Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Sources of Materials, Equipment Used for the Production of ALP Supplemented Ujeqe
2.3. Description of the Study Area
2.4. Production of Amaranthus Leaf Powder
2.5. Production of Standardized Amaranthus Leaf Powder Supplemented Ujeqe (ALPSU)
2.6. Production of Amaranthus Leaf Powder Supplemented Ujeqe (ALPSU)
2.7. Physical Properties of Ujeqe Dough and Ujeqe ALP-Supplemented Food Prototypes
2.8. Nutritional Analysis of ALP Ujeqe Food Samples
2.9. Data Analysis
2.10. Ethical Clearance
2.11. Sensory Evaluation Exercise
3. Results and Discussion
3.1. Indigenous Knowledge and Perception of Ujeqe in the Study Area
3.2. Macronutrient Composition of the Raw Materials for Ujeqe
3.3. Effects of ALP Supplementation on Ujeqe Macronutrient Composition
3.4. Effects of ALP Supplementation on Ujeqe Micronutrient Composition
3.5. Sensory Evaluation and Consumer Acceptability of ALP-Supplemented Ujeqe
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrancheva, R.; Krystev, L.; Popova, A.; Mihaylova, D. Proximate nutritional composition and heat-induced changes of starch in selected grains and seeds♣. Emir. J. Food Agric. 2019, 31, 718–724. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Cereal Grains: Properties, Processing, and Nutritional Attributes; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Odunlade, T.; Famuwagun, A.; Taiwo, K.; Gbadamosi, S.; Oyedele, D.; Adebooye, O. Chemical composition and quality characteristics of wheat bread supplemented with leafy vegetable powders. J. Food Qual. 2017, 2017, 9536716. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Aruna, T.E.; Raji, A.O. Nutritive value and acceptability of bread fortified with moringa seed powder. J. Saudi Soc. Agric. Sci. 2019, 18, 195–200. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- El-Gammal, R.E.; Ghoneim, G.A.; ElShehawy, S.M. Effect of moringa leaves powder (Moringa oleifera) on some chemical and physical properties of pan bread. J. Food Dairy Sci. 2016, 7, 307–314. [Google Scholar] [CrossRef]
- Huang, S.; Miskelly, D. Steamed Breads: Ingredients, Processing and Quality; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Atuna, R.; Sam, F.; Ackah, S.; Amagloh, F. Bread consumption pattern and the potential of orange-fleshed sweetpotato-composite bread in Ghana. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16509–16521. [Google Scholar] [CrossRef]
- Wijaya, A.F.; Kuntariningsih, A.; Sarwono, S.; Suryono, A. Malnutrition mitigation and community empowerment through the sustainable food reserve programme in Indonesia. Dev. Pract. 2021, 31, 37–48. [Google Scholar] [CrossRef]
- Qumbisa, N.D.; Ngobese, N.; Kolanisi, U.; Siwela, M.; Gebashe, F.C. Effect of Amaranthus Leaf Powder (ALP) Addition on the Nutritional Composition, Physical Quality and Consumer Acceptability of Instant Noodles. 2021. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0254629921000314 (accessed on 27 April 2022).
- Olusanya, M.R.N.; Kolanisi, U.; Ngobese, N. 2259 Supplementing Jeqe (Steamed Bread) with Amaranthus Leaf Powder for Improved Nutrient Intake; Book of Abstracts; 2022; p. 94. [Google Scholar]
- Achigan-Dako, E.G.; Sogbohossou, O.E.; Maundu, P.J.E. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef]
- Simelane, K.S.; Worth, S. Food and nutrition security theory. Food Nutr. Bull. 2020, 41, 367–379. [Google Scholar] [CrossRef]
- Ruth, O.N.; Unathi, K.; Nomali, N.; Chinsamy, M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: A mini-review. Appl. Sci. 2021, 11, 6879. [Google Scholar] [CrossRef]
- Olusanya, R.N. The Nutritional Composition and Acceptability of Moringa Oleifera Leaf Powder (MOLP)-Supplemented Mahewu: A Maize Meal-Based Beverage for Improved Food and Nutrition Security. Ph.D. Thesis, University of KwaZulu-Natal Pietermaritzburg, Pietermaritzburg, South Africa, 2018. [Google Scholar]
- Mushtaq, B.S.; Pasha, I.; Omer, R.; Hussain, M.B.; Tufail, T.; Shariati, M.A.; Derkanosova, A.A.; Shchetilina, I.P.; Popova, N.N.; Popov, E.S. Characterization of Moringa oleifera leaves and its utilization as value added ingredient in unleavened flat bread (chapatti). J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 750–755. [Google Scholar]
- Muellmann, S.; Brand, T.; Jürgens, D.; Gansefort, D.; Zeeb, H. How many key informants are enough? Analysing the validity of the community readiness assessment. BMC Res. Notes 2021, 14, 85. [Google Scholar] [CrossRef]
- SAHO South African History Online. Available online: https://www.sahistory.org.za/place/empangeni (accessed on 4 April 2022).
- Qumbisa, N.; Ngobese, N.; Kolanisi, U.J. Agriculture, Nutritionand Development, Potential of using amaranthus leaves to fortify instant noodles in the South African context: A review. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 16099–16111. [Google Scholar]
- Nancy, J.; Wendt, T. AOAC Official Method 934.01. Revision 2; AOAC International: Gaithersburg, MD, USA, 2003; Volume 1. [Google Scholar]
- Curtis, P.C. Untrained Sensory Panels. In The Science of Meat Quality; Blackwell Publishing: Ames, IA, USA, 2013; pp. 215–231. [Google Scholar]
- Modi, M. The Nutritional Quality of Traditional and Modified Traditional Foods in KwaZulu-Natal. Ph.D. Thesis, University of KwaZulu-Natal, Pinetown, South Africa, 2009. [Google Scholar]
- Moulton, K. Ingredients of Embedding: (Hyper-) Raising and Saturation. 2016. Available online: https://tbond.scripts.mit.edu/tb/wp-content/uploads/2021/12/hyperraising-semantics-slides.pdf (accessed on 27 April 2022).
- Saravia, L.; Miguel-Berges, M.L.; Iglesia, I.; Nascimento-Ferreira, M.V.; Perdomo, G.; Bove, I.; Slater, B.; Moreno, L.A. Relative validity of FFQ to assess food items, energy, macronutrient and micronutrient intake in children and adolescents: A systematic review with meta-analysis. Br. J. Nutr. 2021, 125, 792–818. [Google Scholar] [CrossRef]
- Kushwaha, S.; Chawla, P.; Kochhar, A. Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J. Food Sci. Technol. 2014, 51, 3464–3469. [Google Scholar] [CrossRef]
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT 2021, 150, 112058. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Amaranth production and consumption in South Africa: The challenges of sustainability for food and nutrition security. Int. J. Agric. Sustain. 2022, 20, 449–460. [Google Scholar] [CrossRef]
- Medina, M.S.; Tudela, J.A.; Marín, A.; Allende, A.; Gil, M.I. Short postharvest storage under low relative humidity improves quality and shelf life of minimally processed baby spinach (Spinacia oleracea, L.). Postharvest Biol. Technol. 2012, 67, 1–9. [Google Scholar] [CrossRef]
- Khatoniar, S.; Barooah, M.S. Quality evaluation of dehydrated green leafy vegetables during storage. Pharm. Innov. J. 2018, 7, 234–238. [Google Scholar]
- Jaworski, N.; Lærke, H.; Bach Knudsen, K.; Stein, H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Ramdwar, M.N.; Chadee, S.T.; Stoute, V.A. Estimating the potential consumption level of amaranth for food security initiatives in Trinidad, West Indies. Cogent Food Agric. 2017, 3, 1321475. [Google Scholar] [CrossRef]
- Lawal, O.M.; Fogliano, V.; Rotte, I.; Fagbemi, T.N.; Dekker, M.; Linnemann, A.R. Leafy vegetables fortification enhanced the nutritional profile and reduced the glycemic index of yellow cassava pasta. Food Funct. 2022, 13, 6118–6128. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Singh, N.; Rana, J.C. Amaranthus hypochondriacus and Amaranthus caudatus germplasm: Characteristics of plants, grain and flours. Food Chem. 2010, 123, 1227–1234. [Google Scholar] [CrossRef]
- Bhat, A.; Satpathy, G.; Gupta, R.K. Evaluation of Nutraceutical properties of Amaranthus hypochondriacus, L. grains and formulation of value added cookies. J. Pharmacogn. Phytochem. 2015, 3, 51–54. [Google Scholar]
- Kamotho, S.; Kyallo, F.; Sila, D. Biofortification of maize flour with grain amaranth for improved nutrition. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12574–12588. [Google Scholar] [CrossRef]
- Singh, N.; Singh, P.; Shevkani, K.; Virdi, A.S. Amaranth: Potential Source for Flour Enrichment. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–135. [Google Scholar]
- Sclafani, A.; Ackroff, K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 302, R1119–R1133. [Google Scholar] [CrossRef]
- Berthoud, H.-R.; Morrison, C.D.; Ackroff, K.; Sclafani, A. Learning of food preferences: Mechanisms and implications for obesity & metabolic diseases. Int. J. Obes. 2021, 45, 2156–2168. [Google Scholar]
- Dhakar, R.C.; Maurya, S.D.; Pooniya, B.K.; Bairwa, N.; Gupta, M. Moringa: The herbal gold to combat malnutrition. Chron. Young Sci. 2011, 2, 119. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Ntoupa, P.-S.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of Zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Punchay, K.; Inta, A.; Tiansawat, P.; Balslev, H.; Wangpakapattanawong, P. Nutrient and mineral compositions of wild leafy vegetables of the Karen and Lawa communities in Thailand. Foods 2020, 9, 1748. [Google Scholar] [CrossRef]
- Nkafamiya, I.I.; Osemeahon, S.; Modibbo, U.; Aminu, A. Nutritional status of non-conventional leafy vegetables, Ficus asperifolia and Ficus sycomorus. Afr. J. Food Sci. 2010, 4, 104–108. [Google Scholar]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 164. [Google Scholar]
- Grüngreiff, K.; Gottstein, T.; Reinhold, D. Zinc deficiency—An independent risk factor in the pathogenesis of haemorrhagic stroke? Nutrients 2020, 12, 3548. [Google Scholar] [CrossRef]
- Ferenčík, M.; Ebringer, L. Modulatory effects of selenium and Zinc on the immune system. Folia Microbiol. 2003, 48, 417–426. [Google Scholar] [CrossRef]
- Putriani, N.; Perdana, J.; Meiliana, M.; Nugrahedi, P.Y. Effect of thermal processing on key phytochemical compounds in green leafy vegetables: A review. Food Rev. Int. 2022, 38, 783–811. [Google Scholar] [CrossRef]
- Beswa, D.; Dlamini, N.R.; Siwela, M.; Amonsou, E.O.; Kolanisi, U. Effect of Amaranth addition on the nutritional composition and consumer acceptability of extruded provitamin A-biofortified maize snacks. Food Sci. Technol. 2016, 36, 30–39. [Google Scholar] [CrossRef]
- Aderibigbe, O.; Ezekiel, O.; Owolade, S.; Korese, J.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Puspasari, I.; Mallongi, A.; Yane, E.; Sekarani, A. Effect of moringa oleifera cookies to improve quality of breastmilk. Enferm. Clin. 2020, 30, 99–103. [Google Scholar]
- Alekhina, N.N.; Ponomareva, E.I.; Zharkova, I.M.; Grebenshchikov, A.V. Assessment of functional properties and safety indicators of amaranth flour grain bread. Техника и технология пищевых производств 2021. [Google Scholar] [CrossRef]
- Alegbejo, J.O. Nutritional value and utilization of Amaranthus (Amaranthus spp.)—A review. Bayero J. Pure Appl. Sci. 2013, 6, 136–143. [Google Scholar] [CrossRef]
- Peter, K.; Gandhi, P. Rediscovering the therapeutic potential of Amaranthus species: A review. Egypt. J. Basic Appl. Sci. 2017, 4, 196–205. [Google Scholar] [CrossRef]
- PharmEasy 16 Health Benefits of Amaranth Leaves That You Must Know. Available online: https://pharmeasy.in/blog/16-health-benefits-and-nutritional-value-of-amaranth-leaves/#:~:text=Rich%20in%20protein%2C%20calcium%2C%20iron,to%20produce%20red%20blood%20cells (accessed on 27 April 2022).
Amaranthus % | PWF (g) | Yeast (g) | Sugar (g) | Salt (g) | Sunflower Oil mL | Water mL |
---|---|---|---|---|---|---|
0 | 100 | 3 | 10 | 1 | 7.5 | 60 |
2 | 98 | 3 | 10 | 1 | 7.5 | 60 |
4 | 96 | 3 | 10 | 1 | 7.5 | 60 |
6 | 94 | 3 | 10 | 1 | 7.5 | 60 |
(Macronutrient (g/100 g Dry Matter Basis) | PWF | ALP |
---|---|---|
Carbohydrate | 74.03 ± 2.21 a | 41.6 ± 0.61 b |
Moisture | 10.06 ± 0.08 a | 4.41 ± 0.34 b |
Ash | 2.37 ± 0.12 a | 17.97 ± 0.11 b |
Fat | 1.58 ± 0.14 a | 4.47 ± 1.32 b |
Protein | 11.96 ± 2.31 a | 31.56 ± 1.76 b |
(mg/100 g Dry Matter Basis) | (PWF) | (ALP) |
---|---|---|
Calcium | 30.00 ± 0.00 a | 2600.00 ± 0.03 b |
Magnesium | 40.00 ± 0.00 a | 1210.00 ± 0.01 b |
Potassium | 5400.00 ± 0.11 a | 160.00 ± 0.1 b |
Sodium | 60.00 ± 0.01 a | 130.00 ± 0.01 b |
K/Ca+ Mg | 0.11 ± 0.00 a | 0.05 ± 0.00 b |
Phosphorus | 0.02± 0.00 a | 0.06 ± 0.01 b |
Zinc | 3.27 ± 0.58 a | 7.07 ± 0.58 b |
Manganese | 1.43 ± 0.58 a | 3.00 ± 0.00 b |
Copper | 1.00 ± 0.00 a | 17.34 ± 0.58 b |
Iron | 7.20 ± 3.61 a | 24.00 ± 16.83 b |
(ALP %) | ||||
---|---|---|---|---|
(g/100 g Dry Matter Basis) | 0 | 2 | 4 | 6 |
Carbohydrate | 73.21 ± 0.25 b | 71.09 ± 0.45 a | 70.32 ± 0.31 a | 70.26 ± 0.56 a |
Moisture | 7.49 ± 0.14 a | 8.03 ± 0.03 d | 7.67 ± 0.05 b | 7.85 ± 0.1 c |
Ash | 1.39 ± 0.03 a | 2.2 ± 0.01 c | 2.05 ± 0.01 b | 2.31 ± 0.03 d |
Fat | 4.62 ± 0.13 b | 3.39 ± 0.15 a | 4.4 ± 0.42 b | 4.96 ± 0.49 b |
Protein | 13.33 ± 0.02 a | 15.27 ± 0.33 b | 15.56 ± 0.65 b | 14.64 ± 0.5 b |
Energy (Kcal) | 387.58 ± 0.48 b | 376.04 ± 0.87 a | 381.08 ± 3.87 ab | 380.15 ± 2.61 a |
(ALP %) | ||||
---|---|---|---|---|
(mg/100 g Dry Matter Basis) | 0 | 2 | 4 | 6 |
Calcium | 30.00± 0.00 a | 70.00 ± 0.00 b | 120.00 ± 0.01 c | 140.00 ± 0.01 d |
Magnesium | 120.00± 0.12 a | 50.00 ± 0.01 a | 1 0.00 ± 0.00 a | 80.00 ± 0.04 a |
Potassium | 210.00 ± 0.00 a | 280.00 ± 0.01 b | 370.00 ± 0.01 c | 430.00 ± 0.02 d |
Sodium | 290.00 ± 0.00 a | 520.00 ± 0.00 c | 300.00 ± 0.00 a | 360.00 ± 0.06 b |
K/Ca+ Mg | 0.07 ± 0.42 a | 0.08 ± 0.02 a | 0.07 ± 0.02 a | 0.08 ± 0.20 a |
Phosphorus | 0.01 ± 0.00 a | 0.03± 0.07 b | 0.02± 0.00 a | 0.02 ± 0.20 a |
Zinc | 3.27 ± 2.08 a | 3.20 ± 0.00 a | 3.3 7± 0.58 a | 3.47 ± 3.06 a |
Manganese | 0.80 ± 0.00 a | 0.90 ± 0.00 a | 1.00 ± 0.00 a | 1.00± 2.65 a |
Copper | 0.17 ± 0.58 a | 0.17 ± 0.57 a | 0.30± 0.00 b | 0.2 7 ± 0.58 ab |
Iron | 5.17 ± 7.40 a | 5.27 ± 2.08 a | 6.13 ± 2.31 b | 6.50 ± 14.18 c |
ALP Composition (%) | ||||
---|---|---|---|---|
Sample | 0 | 2 | 4 | 6 |
Color | 3.00 ± 0.00 a | 3.00 ± 0.00 a | 3.00 ± 0.00 a | 3.00 ± 0.00 a |
Aroma | 4.55 ± 0.7 abc | 4.12 ± 0.87 ad | 3.9 ± 0.84 bc | 3.44 ± 1.1 cde |
Taste | 4.00 ± 0.00 a | 4.00 ± 0.00 a | 4.00 ± 0.00 a | 4.00 ± 0.00 a |
Texture | 4.90 ±0.31 abc | 4.52 ± 0.63 ad | 4.24 ± 0.86 be | 3.59 ± 1.14 cde |
Overall Acceptability | 4.82 ± 0.4 ab | 4.49 ± 0.71 c | 4.24 ± 0.88 ad | 3.59 ± 1.13 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olusanya, R.N.; Kolanisi, U.; Ngobese, N.Z. Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security. Foods 2023, 12, 2182. https://doi.org/10.3390/foods12112182
Olusanya RN, Kolanisi U, Ngobese NZ. Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security. Foods. 2023; 12(11):2182. https://doi.org/10.3390/foods12112182
Chicago/Turabian StyleOlusanya, Ruth N., Unathi Kolanisi, and Nomali Z. Ngobese. 2023. "Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security" Foods 12, no. 11: 2182. https://doi.org/10.3390/foods12112182
APA StyleOlusanya, R. N., Kolanisi, U., & Ngobese, N. Z. (2023). Mineral Composition and Consumer Acceptability of Amaranthus Leaf Powder Supplemented Ujeqe for Improved Nutrition Security. Foods, 12(11), 2182. https://doi.org/10.3390/foods12112182