Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Starch-Based Foam Preparation
2.3. Scanning Electron Microscope (SEM)
2.4. Moisture Absorption
2.5. Compressive Strength, Resilience, and Recovery
2.6. Artificial Vibrating Test
2.7. Measuring SO2 Content
2.8. Antimicrobial Analysis
2.9. Measuring Total Soluble Solids (TSS)
2.10. Measuring Titratable Acid (TA)
2.11. Measuring Vitamin C
2.12. Measuring SO2 Residues
2.13. Statistical Analysis
3. Results
3.1. Starch-Based Foam’s Morphological Inner Structure
3.2. Starch-Based Foam’s Moisture Absorption Behavior
3.3. Starch-Based Foam’s Mechanical Properties
3.4. Starch-Based Foam Preloaded with Na2S2O5 to Prevent Microbial Decay
3.5. The Fresh-Keeping Performance of Starch-Based Foam Preloaded with Na2S2O5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.H.; Li, Y.F.; Wei, H.; Li, X.X.; Zheng, H.T.; Dong, X.Y.; Xu, T.F.; Meng, J.F. Inhibition efficiency of wood vinegar on grey mould of table grapes. Food Biosci. 2020, 38, 100755. [Google Scholar] [CrossRef]
- Morales-Cedeno, L.R.; Orozco-Mosqueda, M.D.; Loeza-Lara, P.D.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; Santoyo, G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol. Res. 2021, 242, 126612. [Google Scholar] [CrossRef]
- Wang, K.T.; Liao, Y.X.; Kan, J.Q.; Han, L.; Zheng, Y.H. Response of direct or priming defense against botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Int. J. Food Microbiol. 2015, 194, 32–39. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosanisilica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Chaves, O.J.; Sumida, C.H.; de Souza, R.T. Effects of different sulfur dioxide pads on botrytis mold in ‘italia’ table grapes under cold storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef]
- Pretel, M.T.; Martinez-Madrid, M.C.; Martinez, J.R.; Carreno, J.C.; Romojaro, F. Prolonged storage of ‘aledo’ table grapes in a slightly co2 enriched atmosphere in combination with generators of so2. LWT-Food Sci. Technol. 2006, 39, 1109–1116. [Google Scholar] [CrossRef]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘red globe’ grapes in modified SO2 generating pads. Postharvest Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Tapia-Blacido, D.R.; Aguilar, G.J.; de Andrade, M.T.; Rodrigues, M.F.; Guareschi-Martins, F.C. Trends and challenges of starch-based foams for use as food packaging and food container. Trends Food Sci. Technol. 2022, 119, 257–271. [Google Scholar] [CrossRef]
- Machado, C.M.; Benelli, P.; Tessaro, I.C. Constrained mixture design to optimize formulation and performance of foams based on cassava starch and peanut skin. J. Polym. Environ. 2019, 27, 2224–2238. [Google Scholar] [CrossRef]
- Bergel, B.F.; da Luz, L.M.; Santana, R.M.C. Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Prog. Org. Coat. 2018, 118, 91–96. [Google Scholar] [CrossRef]
- Esmaeili, Y.; Zamindar, N.; Paidari, S.; Ibrahim, S.A.; Nafchi, A.M. The synergistic effects of aloe vera gel and modified atmosphere packaging on the quality of strawberry fruit. J. Food Process. Preserv. 2021, 45, e16003. [Google Scholar] [CrossRef]
- Duan, Q.F.; Zhu, Z.Y.; Chen, Y.; Liu, H.S.; Yang, M.; Chen, L.; Yu, L. Starch-based foams nucleated and reinforced by polysaccharide-based crystals. ACS Sustain. Chem. Eng. 2022, 10, 2169–2179. [Google Scholar] [CrossRef]
- Meng, L.; Liu, H.; Yu, L.; Duan, Q.; Chen, L.; Liu, F.; Shao, Z.; Shi, K.; Lin, X. How water acting as both blowing agent and plasticizer affect on starch-based foam. Ind. Crops Prod. 2019, 134, 43–49. [Google Scholar] [CrossRef]
- Vilela Pinto, J.A.; Weber Schorr, M.R.; Thewes, F.R.; Ceconi, D.L.; Both, V.; Brackmann, A.; Fronza, D. Relative humidity during cold storage on postharvest quality of ‘niagara rosada’ table grapes. Cienc. Rural 2015, 45, 386–391. [Google Scholar] [CrossRef]
- Mali, S.; Debiagi, F.; Grossmann, M.V.E.; Yamashita, F. Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Ind. Crops Prod. 2010, 32, 353–359. [Google Scholar] [CrossRef]
- Glenn, G.M.; Orts, W.J.; Nobes, G.A.R. Starch, fiber and caco3 effects on the physical properties of foams made by a baking process. Ind. Crops Prod. 2001, 14, 201–212. [Google Scholar] [CrossRef]
- Peleg, M. An empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Fu, X.; Ma, N.; Bao, X.; Liu, H. Characterization of a novel starch-based foam with a tunable release of oxygen. Food Chem. 2022, 389, 133062. [Google Scholar] [CrossRef]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. Horttechnology 2008, 18, 206–214. [Google Scholar] [CrossRef]
- Ji, D.C.; Chen, T.; Ma, D.Y.; Liu, J.L.; Xu, Y.; Tian, S.P. Inhibitory effects of methyl thujate on mycelial growth of botrytis cinerea and possible mechanisms. Postharvest Biol. Technol. 2018, 142, 46–54. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, K.; Xuan, G.; Gao, C.; Hu, Z. Soluble solids content monitoring for shelf-life assessment of table grapes coated with chitosan using hyperspectral imaging. Infrared Phys. Technol. 2021, 115, 103725. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.D.; Ozogul, F.; Dunno, K.D.; Cavender, G.A.; Dawson, P. Development of starch-based films reinforced with cellulosic nanocrystals and essential oil to extend the shelf life of red grapes. Food Biosci. 2022, 47, 101621. [Google Scholar] [CrossRef]
- Chen, R.C.; Wu, P.W.; Cao, D.Y.; Tian, H.Q.; Chen, C.K.; Zhu, B.Z. Edible coatings inhibit the postharvest berry abscission of table grapes caused by sulfur dioxide during storage. Postharvest Biol. Technol. 2019, 152, 1–8. [Google Scholar] [CrossRef]
- Nia, A.E.; Taghipour, S.; Siahmansour, S. Pre-harvest application of chitosan and postharvest aloe vera gel coating enhances quality of table grape (Vitis vinifera l. Cv. ‘Yaghouti’) during postharvest period. Food Chem. 2021, 347, 11. [Google Scholar]
- Xu, B.; Wu, S. Preservation of mango fruit quality using fucoidan coatings. LWT 2021, 143, 111150. [Google Scholar] [CrossRef]
- Tianyu, J.; Qingfei, D.; Jian, Z.; Hongsheng, L.; Long, Y. Starch-based biodegradable materials: Challenges and opportunities. Adv. Ind. Eng. Polym. Res. 2020, 3, 8–18. [Google Scholar]
- Cha, J.Y.; Chung, D.S.; Seib, P.A.; Flores, R.A.; Hanna, M.A. Physical properties of starch-based foams as affected by extrusion temperature and moisture content. Ind. Crops Prod. 2001, 14, 23–30. [Google Scholar] [CrossRef]
- Finkenstadt, V.L.; Felker, F.C.; Fanta, G.F.; Kenar, J.A.; Selling, G.W.; Hornback, K.J.; Fisk, D.L. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes. J. Appl. Polym. Sci. 2016, 133, 10. [Google Scholar] [CrossRef]
- Benezet, J.C.; Stanojlovic-Davidovic, A.; Bergeret, A.; Ferry, L.; Crespy, A. Mechanical and physical properties of expanded starch, reinforced by natural fibres. Ind. Crops Prod. 2012, 37, 435–440. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Liu, T.; Xu, Y.; Chen, Y.; Chen, T.; Li, B.Q.; Tian, S.P. Sodium pyrosulfite inhibits the pathogenicity of botrytis cinerea by interfering with antioxidant system and sulfur metabolism pathway. Postharvest Biol. Technol. 2022, 189, 9. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhu, Z.Q.; Zhang, X.S.; Antoce, A.O.; Mu, W.S. Modeling the microbiological shelf life of table grapes and evaluating the effects of constant concentrations of sulfur dioxide. J. Food Process. Preserv. 2017, 41, e13058. [Google Scholar] [CrossRef]
- Pan, Q.; Zhou, C.; Yang, Z.; He, Z.; Wang, C.; Liu, Y.; Song, S.; Gu, H.; Hong, K.; Yu, L.; et al. Preparation and characterization of chitosan derivatives modified with quaternary ammonium salt and quaternary phosphate salt and its effect on tropical fruit preservation. Food Chem. 2022, 387, 132878. [Google Scholar] [CrossRef] [PubMed]
- Youssef, K.; Chaves, O.J.; Muhlbeier, D.T.; Roberto, S.R. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation. Horticulturae 2020, 6, 20. [Google Scholar] [CrossRef]
- Artes-Hernandez, F.; Tomas-Barberan, F.A.; Artes, F. Modified atmosphere packaging preserves quality of so2-free ‘superior seedless’ table grapes. Postharvest Biol. Technol. 2006, 39, 146–154. [Google Scholar] [CrossRef]
- Chaves, O.J.; Youssef, K.; Koyama, R.; Ahmed, S.; Dominguez, A.R.; Muhlbeier, D.T.; Roberto, S.R. Control of gray mold on clamshell-packaged ‘benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens 2019, 8, 14. [Google Scholar]
- Luo, P.; Li, F.P.; Liu, H.H.; Yang, X.M.; Duan, Z.H. Effect of fucoidan-based edible coating on antioxidant degradation kinetics in strawberry fruit during cold storage. J. Food Process. Preserv. 2020, 44, e14381. [Google Scholar] [CrossRef]
Humidity Levels | First Compressive Strength (Kpa) | Second Compressive Strength (Kpa) | Resilience (%) | Recovery (%) |
---|---|---|---|---|
Control (60%) | 345.09 ± 3.46 a | 359.45 ± 7.40 a | 104.15 ± 1.10 b | 90.21 ± 1.43 a |
86% | 80.08 ± 4.85 b | 83.73 ± 4.26 b | 104.63 ± 1.46 b | 84.72 ± 1.37 b |
93% | 28.42 ± 1.34 c | 31.11 ± 1.23 c | 109.51 ± 1.50 a | 78.36 ± 2.06 c |
98% | 15.09 ± 0.62 d | 15.97 ± 0.57 d | 105.82 ± 0.96 b | 70.19 ± 2.48 d |
Humidity Levels | K1 | K2 |
---|---|---|
86% | 64.17 | 1.88 |
93% | 74.29 | 1.42 |
98% | 85.50 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, S.; Ma, Y.; Liu, H.; Li, C.; Song, Y.; Hu, K.; Chen, X.; Chen, Y.; Zou, W. Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging. Foods 2023, 12, 2222. https://doi.org/10.3390/foods12112222
Mai S, Ma Y, Liu H, Li C, Song Y, Hu K, Chen X, Chen Y, Zou W. Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging. Foods. 2023; 12(11):2222. https://doi.org/10.3390/foods12112222
Chicago/Turabian StyleMai, Shihua, Yue Ma, Hongsheng Liu, Chao Li, Yuqing Song, Kaizhen Hu, Xinyan Chen, Ying Chen, and Wei Zou. 2023. "Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging" Foods 12, no. 11: 2222. https://doi.org/10.3390/foods12112222
APA StyleMai, S., Ma, Y., Liu, H., Li, C., Song, Y., Hu, K., Chen, X., Chen, Y., & Zou, W. (2023). Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging. Foods, 12(11), 2222. https://doi.org/10.3390/foods12112222