 7.5 ± 0.8 | 41.7 ± 4.3 | 100 ± 9.9 | 42.8 ± 4.3 |
17.0 | β-ocimene | hydrocarbons | fruity | <0.02 | <0.02 | 5.3 ± 0.6 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
17.4 | γ -terpinene | hydrocarbons | fruity | <0.03 | <0.03 | <0.03 | 4.3 ± 0.4 | <0.03 | 4.2 ± 0.4 | <0.03 | <0.03 |
18.3 | terpinolene | hydrocarbons | floral | <0.02 | <0.02 | <0.02 | 1.5 ± 0.1 | <0.02 | <0.02 | <0.02 | <0.02 |
19.6 | 2-nonen-4-one | ketones | fruity | <0.03 | <0.03 | 5.8 ± 0.6 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
20.6 | 2-n-pentylthiophene | heterocyclic | green | <0.03 | <0.03 | 6.4 ± 0.7 | <0.03 | <0.03 | <0.03 | <0.03 | 38.6 ± 3.9 |
22.1 | phenylsulfanylacetaldehyde | aldehydes | green | <0.01 | <0.01 | 5.1 ± 0.5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
23.2 | d-carvone | ketones | floral | <0.02 | <0.02 | 1.7 ± 0.2 | <0.02 | 3.2 ± 0.3 | 21.6 ± 2.2 | <0.02 | <0.02 |
29.7 | cedrene | hydrocarbons | woody | <0.03 | <0.03 | <0.03 | 3.8 ± 0.4 | <0.03 | <0.03 | <0.03 | <0.03 |
Acid Type | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
C12:0 | 2.49 ± 0.1 | 3.13 ± 0.12 | <0.032 | 0.54 ± 0.01 | 3.56 ± 0.12 | 0.91 ± 0.01 | 1.32 ± 0.01 | 0.32 ± 0.01 |
C14:0 | 3.61 ± 0.1 | 3.76 ± 0.11 | 3.16 ± 0.15 | 0.96 ± 0.01 | 4.70 ± 0.15 | 1.31 ± 0.01 | 1.76 ± 0.01 | 0.79 ± 0.01 |
C14:1 | 1.40 ± 0.08 | 1.69 ± 0.07 | <0.036 | <0.036 | <0.036 | 0.64 ± 0.01 | 0.91 ± 0.02 | 2.01 ± 0.05 |
C15:0 | 1.56 ± 0.01 | 1.52 ± 0.02 | <0.014 | 0.24 ± 0.01 | 1.84 ± 0.02 | 0.41 ± 0.01 | 0.64 ± 0.02 | 0.23 ± 0.01 |
C16:0 | 16.0 ± 1.1 | 14.6 ± 1.0 | 13.0 ± 1.1 | 13.0 ± 1.0 | 15.5 ± 1.2 | 10.6 ± 0.8 | 12.2 ± 1.0 | 11.2 ± 1.1 |
C16:1 | 1.93 ± 0.08 | 2.11 ± 0.08 | 1.65 ± 0.05 | 0.63 ± 0.01 | 2.13 ± 0.08 | 0.69 ± 0.02 | 0.93 ± 0.03 | 0.46 ± 0.01 |
C17:0 | 2.85 ± 0.1 | 1.68 ± 0.1 | 2.42 ± 0.08 | 0.31 ± 0.01 | 2.49 ± 0.07 | 1.64 ± 0.01 | 1.24 ± 0.03 | 0.65 ± 0.01 |
C17:1 | 1.66 ± 0.04 | 1.77 ± 0.05 | <0.023 | 0.23 ± 0.01 | <0.023 | <0.023 | <0.023 | 0.15 ± 0.01 |
C18:0 | 7.57 ± 0.2 | 7.82 ± 0.41 | 5.29 ± 0.21 | 3.14 ± 0.12 | 6.64 ± 1.3 | 3.40 ± 0.01 | 4.17 ± 0.1 | 3.33 ± 0.13 |
C18:1(c + t)(n9) | 5.12 ± 0.1 | 6.85 ± 0.12 | 5.02 ± 0.31 | 10.4 ± 1.0 | 5.60 ± 1.3 | 14.0 ± 1.1 | 9.61 ± 0.2 | 11.3 ± 1.2 |
C18:2(c + t)(n6) | 21.8 ± 1.8 | 20.3 ± 1.8 | 24.3 ± 1.5 | 64.8 ± 2.3 | 20.7 ± 1.8 | 61.4 ± 2.5 | 56.8 ± 2.3 | 61.9 ± 4.1 |
C18:3(n6) | 4.30 ± 0.2 | 4.22 ± 0.13 | 3.75 ± 0.18 | 0.53 ± 0.02 | 3.44 ± 0.05 | 1.03 ± 0.02 | 1.43 ± 0.08 | 0.36 ± 0.01 |
C18:3(n3) | 19.6 ± 1.2 | 16.68 ± 1.3 | 10.03 ± 0.9 | 1.85 ± 0.012 | 17.78 ± 1.1 | 1.80 ± 0.04 | 4.17 ± 0.12 | 2.33 ± 0.1 |
C20:0 | 2.82 ± 0.1 | 4.27 ± 0.21 | 3.59 ± 0.2 | 0.74 ± 0.02 | 3.42 ± 0.02 | 0.80 ± 0.01 | 1.28 ± 0.08 | 0.29 ± 0.01 |
C20:1 | <0.0052 | <0.0052 | 3.06 ± 0.2 | 0.34 ± 0.01 | <0.0052 | 0.53 ± 0.02 | 0.71 ± 0.02 | 2.62 ± 0.1 |
C20:2 | 1.56 ± 0.1 | <0.0096 | <0.0096 | 0.26 ± 0.01 | 2.56 ± 0.05 | <0.0096 | 1.71 ± 0.01 | 0.19 ± 0.01 |
C21:0 | 2.21 ± 0.08 | 3.04 ± 0.10 | <0.0086 | 0.40 ± 0.01 | 3.18 ± 0.01 | <0.0086 | <0.0086 | 0.29 ± 0.01 |
C20:3(n3) | <0.0061 | 2.22 ± 0.11 | <0.0061 | 0.21 ± 0.01 | 1.72 ± 0.01 | <0.0061 | <0.0061 | 0.13 ± 0.01 |
C20:5(n3) | <0.0058 | 1.46 ± 0.08 | <0.0058 | <0.0058 | <0.0058 | <0.0058 | <0.0058 | 0.13 ± 0.01 |
C22:1 | <0.0063 | <0.0063 | <0.0063 | <0.0063 | <0.0063 | <0.0063 | <0.0063 | 0.13 ± 0.01 |
C22:0 | 1.15 ± 0.02 | 1.42 ± 0.07 | 1.77 ± 0.08 | 0.33 ± 0.01 | 1.46 ± 0.07 | 0.47 ± 0.01 | 0.62 ± 0.01 | 0.26 ± 0.01 |
C22:2 | 1.30 ± 0.01 | <0.0091 | <0.0091 | <0.0091 | 1.62 ± 0.05 | <0.0091 | <0.0091 | 0.13 ± 0.01 |
C23:0 | <0.056 | <0.056 | 21.62 ± 1.8 | 0.77 ± 0.01 | <0.056 | <0.056 | <0.056 | <0.056 |
C24:0 | 1.08 ± 0.08 | 1.42 ± 0.07 | <0.050 | 0.32 ± 0.01 | 1.62 ± 0.1 | 0.43 ± 0.02 | 0.50 ± 0.01 | 0.23 ± 0.01 |
SFA | 41.4 ± 3.1 | 42.7 ± 2.1 | 50.8 ± 4.1 | 20.7 ± 1.6 | 44.4 ± 2.6 | 19.9 ± 1.1 | 23.8 ± 2.0 | 18.1 ± 1.2 |
MUFA | 10.1 ± 1.1 | 12.4 ± 1.0 | 9.7 ± 0.5 | 11.6 ± 1.0 | 7.7 ± 0.2 | 15.9 ± 1.4 | 12.2 ± 1.1 | 16.7 ± 1.3 |
PUFA | 48.5 ± 3.1 | 44.9 ± 3.5 | 38.0 ± 2.3 | 67.6 ± 4.2 | 47.8 ± 3.1 | 64.2 ± 2.6 | 64.1 ± 6.0 | 65.2 ± 4.6 |
ω-6 | 29.0 ± 1.8 | 24.5 ± 1.8 | 28.0 ± 1.5 | 65.6 ± 4.3 | 28.3 ± 1.9 | 62.4 ± 5.2 | 59.9 ± 4.2 | 62.6 ± 4.2 |
ω-3 | 19.6 ± 1.1 | 20.4 ± 1.9 | 10.0 ± 0.9 | 2.1 ± 0.1 | 19.5 ± 1.2 | 1.80 ± 0.08 | 4.17 ± 0.3 | 2.59 ± 0.1 |
ω-6/ω-3 | 1.5 ± 0.08 | 1.2 ± 0.07 | 2.8 ± 0.1 | 31.8 ± 2.6 | 1.5 ± 0.1 | 34.6 ± 2.1 | 14.4 ± 1.2 | 24.2 ± 2.1 |
Paprika | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Polyphenol g GA kg−1 | 8.35 ± 0.79 | 9.44 ± 0.96 | 10.9 ± 1.1 | 8.18 ± 0.82 | 5.61 ± 0.61 | 7.81 ± 0.81 | 7.44 ± 0.73 | 5.11 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dippong, T.; Senila, L.; Muresan, L.E. Preparation and Characterization of the Composition of Volatile Compounds, Fatty Acids and Thermal Behavior of Paprika. Foods 2023, 12, 2041. https://doi.org/10.3390/foods12102041
Dippong T, Senila L, Muresan LE. Preparation and Characterization of the Composition of Volatile Compounds, Fatty Acids and Thermal Behavior of Paprika. Foods. 2023; 12(10):2041. https://doi.org/10.3390/foods12102041
Chicago/Turabian StyleDippong, Thomas, Lacrimioara Senila, and Laura Elena Muresan. 2023. "Preparation and Characterization of the Composition of Volatile Compounds, Fatty Acids and Thermal Behavior of Paprika" Foods 12, no. 10: 2041. https://doi.org/10.3390/foods12102041
APA StyleDippong, T., Senila, L., & Muresan, L. E. (2023). Preparation and Characterization of the Composition of Volatile Compounds, Fatty Acids and Thermal Behavior of Paprika. Foods, 12(10), 2041. https://doi.org/10.3390/foods12102041