Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Material Reagents
2.2. Analysis by Gas Chromatography-Ion Mobility Spectrometry
2.3. Gas Chromatography-Mass Spectrometry Analysis
2.4. Quantitative Descriptive Analysis (QDA)
2.5. Odor Activity Value Calculation
2.6. Statistical Analysis
3. Results and Analysis
3.1. GC-IMS Was Used to Establish the Fingerprint of Volatile Substances in Koumiss from Different Regions
3.2. Analysis of Differences in Volatile Compounds of Koumiss from Different Regions Based on PLS-DA Technology
3.3. Comparison of GC-MS and GC-IMS Results
3.4. The Characteristic Volatile Compounds of Koumiss from Different Regions Were Analyzed by GC-MS Combined with GC-IMS
3.5. Analysis of OVA in Koumiss from Different Regions
3.6. Sensory Analysis of Koumiss in Different Regions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, K.; Zou, S. Koumiss. China Dairy 2006, 58–60. [Google Scholar] [CrossRef]
- Sun, T.; Menhebilige; Wang, J.; Chen, Y.; Zhao, R.W.; Hepin, Z. Analysis of chemical composition and microorganism flora of traditionally home-made Koumiss in Xinjiang. China Dairy Ind. 2005, 33, 10–14. [Google Scholar]
- He, Q.; Hou, Q.; Wang, Y.; Shen, L.; Sun, Z.; Zhang, H.; Liong, M.-T.; Kwok, L.-Y. Long-term administration of Lactobacillus casei Zhang stabilized gut microbiota of adults and reduced gut microbiota age index of older adults. J. Funct. Foods 2020, 64, 103682. [Google Scholar] [CrossRef]
- Yizaitiguli, W.; Alimijiang, A.; MA, J.; Kalibinuer, A.; Gulibahaer, K. Development of Compound Probiotic Sour Mare Milk and Its Effect on Intestinal Flora. China Dairy Ind. 2021, 49, 13–20. [Google Scholar] [CrossRef]
- Cao, K.; Wu, J.; Li, Y.; Han, Q.; Yu, B.; Qi, S.; Wu, R.; Mang, l. Research Progress on the Mechanism of Koumiss in Treating Tuberculosis. China Dairy Ind. 2022, 50, 34–40. [Google Scholar] [CrossRef]
- Bogoyavlenskiy, A.; Alexyuk, M.; Alexyuk, P.; Amanbayeva, M.; Anarkulova, E.; Imangazy, A.; Bektuganova, A.; Berezin, V.J.M.R.A. Metagenomic Exploration of Koumiss from Kazakhstan. Microbiol. Resour. Announc. 2022, 11, e01082-21. [Google Scholar] [CrossRef] [PubMed]
- Simujide; Aorigele; Wang, C.; Aricha; Zang, J.; Chen, H.; Liu, B.; He, L. Isolation, identification and diversity analysis of lactic acid bacteria in fresh koumiss. Feed Res. 2021, 44, 79–82. [Google Scholar] [CrossRef]
- Luo, P. Xinjiang horse industry development present situation analysis. Xinjiang Anim. Husb. 2022, 37, 8–12. [Google Scholar] [CrossRef]
- Liu, S.; Pan, L. Research on the sales market of koumiss—Based on the consumption market of koumiss in Hohhot. China Dairy 2022, 8–12. [Google Scholar]
- Tang, H.; Ma, H.; Hou, Q.; Li, W.; Xu, H.; Liu, W.; Sun, Z.; Haobisi, H.; Menghe, B. Profiling of koumiss microbiota and organic acids and their effects on koumiss taste. BMC Microbiol. 2020, 20, 85. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lu, Y.; Zhao, Z.; Choi, L.; Yan, H.; Wang, X.; Zhao, H. Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method. Sci. Technol. Food Ind. 2021, 42, 226–232. [Google Scholar] [CrossRef]
- Liu, A.; Liu, Q.; Bu, Y.; Hao, H.; Liu, T.; Gong, P.; Zhang, L.; Chen, C.; Tian, H.; Yi, H. Aroma classification and characterization of Lactobacillus delbrueckii subsp. bulgaricus fermented milk. Food Chem. X 2022, 15, 100385. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, X.; Sun, Z.; Li, Y.; Chen, D.; Fang, S.; Chen, J. Exploring core microbiota responsible for the production of volatile flavor compounds during the traditional fermentation of Koumiss. LWT 2021, 135, 110049. [Google Scholar] [CrossRef]
- Xia, Y.; Yu, J.; Liu, H.; Feng, C.; Shuang, Q. Novel insight into physicochemical and flavor formation in koumiss based on microbial metabolic network. Food Res. Int. 2021, 149, 110659. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586: 2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 5492: 2008; Sensory Analysis—Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2008.
- Qi, H.; Ding, S.; Pan, Z.; Li, X.; Fu, F. Characteristic volatile fingerprints and odor activity values in different citrus-tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020, 25, 6027. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; Martín-Torres, S.; Ortega-Gavilán, F.; Camacho, J. PLS-DA vs. sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta 2021, 224, 121904. [Google Scholar] [CrossRef]
- Shao, S.; Xu, M.; Lin, Y.; Chen, X.; Fang, D.; Cai, J.; Wang, J.; Jin, S.; Ye, N. Differential Analysis of Aroma Components of Huangguanyin Oolong Tea from Different Geographical Origins Using Electronic Nose and Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Food Sci. 2023, 44, 232–239. [Google Scholar]
- Yang, Y.; Zhu, H.; Chen, J.; Xie, J.; Shen, S.; Deng, Y.; Zhu, J.; Yuan, H.; Jiang, Y. Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis. LWT 2022, 163, 113492. [Google Scholar] [CrossRef]
- Yin, J.; Wu, M.; Lin, R.; Li, X.; Ding, H.; Han, L.; Yang, W.; Song, X.; Li, W.; Qu, H. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, C.; Gao, L.; Zhuang, H.; Feng, T.; Xu, G. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. J. Food Biochem. 2022, 46, e13875. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tian, H.; Wang, P.; Zhang, F.; Wei, Z. Comparative Analysis of Volatile Compounds of Traditional Koumiss from Different Areas in Xinjiang. Food Res. Dev. 2018, 39, 131–138. [Google Scholar]
- Du, X.; Liu, W.; Zhang, H. Study on the dynamic change of volatile flavor compounds in traditional fermented koumiss. China Dairy Ind. 2017, 45, 4–9. [Google Scholar]
- Xue, L.; Wu, H.; Hu, Z. Effect of Lipase Contained in Glutinous Rice Wine on Lipolysis in Traditional Chinese-style Cheese. Food Sci. 2010, 31, 71–73. [Google Scholar]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; Ramírez, R. Formation of the aroma of a raw goat milk cheese during maturation analysed by SPME–GC–MS. Food Chem. 2011, 129, 1156–1163. [Google Scholar] [CrossRef]
- Li, N.; Sun, B.; Liang, M. Analysis of Volatile Compounds in a Dairy Flavoring Using SPME-GC/MS. Food Sci. 2011, 32, 221–225. [Google Scholar]
- Zhang, G.; Xie, M.; Kang, X.; Wei, M.; Zhang, Y.; Li, Q.; Wu, X.; Chen, Y. Optimization of ethyl hexanoate production in Saccharomyces cerevisiae by metabolic engineering. LWT 2022, 170, 114061. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, N.; Wang, J.; Tong, L.; Zheng, F.; Sun, B. Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components. J. Dairy Sci. 2016, 99, 8665–8679. [Google Scholar] [CrossRef]
- Yu, J. Analysis of the Microbial Community Structure and the Correlation with Flavor Substances during Koumiss Fermentation. MD Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2000. [Google Scholar]
- Zeng, C.; Zhang, Y.; Kang, S.; Zhang, J.; Zhang, F.; Zhang, H. Research progress of higher alcohols in fermented wine. China Brew. 2015, 34, 11–15. [Google Scholar]
- Ma, Y.; Cao, Y.; Yang, Z.; Wang, B. Comparative Analysis of Volatile Compounds in Different Cheese Samples by SPME-GC-MS. Food Sci. 2013, 34, 103–107. [Google Scholar]
- Fernández-García, E.; Carbonell, M.A.; Gaya, P.; Nuñez, M. Evolution of the volatile components of ewes raw milk Zamorano cheese. Seasonal variation. Int. Dairy J. 2004, 14, 701–711. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Liu, X. The regulation and application of acetoin biosynthesis. J. Biol. 2014, 31, 76–80+84. [Google Scholar]
- Plotto, A.; Margaría, C.A.; Goodner, K.L.; Baldwin, E.A. Odour and flavour thresholds for key aroma components in an orange juice matrix: Esters and miscellaneous compounds. Flavour Fragr. J. 2008, 23, 398–406. [Google Scholar] [CrossRef]
- Zhong, M.; Han, Y.; Huang, Y.; Shi, Y.; Li, D.; Li, X. Aroma Composition and Synergistic Effect among Key Aroma Substances of Pine Wine. Food Res. Dev. 2022, 43, 179–188. [Google Scholar]
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Xia, Y.; Zhao, Y.; Wang, H.; Yu, J.; Shuang, Q. Analysis on the key volatile flavor compounds of fermented koumiss by SPME-GC/MS combined with OAV. Food Sci. Technol. 2019, 44, 318–325. [Google Scholar] [CrossRef]
- Wu, R.; Bao, L.; Bao, X.; Li, S.; Wang, X.; Jia, S. Dynamic changes of volatile flavor compounds during the fermentation of koumiss for food therapy in horqin area. China Dairy Ind. 2019, 47, 10–16. [Google Scholar]
- Guld, Z.; Nyitrainé Sárdy, D.; Gere, A.; Rácz, A. Comparison of sensory evaluation techniques for Hungarian wines. J. Chemom. 2020, 34, e3219. [Google Scholar] [CrossRef]
Abbreviation of Koumiss | Locality | Fermentation Method | Fermentation Temperature °C |
---|---|---|---|
YL | Ili | machinery | 20~26 |
TC | Tacheng | machinery | 22~26 |
ALTe | Altai east | manually | 22~27 |
ALTw | Altai west | manually | 21~27 |
No. | Cas | VOCs | Identification | Contents (μg/kg) | |||
---|---|---|---|---|---|---|---|
YL | TC | ALTw | ALTe | ||||
C1 | 60-12-8 | Phenethyl alcohol | MS | 941.79 ± 640.57 c | 2483.21 ± 442.29 ab | 1373.66 ± 1395.45 bc | 3568.09 ± 1500.03 a |
C2 | 78-83-1 | isobutanol | MS, IMS e | 47.98 ± 31.67 c | 158.28 ± 55.17 b | 122.32 ± 131.17 bc | 403.57 ± 103.51 a |
C3 | 24347-58-8 | (2R,3R)-(−)-2,3-Butanediol | MS | 43.97 ± 29.01 a | 61.04 ± 2.46 a | 47.33 ± 38.37 a | 52.97 ± 12.09 a |
C4 | 123-51-3 | 3-Methyl-1-butanol | MS, IMS e | 552.43 ± 314.88 c | 1761.30 ± 372.16 b | 1110.76 ± 944.97 bc | 3464.17 ± 717.10 a |
C5 | 1565-80-6 | (S)-(−)-2-Methylbutanol | MS | 183.61 ± 201.13 a | 0 | 178.36 ± 341.27 a | 295.30 ± 534.22 a |
C6 | 67-63-0 | Isopropanol | MS | 44.14 ± 74.77 a | 18.82 ± 6.38 a | 112.60 ± 163.46 a | 23.51 ± 34.63 a |
C7 | 50551-88-7 | 5-METHYL-5-HEXEN-2-OL | MS | 7.27 ± 8.60 a | 18.63 ± 12.22 a | 19.76 ± 41.02 a | 10.66 ± 23.26 a |
C8 | 137-32-6 | 2-Methylbutan-1-ol | MS | 177.12 ± 194.24 b | 876.01 ± 158.21 a | 237.95 ± 322.88 b | 1017.48 ± 282.73 a |
C9 | 2313-61-3 | 4-methyl-2-hexanol | MS | 30.83 ± 33.99 a | 26.65 ± 1.61 a | 61.71 ± 112.77 a | 0 |
C10 | 19132-06-0 | (2S,3S)-(+)-2,3-BUTANEDIOL | MS | 0 | 80.78 ± 25.91 a | 21.46 ± 39.04 a | 124.81 ± 250.74 a |
C11 | 108-82-7 | 2,6-Dimethyl-4-heptanol | MS | 0 | 0 | 82.38 ± 84.49 a | 117.19 ± 137.57 a |
C12 | 71-36-3 | Butanol | MS | 5.04 ± 0.52 a | 2.87 ± 0.21 a | 5.22 ± 3.58 a | 4.39 ± 0.62 a |
C13 | 616-25-1 | 1-Penten-3-ol | MS | 1.23 ± 0.26a | 3.79 ± 1.26 a | 2.93 ± 3.29 a | 3.61 ± 3.28 a |
C14 | 71-23-8 | 1-Propanol | MS | 46.37 ± 10.19 b | 42.89 ± 14.84 b | 43.83 ± 15.33 b | 52.61 ± 23.54 a |
C15 | 763-32-6 | 3-methylbut-3-en-1-ol | MS | 0.66 ± 0.18 b | 0.83 ± 0.16 ab | 0.76 ± 0.35 ab | 1.01 ± 0.32 a |
C16 | 112-60-7 | 2,2′-((Oxybis(ethane-2,1-diyl))bis(oxy))diethanol | MS | 647.70 ± 764.98 a | 858.08 ± 220.96 a | 762.76 ± 940.57 a | 0 |
Z1 | 110-38-3 | Ethyl caprate | MS | 28,937.46 ± 2643.22 a | 14,466.14 ± 1822.56 b | 4222.47 ± 2435.52 c | 2445.60 ± 1629.19 c |
Z2 | 106-32-1 | Ethyl caprylate | MS, IMS e | 24,254.33 ± 2941.10 a | 15,167.06 ± 2536.12 b | 3865.41 ± 1682.78 c | 2890.76 ± 1198.86 c |
Z3 | 106-33-2 | Ethyl laurate | MS | 7819.93 ± 1002.54 a | 5144.83 ± 376.36 b | 589.22 ± 323.47 c | 274.81 ± 278.27 c |
Z4 | 50816-18-7 | 9-Decen-1-ol, 1-acetate | MS | 8430.05 ± 753.10 a | 3831.73 ± 279.66 b | 1707.36 ± 1320.09 c | 941.79 ± 906.60 c |
Z5 | 687-47-8 | (−)-Ethyl L-lactate | MS | 1877.55 ± 853.21 a | 1009.89 ± 606.72 b | 461.19 ± 366.60 c | 1129.09 ± 357.94 b |
Z6 | 124-06-1 | Ethyl tetradecanoate | MS | 626.97 ± 99.88 a | 467.33 ± 74.17 b | 18.30 ± 14.13 c | 14.60 ± 18.24 c |
Z7 | 123-29-5 | Ethyl nonanoate | MS | 445.54 ± 192.25 a | 0 | 260.64 ± 474.45 a | 0 |
Z8 | 123-66-0 | Ethyl hexanoate | MS, IMS | 306.92 ± 22.82 a | 263.36 ± 44.09 b | 46.65 ± 28.70 c | 62.93 ± 14.65 c |
Z9 | 141-78-6 | ethyl acetate | MS, IMS | 651.07 ± 446.58 b | 1265.80 ± 450.34 ab | 1177.51 ± 1129.16 b | 2071.71 ± 693.74 a |
Z10 | 54546-22-4 | 9-Hexadecenoic acid,ethyl ester | MS | 167.27 ± 29.15 a | 94.63 ± 37.19 b | 0 | 0 |
Z11 | 2035-99-6 | 3-methylbutyl octanoate | MS | 126.86 ± 39.42 a | 70.28 ± 23.46 b | 0 | 0 |
Z12 | 628-97-7 | Ethyl palmitate | MS | 73.81 ± 20.29 a | 55.57 ± 5.10 b | 0 | 0 |
Z13 | 105-54-4 | ethyl butanoate | MS, IMS | 59.25 ± 29.14 b | 135.77 ± 22.49 a | 2.45 ± 4.43 c | 7.66 ± 8.12 c |
Z14 | 10348-47-7 | ethyl 2-hydroxy-4-methyl valerate | MS | 121.85 ± 53.43 b | 538.80 ± 119.68 a | 113.12 ± 113.58 b | 68.03 ± 23.09 b |
Z15 | 624-13-5 | propyl octanoate | MS | 69.30 ± 17.51 a | 60.29 ± 5.17 a | 8.21 ± 10.02 b | 9.15 ± 6.10 b |
Z16 | 106-30-9 | Ethyl heptanoate | MS | 46.49 ± 6.88 a | 32.76 ± 2.65 a | 13.89 ± 25.46 b | 0 |
Z17 | 2277-23-8 | 1-Decanoyl-rac-glycerol | MS | 16.81 ± 7.78 a | 12.29 ± 13.46 ab | 0 | 12.78 ± 20.58 ab |
Z18 | 110-19-0 | Isobutyl acetate | MS, IMS | 157.60 ± 82.56 a | 59.80 ± 9.95 b | 0 | 8.38 ± 9.42 c |
Z19 | 142-91-6 | Isopropyl palmitate | MS | 9.62 ± 3.12 a | 68.20 ± 97.21 a | 0 | 0 |
Z20 | 547-64-8 | 1-(Dibromomethyl)-3-phenoxybenzene | MS | 198.66 ± 222.76 a | 0 | 139.81 ± 111.72 ab | 28.10 ± 55.04 b |
Z21 | 97-64-3 | Ethyl lactate | MS, IMS | 49.63 ± 55.55 b | 368.21 ± 182.02 a | 52.18 ± 61.10 b | 96.82 ± 122.33 b |
Z22 | 15399-05-0 | ethyl phenyl lactate | MS | 30.12 ± 33.53 b | 104.55 ± 17.42 a | 6.42 ± 11.65 c | 0 |
Z23 | 55130-16-0 | benzyl oleate | MS | 27.34 ± 30.21 bc | 43.65 ± 13.95 ab | 74.60 ± 60.89 a | 1.46 ± 2.64 c |
Z24 | 103-45-7 | Phenethyl acetate | MS | 0 | 733.98 ± 95.20 ab | 320.60 ± 584.85 b | 1088.80 ± 583.44 a |
Z25 | 123-92-2 | Isoamyl acetate | MS, IMS | 0 | 44.12 ± 49.27 b | 68.29 ± 67.81 b | 130.11 ± 46.85 a |
Z26 | 19329-89-6 | lactic acid isoamyl ester | MS | 0 | 53.88 ± 59.30 ab | 36.60 ± 39.34 ab | 80.05 ± 70.30 a |
Z27 | 624-41-9 | 2-Methylbutylacetat | MS | 0 | 49.68 ± 21.70 a | 11.91 ± 22.99 b | 26.15 ± 36.63 ab |
Z28 | 539-82-2 | Ethyl valerate | IMS | 129.20 ± 16.61 a | 66.45 ± 10.05 b | 85.55 ± 42.10 b | 99.60 ± 47.47 ab |
Z29 | 7452-79-1 | Ethyl 2-methylbutanoate | IMS | 58.05 ± 23.25 a | 16.78 ± 3.14 b | 8.69 ± 3.06 ab | 8.00 ± 4.90 b |
Z30 | 97-62-1 | Ethyl isobutyrate | IMS | 15.72 ± 1.84 ab | 97.88 ± 51.61 ab | 58.80 ± 72.58 b | 118.66 ± 118.51 a |
Z31 | 868-57-5 | Methyl 2-methylbutyrate | IMS | 11.66 ± 0.56 c | 51.97 ± 16.46 a | 30.34 ± 17.33 b | 47.28 ± 16.41 a |
Z32 | 105-37-3 | n-Ethyl propanoate | IMS | 10.18 ± 2.16 b | 41.22 ± 12.76 b | 95.06 ± 89.10 ab | 184.14 ± 202.16 a |
Z33 | 109-60-4 | Propyl acetate | IMS | 4.07 ± 1.26 a | 9.09 ± 6.11 a | 30.12 ± 31.96 a | 24.58 ± 26.11 a |
S1 | 124-07-2 | Octanoic acid | MS | 11,231.01 ± 3510.55 a | 4556.99 ± 720.53 b | 5045.42 ± 3687.15 b | 747.79 ± 617.20 c |
S2 | 334-48-5 | Decanoic acid | MS | 5546.54 ± 1855.71 a | 1946.03 ± 309.87 b | 2062.60 ± 1556.39 b | 158.60 ± 302.53 c |
S3 | 14436-32-9 | 9-Decenoic acid | MS | 1459.96 ± 407.24 a | 294.40 ± 322.50 b | 411.40 ± 302.25 b | 0 |
S4 | 142-62-1 | 1-Hexanoic acid | MS | 1043.66 ± 53.25 a | 409.12 ± 107.38 b | 278.01 ± 138.91 c | 81.90 ± 87.16 d |
S5 | 64-19-7 | acetic acid | MS, IMS | 472.64 ± 88.24 bc | 726.91 ± 141.36 ab | 1045.17 ± 621.60 a | 196.39 ± 144.50 c |
S6 | 143-07-7 | Lauric acid | MS | 464.89 ± 142.63 a | 205.86 ± 297.01 b | 18.22 ± 32.95 c | 0 |
S7 | 3004-93-1 | S-2-methyl octanoic acid | MS | 49.38 ± 38.43 a | 114.60 ± 45.29 a | 0 | 0 |
S8 | 503-74-2 | 3-Methylbutanoic acid | MS | 71.11 ± 55.90 a | 64.17 ± 15.38 a | 5.47 ± 9.95 b | 51.20 ± 7.75 a |
S9 | 65-85-0 | benzoic acid | MS | 148.38 ± 162.54 c | 481.30 ± 528.87 b | 572.45 ± 375.91 a | 0 |
S10 | 629-56-1 | Hexadecenoic acid | MS | 647.70 ± 764.98 a | 858.08 ± 220.96 a | 762.76 ± 940.57 a | 0 |
S11 | 79-31-2 | Isobutyric acid | MS | 33.76 ± 37.10 b | 91.65 ± 29.33 a | 27.73 ± 32.63 b | 127.28 ± 82.73 a |
S12 | 116-53-0 | 2-Methylbutyric acid | MS | 28.25 ± 31.72 c | 73.02 ± 4.55 b | 39.12 ± 25.58 c | 120.02 ± 42.69 a |
T1 | 110-43-0 | 2-Heptanone | MS, IMS | 30.92 ± 34.20 a | 22.89 ± 25.07 a | 42.90 ± 47.54 a | 24.16 ± 26.96 a |
T2 | 105-42-0 | 4-Methyl-2-hexanone | MS | 20.09 ± 22.06 b | 17.42 ± 19.09 b | 0 | 44.40 ± 8.02 a |
T3 | 19093-20-0 | (E)-5-octenone | MS | 0 | 0 | 40.32 ± 40.37 a | 16.37 ± 22.08 a |
T4 | 821-55-6 | 2-Nonanone | MS | 0 | 0 | 76.28 ± 72.95 a | 11.45 ± 7.02 b |
T5 | 67-64-1 | Propanone | IMS | 212.78 ± 38.55 b | 332.06 ± 64.46 a | 265.48 ± 70.82 b | 326.51 ± 16.94 a |
T6 | 513-86-0 | Acetoin | IMS e | 144.37 ± 8.56 b | 229.70 ± 60.35 ab | 484.79 ± 490.56 a | 242.56 ± 102.04 ab |
T7 | 78-93-3 | 2-Butanone | IMS e | 26.54 ± 16.34 a | 16.72 ± 10.94 ab | 10.52 ± 11.76 b | 7.14 ± 2.92 b |
T8 | 1629-58-9 | 1-Penten-3-one | IMS e | 6.28 ± 0.67 b | 56.96 ± 35.47 a | 33.87 ± 34.63 ab | 45.78 ± 41.89 a |
T9 | 116-09-6 | Hydroxyacetone | IMS | 13.12 ± 1.31 a | 5.36 ± 0.51 b | 8.25 ± 6.46 ab | 8.32 ± 4.51 ab |
F1 | 100-52-7 | Benzaldehyde | MS | 66.50 ± 5.41 a | 29.28 ± 6.05 b | 55.76 ± 8.12 a | 25.35 ± 12.53 b |
F2 | 4313-03-5 | (E,E)-2,4-Heptadienal | MS | 86.63 ± 37.43 a | 93.38 ± 63.69 a | 187.31 ± 161.50 a | 61.91 ± 112.06 a |
F3 | 66-25-1 | Hexanal | MS, IMS | 113.35 ± 88.89 a | 87.66 ± 27.18 a | 150.26 ± 73.26 a | 115.66 ± 56.13 a |
F4 | 4748-78-1 | 4-Ethylbenzaldehyde | MS | 11.98 ± 13.20 b | 8.16 ± 8.94 c | 39.99 ± 6.21 ab | 47.62 ± 36.29 a |
F5 | 142-83-6 | 2,4-Hexadienal | MS | 30.91 ± 33.91 a | 30.37 ± 33.27 a | 57.15 ± 25.37 a | 42.66 ± 49.06 a |
F6 | 74094-61-4 | octanal propylene glycol acetal | MS | 7.93 ± 8.68 b | 14.55 ± 16.08 b | 126.23 ± 141.30 a | 27.61 ± 10.45 b |
F7 | 124-19-6 | Nonanal | MS, IMS | 0 | 58.98 ± 13.51 a | 94.43 ± 74.07 a | 55.89 ± 42.23 a |
F8 | 2548-87-0 | (2E)-2-Octenal | MS | 0 | 0 | 194.19 ± 149.75 a | 64.14 ± 63.23 b |
F9 | 3913-81-3 | (2E)-2-Decenal | MS | 0 | 0 | 56.02 ± 39.01 a | 42.09 ± 16.90 a |
F10 | 123-38-6 | Propionaldehyde | IMS e | 57.03 ± 11.14 b | 153.87 ± 11.72 a | 89.36 ± 38.27 b | 161.55 ± 52.85 a |
F11 | 123-72-8 | Butyraldehyde | IMS | 78.67 ± 6.57 ab | 104.61 ± 53.51 a | 48.95 ± 26.14 b | 69.10 ± 32.39 b |
F12 | 6728-26-3 | Trans-2-Hexenal | IMS | 6.96 ± 1.40 ab | 8.14 ± 1.98 a | 4.34 ± 1.88 c | 5.66 ± 2.74b c |
F13 | 96-17-3 | 2-Methylbutanal | IMS | 17.35 ± 11.30 a | 15.85 ± 8.66 a | 30.62 ± 38.90 a | 31.57 ± 20.05 a |
F14 | 1576-87-0 | (E)-2-Pentenal | IMS e | 22.81 ± 2.74 b | 92.04 ± 24.48 ab | 84.41 ± 40.15 b | 171.79 ± 129.48 a |
F15 | 78-84-2 | Isobutyraldehyde | IMS | 10.56 ± 0.67 c | 38.58 ± 26.62 bc | 73.35 ± 66.59 ab | 94.48 ± 21.60 a |
Q1 | 106-44-5 | p-Cresol | MS | 0 | 12.57 ± 13.80 b | 13.36 ± 18.02 b | 56.41 ± 57.52 a |
Q2 | 629-59-4 | Tetradecane | MS | 0 | 0 | 26.48 ± 34.26 a | 20.26 ± 15.90 a |
Q3 | 75-18-3 | Dimethyl sulfide | IMS | 46.42 ± 25.96 a | 48.77 ± 42.66 a | 5.89 ± 3.98 b | 9.63 ± 4.45 b |
VOCs | Cas | Threshold | OVA | |||
---|---|---|---|---|---|---|
YL | TC | ALTw | ALTe | |||
Ethyl caprate | 110-38-3 | 0.02 e | 1446.87 ± 120.65 a | 723.31 ± 83.19 b | 221.12 ± 16.59 c | 112.28 ± 77.99 c |
Ethyl caprylate | 106-32-1 | 0.022 g | 1102.47 ± 122.04 a | 689.41 ± 105.23 b | 175.70 ± 73.23 c | 131.40 ± 52.17 c |
Ethyl laurate | 106-33-2 | 3.5 f | 2.23 ± 0.26 a | 1.47 ± 0.09 b | 0.17 ± 0.09 c | 0.08 ± 0.07 c |
Octanoic acid | 124-07-2 | 0.5 e | 22.46 ± 6.41 a | 9.11 ± 1.32 b | 10.09 ± 7.06 b | 1.50 ± 1.18 c |
9-Decen-1-ol, 1-acetate | 50816-18-7 | 0.1 g | 84.30 ± 6.87 a | 38.32 ± 2.55 b | 17.07 ± 12.64 c | 9.42 ± 8.68 c |
Decanoic acid | 334-48-5 | 0.5 e | 11.09 ± 3.39 a | 3.89 ± 0.57 b | 4.13 ± 2.98 b | 0.32 ± 0.06 c |
1-Hexanoic acid | 142-62-1 | 0.2 e | 5.22 ± 0.24 a | 2.05 ± 0.49 b | 1.39 ± 0.66 b | 0.41 ± 0.04 c |
Ethyl tetradecanoate | 124-06-1 | 0.5 e | 1.25 ± 0.18 a | 0.93 ± 0.14 b | 0.04 ± 0.03 c | 0.03 ± 0.03 c |
acetic acid | 64-19-7 | 1.2 e | 0.39 ± 0.07 bc | 0.61 ± 0.11 ab | 1.87 ± 0.50 a | 0.16 ± 0.12 c |
Phenethyl alcohol | 60-12-8 | 0.045 e | 20.93 ± 12.99 b | 55.18 ± 8.97 ab | 30.53 ± 20.69 b | 79.29 ± 31.91 a |
Ethyl hexanoate | 123-66-0 | 0.005 f | 61.38 ± 4.17 a | 52.67 ± 8.05 b | 9.33 ± 5.50 c | 12.59 ± 2.81 c |
3-Methyl-1-butanol | 123-51-3 | 0.25 e | 2.21 ± 1.15 c | 7.05 ± 1.36 b | 4.44 ± 3.62 bc | 13.86 ± 2.75 a |
3-methylbutyl octanoate | 2035-99-6 | 0.125 f | 1.01 ± 0.29 a | 0.56 ± 0.17 b | 0 | 0 |
ethyl butanoate | 105-54-4 | 0.025 f | 2.37 ± 1.06 b | 5.43 ± 0.82 a | 0.1 ± 0.17 c | 0.31 ± 0.31 c |
(E,E)-2,4-Heptadienal | 4313-03-5 | 0.1 f | 0.87 ± 0.34 a | 0.93 ± 0.58 a | 1.87 ± 1.55 a | 0.62 ± 1.07 a |
Hexanal | 66-25-1 | 0.005 f | 2.27 ± 1.62 a | 1.75 ± 0.50 a | 3.01 ± 1.40 a | 2.31 ± 1.07 a |
benzoic acid | 65-85-0 | 0.5 e | 0.30 ± 0.30 b | 0.96 ± 0.27 ab | 1.14 ± 0.72 a | 0 |
Acetoin | 513-86-0 | 0.04 e | 3.61 ± 0.20 b | 5.74 ± 1.38 b | 12.12 ± 11.74 a | 6.06 ± 2.44 b |
Ethyl valerate | 539-82-2 | 0.025 f | 5.17 ± 0.61 a | 2.66 ± 0.37 b | 3.42 ± 1.61 ab | 3.98 ± 1.82 ab |
Ethyl 2-methylbutanoate | 7452-79-1 | 0.018 f | 3.22 ± 1.18 a | 0.93 ± 0.16 b | 0.48 ± 0.16 b | 0.44 ± 0.26 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, Y.; Ma, X.; Niu, X.; Ren, X.; Muhatai, G.; Xu, Q. Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis. Foods 2023, 12, 2223. https://doi.org/10.3390/foods12112223
Gou Y, Ma X, Niu X, Ren X, Muhatai G, Xu Q. Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis. Foods. 2023; 12(11):2223. https://doi.org/10.3390/foods12112223
Chicago/Turabian StyleGou, Yongzhen, Xinmiao Ma, Xiyue Niu, Xiaopu Ren, Geminguli Muhatai, and Qian Xu. 2023. "Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis" Foods 12, no. 11: 2223. https://doi.org/10.3390/foods12112223
APA StyleGou, Y., Ma, X., Niu, X., Ren, X., Muhatai, G., & Xu, Q. (2023). Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis. Foods, 12(11), 2223. https://doi.org/10.3390/foods12112223