An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development
Abstract
:1. Introduction
2. Ethnobotany
3. The History of Using Miwu as Food in China and Other Countries
3.1. The History of Using Miwu as Food in China
3.2. The History of Using Miwu as Food in Other Countries
4. Chemical Components
4.1. Nutritional Components
4.2. Active Components
4.2.1. Phthalides and Its Dimer
4.2.2. Alkaloid
4.2.3. Phenolic Acid
4.2.4. Others
5. Pharmacological Activities
5.1. Phthalide and Its Dimer
5.1.1. Anti-Alzheimer’s Disease
5.1.2. Antineoplastic Activity
5.1.3. Vasodilator
5.2. Alkaloid
5.2.1. Anti-Cerebral Ischemia
5.2.2. Heart Protection
5.2.3. Protect Optic Nerve
5.3. Organic Acids
5.3.1. Antioxidant Stress
5.3.2. Antithrombosis
5.4. Others
6. Food Safety Risk
7. Industrial Status of Miwu
7.1. Strengths
7.2. Weaknesses
7.3. Opportunities
7.4. Threats
7.5. Countermeasures to Develop the Miwu Industry
7.5.1. Formulating Local Food Safety Standards for Miwu
7.5.2. Formulating the Development Plan of the Miwu Industry
7.5.3. Formulating a Leading Organization
7.5.4. Introducing Professional Talents
7.5.5. Increasing Financial and Fiscal Support
7.5.6. Strengthening Brand Propaganda Innovation
7.5.7. Improving the Business and Market System
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
CX | Ligusticum chuanxiong Hort. |
CXR | Chuanxiong Rhizoma |
Miwu | Tender stems and leaves of Ligusticum chuanxiong Hort. |
Ch.P. | Chinese pharmacopoeia |
LSFRM | Local special food raw material |
References
- Zhang, L. Practice and Thinking of Traditional Chinese Medicine Agriculture Helping Rural Revitalization. Res. World Agric. Econ. 2021, 2, 49–56. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, Y.; Tang, F.; Wang, C.; Wu, J.; Hu, C.; Xie, X.; Peng, C.; Tan, Y. A comprehensive investigation on the chemical diversity and efficacy of different parts of Ligusticum chuanxiong. Food Func. 2022, 13, 1092–1107. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2020; ISBN 978-7-5214-1574-2. [Google Scholar]
- Mengfei, M. Chuanxiong Leaves Are Put into a “Vegetable Basket” and cross the Ocean. Available online: https://baijiahao.baidu.com/s?id=1700069277722067729&wfr=spider&for=pc&searchword=%E5%B7%9D%E8%8A%8E%20%E9%A6%96%E6%AC%A1%E5%87%BA%E5%8F%A3 (accessed on 18 May 2021).
- ISO. ISO/CD 8071. Traditional Chinese Medicine—Ligusticum chuanxiong Rhizome. Available online: https://www.iso.org/standard/82991.html (accessed on 10 January 2022).
- Wehrens, S.M.T. Effect of Sleep Deprivation and Shift Work on Metabolic and Cardiovascular Function; University of Surrey: Guildford, UK, 2010; ISBN 1392846935. [Google Scholar]
- Chen, S. Quality Evaluation of Aerial Part of Ligusticum chuanxiong Hort. and study on Its Teabag Preparation. Master’s Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2009. [Google Scholar]
- Wang, W.; Fang, S.; Xiong, Z. Protective effect of polysaccharide from Ligusticum chuanxiong Hort against H2O2-induced toxicity in zebrafish embryo. Carbohydr. Polym. 2019, 221, 73–83. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Chen, Y.; Li, G.; Luo, L.; Chen, P. Analysis of the current situation of Chuanxiong patent protection in China. Pharm. Clin. Chin. Mater. Med. 2019, 10, 1–4. [Google Scholar]
- Deng, W. The Study of Chuanxiong gel formulation. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2010. [Google Scholar]
- Qiu, S.X.; Chen, Y.Y.; Li, J.; Wu, Y.; Lei, C.; Xu, Q.; Liu, H.; Zhu, J.; Xu, Z. Broiler feed containing stems and leaves of Ligusticum chuanxiong Hort extract and its preparation method. CN109730209A, 10 May 2019. [Google Scholar]
- Wan, S. Manufacture method of Ligusticum chuanxiong Hort seasoning. CN103750247A, 30 April 2014. [Google Scholar]
- Zhang, C.; Chen, Y.; Peng, F.; Tao, S.; Yuan, C.; Sha, X.; Wu, Y.; Shi, T.; Liao, X.; Liao, X.; et al. A Kind of Micronutrient Fertilizer and Its Application. CN111285708B, 4 January 2022. [Google Scholar]
- Li, C.-M.; Guo, Y.-Q.; Dong, X.-L.; Li, H.; Wang, B.; Wu, J.-H.; Wong, M.-S.; Chan, S.-W. Ethanolic extract of rhizome of Ligusticum chuanxiong Hort.(chuanxiong) enhances endothelium-dependent vascular reactivity in ovariectomized rats fed with high-fat diet. Food Func. 2014, 5, 2475–2485. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y.; Chen, Y.; Duan, J.-A. Advances in the chemical analysis and biological activities of chuanxiong. Molecules 2012, 17, 10614–10651. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Li, Y.; Huo, T.; Meng, F.; Peng, C.; Bai, M. Priority planting area planning for cash crops under heavy metal pollution and climate change: A case study of Ligusticum chuanxiong Hort. Front. Plant Sci. 2023, 14, 1080881. [Google Scholar] [CrossRef]
- Plant Plus of China. Ligusticum Sinense ‘Chuanxiong’. Available online: http://www.iplant.cn/info/%E5%B7%9D%E8%8A%8E (accessed on 1 January 2018).
- He, D. Ligusticum chuanxiong rhizome is used as medicine, and the seedlings and leaves are edible. TCM Healthy Life-Nurtur. 2022, 8, 26–27. [Google Scholar]
- Fang, R. A study of Chinese tenka tea culture during the Tang dynasty and Song dynasty. Int. J. Hum. Cult. Stud. 2019, 548–562. [Google Scholar]
- Chinese Poetry Website Home Page. Available online: https://www.zgshige.com/ (accessed on 2 June 2007).
- Li, J.; Yu, J.; Ma, H.; Yang, N.; Li, L.; Zheng, D.-D.; Wu, M.-X.; Zhao, Z.-L.; Qi, H.-Y. Intranasal pretreatment with Z-Ligustilide, the main volatile component of Rhizoma Chuanxiong, confers prophylaxis against cerebral ischemia via Nrf2 and HSP70 signaling pathways. J. Agric. Food Chem. 2017, 65, 1533–1542. [Google Scholar] [CrossRef]
- Scholz, H. Plants for Human Consumption. An Annotated Checklist of the Edible Phanerogams and Ferns; JSTOR: New York, NY, USA, 1985; ISBN 3874292169 9783874292160. [Google Scholar]
- Sim, Y.; Shin, S. Antibacterial activities of the essential oil from the leaves and rhizomes of Cnidium officinale Makino. J. Essent. Oil Res. 2014, 26, 452–457. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef] [PubMed]
- The Stems and Leaves of Ligusticum chuanxiong Hort Are Sold to South Korea for the First Time. Available online: https://kscgc.sctv.com/sctv/redian/2021/05/18/1128295_shared.html (accessed on 18 May 2021).
- Plants for a Future Home Page. Available online: https://pfaf.org/user/AboutUs.aspx (accessed on 27 July 2010).
- Yang, Y. China Food Composition Tables: Standard Edition; Peking University Medical Press: Beijing, China, 2022; pp. 10–25. ISBN 9787565919787. [Google Scholar]
- Wang, M.; Yao, M.; Liu, J.; Takagi, N.; Yang, B.; Zhang, M.; Xu, L.; Ren, J.; Fan, X.; Tian, F. Ligusticum chuanxiong exerts neuroprotection by promoting adult neurogenesis and inhibiting inflammation in the hippocampus of ME cerebral ischemia rats. J. Ethnopharmacol. 2020, 249, 112385. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.-Q.; Guo, Y.-H.; Liu, Y.; Zhao, Y.-Y.; Huang, S.-M.; Wei, X.-W.; Wang, H.-S.; Liu, R.-Y.; Liu, Y.; Tang, Y.-P. Molecular mechanism of Chuanxiong Rhizoma in treating coronary artery diseases. Chin. Herb. Med. 2021, 13, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Long, Y.; Yu, S.; Shi, A.; Wan, J.; Wen, J.; Li, X.; Liu, S.; Zhang, Y.; Li, N.; et al. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front. Pharmacol. 2022, 12, 4116. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Lu, D.; Mu, C.; Wang, X.; Tang, L.; Yang, R. Optimization of Extraction Process of Volatile Oil from Ligusticum chuanxiong and GC-MS Analysis of Its Overground Part. J. Chin. Med. Mater. 2019, 42, 607–611. [Google Scholar]
- Guo, P.; Li, Z.; Chen, H.; Zhang, T.; Ling, Y. Studies on chemical constituents of volatile oil from the aerial parts of Ligusticum chuanxiong Hort. China J. Chin. Mater. Med. 1993, 18, 551–574. [Google Scholar]
- Tang, F.; Tan, Y.; Ao, H.; Yan, H.; Luo, W.; Yang, Q.; Hu, C.; Peng, C. Discovery of phthalides with vasodilating activity in stems and leaves of Ligusticum chuanxiong. Chin. Tradit. Herb. Drugs 2020, 51, 1190–1195. [Google Scholar]
- Yan, H.; Chen, Y.; Tang, F.; Feng, J.; Guo, C.; Hu, C.; Lu, J.; Tan, Y. A novel fatty acid monoglyceride from the stem and leaves of Ligusticum chuanxiong Hort. Acta Pharm. Sin. 2021, 56, 2573–2576. [Google Scholar]
- Nie, Y.; Hao, R. Studies on Chemical Constituents of the Stems and Leaves of Ligusticum chuanxiong. Med. Inf. 2011, 24, 326–328. [Google Scholar]
- Liu, J.; Liu, Y.; Liu, H.; Zhang, C.; Wei, A.; Ye, Q.; Guo, L. Comparison of volatile oil content and chemical components in different parts and different processing methods of Ligusticum chuanxiong Hort. Chin. J. Exp. Tradit. Med. Form. 2020, 26, 101–107. [Google Scholar]
- Zhang, L.; Zhao, L.; Song, N.; Yang, F. GC-MS analysis of volatile oil from fresh and dried roots, stems, leaves and flowers of Ligusticum chuanxiong Hort. Chin. Tradit. Pat. Med. 2021, 43, 532–535. [Google Scholar]
- Yi, J.; Liu, Y.; Chen, Y.; Liu, Y.; Huang, Z. Determination of Ligustilide and Ferulic Acid in Different Parts of Ligusticum chuanxiong Hort by RP-HPLC. Chin. Tradit. Pat. Med. 2009, 31, 811–813. [Google Scholar]
- Wu, Y.; Li, Q.; Li, B.; Du, L.; Chen, C. Determination of three kinds of active component from the stems and leaves of Ligusticum chuanxiong by UPLC. West China J. Pharm. Sci. 2018, 33, 526–528. [Google Scholar]
- Huang, Y.; Pu, F. Chemical constituents of essential oil from leaves of Ligusticum chuanxiong Hort. Plant Divers. 1988, 227–230. [Google Scholar]
- Rui, H.; He, Q.; Yu, Q.; Huang, Z. Comparison of quality of Ligusticum chuanxiong Hort from different parts and different habitats. China J. Chin. Mater. Med. 1982, 5, 13. [Google Scholar]
- Wei, X.; Zeng, Y.; Sun, C.; Meng, F.; Wang, Y. Recent advances in natural phthalides: Distribution, chemistry, and biological activities. Fitoterapia. 2022, 160, 105223. [Google Scholar] [CrossRef]
- Ya, Y.; Yang, F.; Hao, C.; Min, X. Research advance in phthalides and their biological activities. Nat. Prod. Res. Dev. 2022, 34, 1439. [Google Scholar] [CrossRef]
- Lv, J.L.; Chen, H.L.; Duan, J.A.; Liu, J.W. Research progress of structures and pharmacological activities of phthalides from Angelica sinensis. China J. Chin. Mater. Med. 2016, 41, 167–176. [Google Scholar]
- Wu, Q.; Yang, X.-W. GC-MS analysis of essential oil from rhizomes of Ligusticum chuanxiong cultivated in GAP base for Chinese medicinal materials of China. China J. Chin. Mater. Med. 2008, 33, 276–280. [Google Scholar]
- Jin, Y.Q.; Hong, Y.L.; Li, J.; Li, X.; Wang, X.; Lv, G. Advancements in the Chemical constituents and pharmacological effects of Chuanxiong. Pharm. Clin. Chin. Mater. Med. 2013, 4, 44–48. [Google Scholar]
- Beijing Pharmaceutical Industry Beijing Institute of Pharmaceutical Industry. Extraction and Separation of Alkaloids from Ligusticum chuanxiong Hort. Chin. Tradit. Herb. Drugs 1977, 8, 8–10. [Google Scholar]
- Pu, Z.-H.; Liu, J.; Peng, C.; Luo, M.; Zhou, Q.-M.; Xie, X.-F.; Chen, M.-H.; Xiong, L. Nucleoside alkaloids with anti-platelet aggregation activity from the rhizomes of Ligusticum striatum. Nat. Prod. Res. 2019, 33, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. Studies on the Chemical Constituents of Ligusticum chuanxiong Hort. and Codonopsis tangshen Oliv II. Evaluation on Pharmacodynamics of Analgesia and Anti-inflammation of Anemone vitifolia Buch. Master’s Thesis, Ningxia Medical University, Yinchuan, China, 2016. [Google Scholar]
- Pu, Z.H.; Dai, M.; Peng, C.; Xiong, L. Research progress on the material basis and pharmacological effects of alkaloids in Ligusticum chuanxiong Hort. China Pharm. 2020, 31, 1020–1024. [Google Scholar]
- Ran, X.; Ma, L.; Peng, C.; Zhang, H.; Qin, L.-P. Ligusticum chuanxiong Hort: A review of chemistry and pharmacology. Pharm. Biol. 2011, 49, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.C.; Kumaran, A.; Hwang, L.S. Bio-assay guided isolation and identification of anti-Alzheimer active compounds from the root of Angelica sinensis. Food Chem. 2009, 114, 246–252. [Google Scholar] [CrossRef]
- Han, W. Advances in Chemical Constituents and Pharmacological Effects of Ligusticum chuanxiong. Mod. Chin. Med. 2017, 19, 1341–1349. [Google Scholar]
- Cao, Y.-X.; Zhang, W.; He, J.-Y.; He, L.-C.; Xu, C.-B. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release. Vasc. Pharmacol. 2006, 45, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Du, J.-R.; Wang, J.; Yu, D.-K.; Chen, Y.-S.; He, Y.; Wang, C.-Y. Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi 2009, 129, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yu, Y.; Ke, Y.; Wang, C.; Zhu, L.; Qian, Z.M. Ligustilide attenuates pain behavior induced by acetic acid or formalin. J. Ethnopharmacol. 2007, 112, 211–214. [Google Scholar] [CrossRef]
- Lu, Q.; Qiu, T.-Q.; Yang, H. Ligustilide inhibits vascular smooth muscle cells proliferation. Eur. J. Pharmacol. 2006, 542, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Ko, N.L.; Li, S.-L.; Tam, Y.K.; Lin, G. Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma Chuanxiong, in the rat. Drug Metab. Dispos. 2008, 36, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capra, J.C.; Cunha, M.P.; Machado, D.G.; Zomkowski, A.D.E.; Mendes, B.G.; Santos, A.R.S.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of scopoletin, a coumarin isolated from Polygala sabulosa (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol. 2010, 643, 232–238. [Google Scholar] [CrossRef]
- Lin, G.; Chan, S.S.-K.; Chung, H.-S.; Li, S.-L. Chemistry and biological activities of naturally occurring phthalides. Stud. Nat. Prod. Chem. 2005, 32, 611–669. [Google Scholar]
- Song, X.; Zhou, W.; Chen, C.; Wang, S.; Liang, S. Study on material base of Ligusticum wallichii for treating brain ischemia and its molecular mechanism based on molecular docking. China J. Chin. Mater. Med. 2015, 40, 2195–2198. [Google Scholar]
- Yan, Q.Y.; Gao, B.Y.; Li, L.; Peng, Y.; Cheng, S. Therapeutic effect of Chuanxiong volatile oil nasal spray on acute cerebral ischemia in rats. J. Hubei Polytech. Inst. 2017, 20, 108–112. [Google Scholar]
- Liu, X.; Cheng, Y.; Cui, X.; Li, M. Spectrum-Effect Study on the Protective Efficacy of Ligusticum chuanxiong Hort on Myocardial Ischemia. China Pharm. 2016, 25, 9–12. [Google Scholar]
- Based on Box-Behnken Design and Principal Component Analysis Method to Explore Extraction Process of Angelicae Sinensis Radix-Sophorae Flavescentis Radix Herb Pair and Effects of Different Compatibilities on Rats with Acute Myocardial Ischemia. Available online: https://kns.cnki.net/kcms/detail/detail.aspxFileName=ZCYO202212007&DbName=DKFX2022 (accessed on 7 June 2022).
- Oboh, G.; Agunloye, O.M.; Akinyemi, A.J.; Ademiluyi, A.O.; Adefegha, S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain—In vitro. Neurochem. Res. 2013, 38, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Caballero, J.; Alarcon, M.; Rojas, A.; Palomo, I. Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS ONE 2014, 9, e90699. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, H.; Yi, R.; Tan, F.; Zhao, X. Anti-obesity effect of Liupao tea extract by modulating lipid metabolism and oxidative stress in high-fat-diet-induced obese mice. J. Food Sci. 2021, 86, 215–227. [Google Scholar] [CrossRef]
- Sun, G.-H.; Liao, Y.; Ni, Z.-Y.; Li, N.; Zhong, P.; Li, X.; Zhou, J. Electroacupuncture intervention improves cartilage degeneration and subchondral bone osteoporosis of knee-joint possibly by adjusting OPG/RANK/RANKL signaling in ovariectomized Rats. Acup. Res. 2018, 43, 781–787. [Google Scholar]
- Liu, L.; Wang, D.; Qin, Y.; Xu, M.; Zhou, L.; Xu, W.; Liu, X.; Ye, L.; Yue, S.; Zheng, Q. Astragalin promotes osteoblastic differentiation in MC3T3-E1 cells and bone formation in vivo. Front. Endocrinol. 2019, 10, 228. [Google Scholar] [CrossRef]
- Kaster, M.P.; Raupp, I.; Binfaré, R.W.; Andreatini, R.; Rodrigues, A.L.S. Antidepressant-like effect of lamotrigine in the mouse forced swimming test: Evidence for the involvement of the noradrenergic system. Eur. J. Pharmacol. 2007, 565, 119–124. [Google Scholar] [CrossRef]
- Yoon, C.-S.; Kim, D.-C.; Lee, D.-S.; Kim, K.-S.; Ko, W.; Sohn, J.H.; Yim, J.H.; Kim, Y.-C.; Oh, H. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int. Immunopharmacol. 2014, 23, 568–574. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, Z.; Feng, Q.; Liang, X.; Li, J.; Zanin, M.; Jiang, Z.; Zhong, N. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J. Ethnopharmacol. 2017, 199, 60–67. [Google Scholar] [CrossRef]
- Shi, J.; Li, R.; Yang, S.; Zhan, H. Phytochemistry, biological properties and quality control of Chuanxiong Rhizoma: A review. J. Chin. Pharm. Sci. 2020, 29, 755–779. [Google Scholar] [CrossRef]
- Ren, M. Preliminary research on cadmium absorption and accumulation in Ligusticum wallichii. Chin. Pharm. J. 2016, 51, 1735–1738. [Google Scholar]
- Zhong, W.; Zheng, W.; Xin, P.; Ye, Y.; Dong, M.; Ye, H. Toxicity and mutagenicity test of Ligusticum chuanxiong, Platycodon grandiflorum and Amomum cardamom. J. Toxicol. 2004, 4, 267–269. [Google Scholar]
- Zhong, Y. Analysis of production and marketing trend of Ligusticum chuanxiong. Mod. Chin. Med. 2014, 16, 769–770+784. [Google Scholar]
- Chen, S.; Jiang, G. Security and pharmacological effects of overground parts of Chuanxiong. J. Chengdu Univ. Tradit. Chin. Med. 2009, 32, 63–65. [Google Scholar]
- Announcement of the Ministry of Agriculture of the People’s Republic of China No. 2038. Available online: http://www.xmsyj.moa.gov.cn/zcjd/201401/t20140103_3730177.htm (accessed on 19 December 2013).
- Notice from the Ministry of Health on Further Regulation of the Management of Health Food Ingredients. Available online: http://www.nhc.gov.cn/wjw/gfxwj/201304/e33435ce0d894051b15490aa3219cdc4.shtml (accessed on 11 March 2002).
- Qin, Y.; Chen, F.; Tang, Z.; Ren, H.; Wang, Q.; Shen, N.; Lin, W.; Xiao, Y.; Yuan, M.; Chen, H.; et al. Ligusticum chuanxiong Hort as a medicinal and edible plant foods: Antioxidant, anti-aging and neuroprotective properties in Caenorhabditis elegans. Front. Pharmacol. 2022, 13, 1049890. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D. Comparative advantage and agricultural trade. Agric. Econ. 2019, 50, 29–40. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Z. Comparative Advantage of Agricultural Trade in Countries along the Belt and Road and China and Its Dynamic Evolution Characteristics. Foods 2022, 11, 3401. [Google Scholar] [CrossRef]
- Ricardo, D. The Principles of Political Economy and Taxation. In Readings in the Economics of the Division of Labor; Increasing Returns and Inframarginal Economics; World Scientific: Hackensack, NJ, USA, 2005; Volume 2, pp. 127–130. ISBN 978-981-256-124-4. [Google Scholar]
- Neary, J. Competitive versus Comparative Advantage. World Econ. 2003, 26, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Ensign, P. Value Chain Analysis and Competitive Advantage. J. Gen. Manag. 2001, 27, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Poponi, S.; Arcese, G.; Ruggieri, A.; Pacchera, F. Value optimisation for the agri-food sector: A circular economy approach. Bus. Strategy Environ. 2022, 1–18. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Z. Analysis on countermeasures for the development of characteristic industries in ethnic minority areas from the perspective of the whole industry chain—Taking Guangxi’s selenium-rich industry as an example. Guangxi Ethn. Stud. 2017, 3, 160–166. [Google Scholar]
- Neap, H.S.; Celik, T. Value of a Product: A Definition. Int. J. Value-Based Manag. 1999, 12, 181–191. [Google Scholar] [CrossRef]
- Van Campenhout, B.; Minten, B.; Swinnen, J.F.M. Leading the way-foreign direct investment and dairy value chain upgrading in Uganda. Agric. Econ. 2021, 52, 607–631. [Google Scholar] [CrossRef]
- Altenburg, T. Governance patterns in value chains and their development impact. Eur. J. Dev. Res. 2006, 18, 498–521. [Google Scholar] [CrossRef]
- Trienekens, J.H. Agricultural value chains in developing countries a framework for analysis. Int. Food Agribus. Manag. Rev. 2011, 14, 51–82. [Google Scholar]
- CEIC. China GDP per Capita. Available online: https://www.ceicdata.com/en/indicator/china/gdp-per-capita (accessed on 6 July 2017).
- Zhang, L.; Yu, J.; Zhou, Y.; Shen, M.; Sun, L. Becoming a faithful defender: Traditional chinese medicine against coronavirus disease 2019 (COVID-19). Am. J. Chin. Med. 2020, 48, 1–15. [Google Scholar] [CrossRef]
- Lyu, M.; Fan, G.; Xiao, G.; Wang, T.; Xu, D.; Gao, J.; Ge, S.; Li, Q.; Ma, Y.; Zhang, H.; et al. Traditional Chinese medicine in COVID-19. Acta Pharm. Sin. B 2021, 11, 3337–3363. [Google Scholar] [CrossRef]
- Wang, L.; Cai, F.; Zhao, W.; Tian, J.; Kong, D.; Sun, X.; Liu, Q.; Chen, Y.; An, Y.; Wang, F.; et al. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current Research and Prospects. Molecules 2021, 26, 7065. [Google Scholar] [CrossRef]
- Zou, J.; Ran, C.; Liu, Y.; You, G.; Hou, K.; Wu, W. Research Progress on Antitumor Activities of C21 Steroidal Glycosides of Cynanchi Bungei Radix. Available online: https://oversea.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=ZCYO201903036&uniplatform=OVERSEA&v=x2wA83Xa_-i36s6SkhPGCwZpxiamv6KADeF33HjeKM5RlWbmEPAOKxlHYQMKXAG6 (accessed on 12 February 2019).
- He, X.; Wang, J.; Li, M.; Hao, D.; Yang, Y.; Zhang, C.; He, R.; Tao, R. Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2014, 151, 78–92. [Google Scholar] [CrossRef]
- NHC. Announcement on Listing New Food Resources Such as Rapeseed Pollen as General Food Management. Available online: http://www.nhc.gov.cn/sps/s7891/200804/598d95712f4a461cb80f76c34b8b8e56.shtml (accessed on 17 August 2004).
- Liu, Y.; Zhao, J.; Guo, Y.; Wang, M.; Li, X.; Zhang, B. Mutagenic and teratogenic toxicity evaluation of Forsythia suspensa leaves aqueous extract. Drug Chem. Toxicol. 2022, 45, 1825–1832. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Y.; Guo, R.; Tang, Y.; Shi, Z.; Zhang, M.; Wu, W.; Chen, Y.; Hou, K. An in vitro coumarin-antibiotic combination treatment of Pseudomonas aeruginosa biofilms. Nat. Prod. Commun. 2021, 16, 1934578X20987744. [Google Scholar] [CrossRef]
Book Name | Publication Time | Edible Part | Diet Method |
---|---|---|---|
Illustration of Materia Medica | In 1016 | Leaves | Tea |
Lv Chan Yan Materia Medica | In 1220 | Leaves | Tea |
Materia Medica for Famine Relief | In 1406 | Tender leaves | Fry |
Compendium of Materia Medica | In 1578 | Leaves | Tea |
Collected Works of Materia Medica | In 1619 | Leaves | Tea |
Food materia medica | Around 1650 | Leaves, flower | Tea |
An Illustrated Book of Plants | In 1848 | Leaves | Decoction, Frying |
Name | Miwu (mg/100 g) | Celery (mg/100 g) |
---|---|---|
Carbohydrate | 7520 | 3900 |
Dietary fiber | 5900 | 1400 |
Protein | 4500 | 800 |
Fat | 120 | 100 |
Na | 8.27 | 517 |
P | 78.9 | 50 |
Mg | 31.8 | 10 |
Ca | 160 | 152 |
Fe | 6.26 | 0.8 |
Zn | 1.35 | 0.46 |
Se | N/A | 0.6 μg |
Vitamin A | N/A | 10 μg |
Vitamin B1 | N/A | 0.01 |
Vitamin B2 | 0.175 | 0.08 |
Vitamin C | 2.91 | 12 |
Vitamin E | 0.164 | 2.21 |
Niacin | 2.95 | 0.4 |
Folic acid | N/A | 29 |
β-Carotene | 1.4 | 0.1 |
Code | Name | CAS | Type of Compound | Molecular Formula | Extraction Solvent | Source |
---|---|---|---|---|---|---|
1 | Sabinene | 3387-41-5 | Terpenes and its enols | C10H16 | water | [31] |
2 | β-Myrcene | 123-35-3 | Terpenes and its enols | C10H16 | water | |
3 | α-Phellandrene | 99-83-2 | Terpenes and its enols | C10H16 | water | |
4 | α-Terprinene | 99-86-5 | Terpenes and its enols | C10H16 | water | |
5 | o-Cymene | 524-84-4 | Terpenes and its enols | C10H14 | water | |
6 | Trans-β-Ocimenen | 3779-61-1 | Terpenes and its enols | C10H16 | water | |
7 | Cis-β-Ocimenen | 13877-91-3 | Terpenes and its enols | C10H16 | water | |
8 | γ-Terpinene | 99-85-4 | Terpenes and its enols | C10H16 | water | |
9 | Terpinen-4-ol | 562-74-3 | Terpenes and its enols | C10H18O | water | |
10 | α-Terpineol | 98-55-5 | Terpenes and its enols | C10H18O | water | |
11 | 1-Phenyl-1-pentanone | 1009-14-9 | Terpenes and its enols | C11H14O | water | |
12 | α-Copaene | 3856-25-5 | Terpenes and its enols | C15H24 | water | |
13 | β-Elemene | 515-13-9 | Terpenes and its enols | C15H24 | water | |
14 | Caryophyllene | 13877-93-5 | Terpenes and its enols | C15H24 | water | |
15 | β-Selinene | 17066-67-0 | Terpenes and its enols | C15H24 | water | [32] |
16 | E-Ligustilide | 4431-01-0 | Phthalide and its dimer | C12H14O2 | water | |
17 | Z-3-Butylidenephthalide | 551-08-6 | Phthalide and its dimer | C12H12O2 | alcohol | [33] |
18 | Senkyunolide-E | 94530-83-3 | Phthalide and its dimer | C12H12O3 | alcohol | |
19 | Z-Senkyunolide-H | 94596-27-7 | Phthalide and its dimer | C12H16O4 | alcohol | |
20 | Neoligustilide | 4431-01-0 | Phthalide and its dimer | C12H14O2 | alcohol | |
21 | Z-Tokinolide A | 112899-62-4 | Phthalide and its dimer | C24H28O4 | alcohol | |
22 | 14,15-Dehydrocrepenynic acid monoglyceride | Phthalide and its dimer | C21H34O4 | alcohol | [34] | |
23 | Scopoletin | 92-61-5 | Phthalide and its dimer | C10H8O4 | alcohol | [35] |
24 | Astragalin | 480-10-4 | Phthalide and its dimer | C21H20O11 | alcohol | |
25 | Caffeic acid | 331-39-5 | Phenolic acid | C9H8O4 | alcohol | |
26 | Daidzein | 486-66-8 | Others | C15H10O4 | alcohol | |
27 | Aurantiamide acetate | 56121-42-7 | Others | C27H28N2O4 | alcohol | |
28 | Ergosterol peroxide | 2061-64-5 | Terpenes and its enols | C28H44O3 | alcohol | |
29 | Lignoceric acid | 302912-17-0 | Organic acids | C24H48O2 | alcohol | |
30 | Cis-3-Hexen-1-ol | 928-96-1 | Terpenes and its enols | C6H12O | water | [36] |
31 | Z-Ligustilide | 81944-09-4 | Phthalide and its dimer | C12H14O2 | water | |
32 | Trans-2-Hexenal | 6728-26-3 | aldehyde | C6H10O | water | [37] |
33 | Ligustilide | 4431-01-0 | Phthalide and its dimer | C12H14O2 | water | |
34 | N-Hexadecanoic acid | 57-10-3 | Organic acids | C16H32O2 | water | [31,38] |
35 | Tetradecanoic acid | 544-63-8 | Organic acids | C14H28O2 | water | |
36 | Ferulic acid | 1135-24-6 | Phenolic acid | C10H10O4 | water | [38] |
37 | Chlorogenic acid | 327-97-9 | Phenolic acid | C16H18O9 | water | [39] |
38 | 3,5-Dicaffeoyl quinic acid | 89919-62-0 | Phenolic acid | C25H24O12 | water | |
39 | Sedanolide | 6415-59-4 | Phthalide and its dimer | C12H18O2 | water | [40] |
40 | Tetramethylpyrazine | 1124-11-4 | alkaloid | C8H12N2 | water | [41] |
41 | 2-Propylpyridine | 622-39-9 | alkaloid | C8H11N | water | [7] |
42 | Neocnidilide | 4567-33-3 | Phthalide and its dimer | C12H18O2 | water | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Wang, J.; Hou, K.; Wang, F.; Su, S.; Xue, W.; Wu, W.; Yang, N.; Du, X. An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development. Foods 2023, 12, 1385. https://doi.org/10.3390/foods12071385
Zou J, Wang J, Hou K, Wang F, Su S, Xue W, Wu W, Yang N, Du X. An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development. Foods. 2023; 12(7):1385. https://doi.org/10.3390/foods12071385
Chicago/Turabian StyleZou, Jinpeng, Jiayi Wang, Kai Hou, Fang Wang, Shiwen Su, Wenjing Xue, Wei Wu, Ni Yang, and Xuan Du. 2023. "An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development" Foods 12, no. 7: 1385. https://doi.org/10.3390/foods12071385
APA StyleZou, J., Wang, J., Hou, K., Wang, F., Su, S., Xue, W., Wu, W., Yang, N., & Du, X. (2023). An Underutilized Food “Miwu”: Diet History, Nutritional Evaluations, and Countermeasures for Industrial Development. Foods, 12(7), 1385. https://doi.org/10.3390/foods12071385