Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation Process of TPS-5
2.3. Structural Description of TPS-5
2.3.1. Ultraviolet-Visible (UV) Spectrum Scanning
2.3.2. Molecular Weight (Mw) Determination
2.3.3. Monosaccharide Composition Analysis
2.3.4. Fourier-Transform Infrared (FT-IR) Spectrum Analysis
2.3.5. Methylation Analysis
2.3.6. Nuclear Magnetic Resonance (NMR) Spectrum Analysis
2.3.7. Observation of Microscopic Morphology
2.4. Free Radical Scavenging and Ferric-Ion-Reducing Capacities of TPS-5
2.4.1. DPPH Scavenging Test
2.4.2. ABTS+ Scavenging Test
2.4.3. OH Scavenging Test
2.4.4. Ferric Iron Reducing Antioxidant Power (FRAP) Test
2.5. Bile-Salt-Binding Action
2.6. Digestive Enzyme Inhibition In Vitro
2.6.1. Inhibition of α-Amylase
2.6.2. Inhibition of α-Glucosidase
2.7. Spectrophotometric Analysis of Total Sugar, Protein, Total Polyphenol, and Uronic Acid Contents
2.8. Statistical Analysis
3. Results and Discussion
3.1. Structural Analysis of TPS-5
3.1.1. Basic Structural Information of TPS-5
3.1.2. MW and Monosaccharide Composition of TPS-5
3.1.3. Methylation Analysis of TPS-5
3.1.4. NMR Analysis of TPS-5
3.1.5. SEM Analysis of TPS-5
3.2. Biological Activity of TPS-5 In Vitro
3.2.1. Evaluation of Free Radical Scavenging and Ferric-ion-Reducing Abilities of TPS-5
3.2.2. Bile-Salt-Binding Capacity of TPS-5
3.2.3. Hypoglycemic Ability of TPS-5
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, H.; Huang, L.; Teng, J.; Wei, B.; Xia, N.; Ye, Y. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation. Food Chem. 2021, 353, 129419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, B.; Chang, Y. Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 2010, 109, 557–563. [Google Scholar] [CrossRef]
- Zhu, M.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.; Xu, W.; Li, J.; Lin, H.; Zhang, Z.; Xiao, J.; et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2020, 312, 126043. [Google Scholar] [CrossRef]
- Mao, Y.; Wei, B.; Teng, J.; Xia, N.; Zhao, M.; Huang, L.; Ye, Y. Polysaccharides from Chinese Liupao dark tea and their protective effect against hyperlipidemia. Int. J. Food Sci. Technol. 2018, 53, 599–607. [Google Scholar] [CrossRef]
- Mao, Y.; Wei, B.; Teng, J.; Huang, L.; Xia, N. Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive post-fermented tea from China. Food Res. Int. 2017, 99, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Teng, J.; Huang, L.; Xia, N.; Wei, B. Stability, antioxidant activity and in vitro bile acid-binding of green, black and dark tea polyphenols during simulated in vitro gastrointestinal digestion. Rsc. Adv. 2015, 5, 92089–92095. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.; Zhang, J.; Dong, M.; Wang, L.; Julian McClements, D.; Fu, Y.; Han, L.; Shen, P.; Chen, X. Effects of pile fermentation on the physicochemical, functional, and biological properties of tea polysaccharides. Food Chem. 2023, 410, 135353. [Google Scholar] [CrossRef]
- Xiang, G.; Sun, H.; Chen, Y.; Guo, H.; Liu, Y.; Li, Y.; Lu, C.; Wang, X. Antioxidant and hypoglycemic activity of tea polysaccharides with different degrees of fermentation. Int. J. Biol. Macromol. 2023, 228, 224–233. [Google Scholar] [CrossRef]
- Xu, A.; Lai, W.; Chen, P.; Awasthi, M.K.; Chen, X.; Wang, Y.; Xu, P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci. Technol. 2021, 114, 83–99. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Chen, Y.; Yu, L.; Teng, J.; Xia, N.; Wei, B.; Xiao, S.; Huang, L. The relationship between microbial dynamics and dominant chemical components during Liupao tea processing. Food Biosci. 2021, 43, 101315. [Google Scholar] [CrossRef]
- Pang, B.; Huang, L.; Teng, J.; Zhang, J.; Xia, N.; Wei, B. Effect of pile fermentation on the cells of Chinese Liupao tea: The first record of cell wall of Liupao tea on transmission electron microscope. Food Chem. 2021, 361, 130034. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Huang, L.; Xia, N.; Teng, J.; Wei, B.; Lin, X.; Khan, M.R. Two Polysaccharides from Liupao Tea Exert Beneficial Effects in Simulated Digestion and Fermentation Model In Vitro. Foods 2022, 11, 2958. [Google Scholar] [CrossRef]
- Nie, C.; Zhu, P.; Ma, S.; Wang, M.; Hu, Y. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohyd. Polym. 2018, 188, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Q.; Liu, G.; Xu, H.; Zhang, X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int. J. Biol. Macromol. 2021, 190, 730–738. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, X.; Ma, J.; Zhang, M.; Wu, H. Structural Elucidation of a Novel Pectin-Polysaccharide from the Petal of Saussurea laniceps and the Mechanism of its Anti-HBV Activity. Carbohyd. Polym. 2019, 223, 115077. [Google Scholar] [CrossRef] [PubMed]
- Abuduwaili, A.; Nuerxiati, R.; Mutailifu, P.; Gao, Y.; Lu, C.; Yili, A. Isolation, structural modification, characterization, and bioactivity of polysaccharides from Folium Isatidis. Ind. Crops Prod. 2022, 176, 114319. [Google Scholar] [CrossRef]
- Mtetwa, M.D.; Qian, L.; Zhu, H.; Cui, F.; Zan, X.; Sun, W.; Wu, D.; Yang, Y. Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Acanthus ilicifolius. J. Food Meas Charact. 2020, 14, 1223–1235. [Google Scholar] [CrossRef]
- Li, J.; Fan, L.; Ding, S. Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao. Carbohyd. Polym. 2011, 83, 477–482. [Google Scholar] [CrossRef]
- He, T.; Huang, Y.; Huang, Y.; Wang, X.; Hu, J.; Sheng, J. Structural elucidation and antioxidant activity of an arabinogalactan from the leaves of Moringa oleifera. Int. J. Biol. Macromol. 2018, 112, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Lin, W.; Yang, X.; Su, D.; He, S.; Nag, A.; Zeng, Q.; Yuan, Y. Development, characterization and in vitro bile salts binding capacity of selenium nanoparticles stabilized by soybean polypeptides. Food Chem. 2022, 391, 133286. [Google Scholar] [CrossRef]
- Li, H.; Fang, Q.; Nie, Q.; Hu, J.; Yang, C.; Huang, T.; Li, H.; Nie, S. Hypoglycemic and Hypolipidemic Mechanism of Tea Polysaccharides on Type 2 Diabetic Rats via Gut Microbiota and Metabolism Alteration. J. Agric. Food Chem. 2020, 68, 10015–10028. [Google Scholar] [CrossRef]
- Wang, J.; Bao, A.; Meng, X.; Guo, H.; Zhang, Y.; Zhao, Y.; Kong, W.; Liang, J.; Yao, J.; Zhang, J. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohyd. Polym. 2018, 184, 366–375. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kováříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohyd. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Xie, J.; Xie, M.; Nie, S.; Shen, M.; Wang, Y.; Li, C. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem. 2010, 119, 1626–1632. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Z.; Lv, J.; Li, T.; Wu, H.; Wu, J.; Wu, H.; Xiang, W. Characterization, hypoglycemia and antioxidant activities of polysaccharides from Rhodosorus sp. SCSIO-45730. Ind. Crops Prod. 2023, 191, 115936. [Google Scholar] [CrossRef]
- Lo, T.C.T.; Jiang, Y.H.; Chao, A.L.J.; Chang, C.A. Use of statistical methods to find the polysaccharide structural characteristics and the relationships between monosaccharide composition ratio and macrophage stimulatory activity of regionally different strains of Lentinula edodes. Anal. Chim. Acta. 2007, 584, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ding, S.; Fan, L. Antioxidant activities of five polysaccharides from Inonotus obliquus. Int. J. Biol. Macromol. 2012, 50, 1183–1187. [Google Scholar] [CrossRef]
- Perry, M.B.; MacLean, L.L.; Patrauchan, M.A.; Vinogradov, E. The structure of the exocellular polysaccharide produced by Rhodococcus sp. RHA1. Carbohyd. Res. 2007, 342, 2223–2229. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, D.; Li, Y.; Zou, M.; Shao, Y.; Yin, J.; Nie, S. Structural characteristics of a highly branched and acetylated pectin from Portulaca oleracea L. Food Hydrocolloids 2021, 116, 106659. [Google Scholar] [CrossRef]
- Yapo, B.M.; Lerouge, P.; Thibault, J.; Ralet, M. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohyd. Polym. 2007, 69, 426–435. [Google Scholar] [CrossRef]
- Hawker, C.J.; Lee, R.; Frechet, J.M.J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc. 1991, 113, 4583–4588. [Google Scholar] [CrossRef]
- Li, J.; Deng, Q.; Yu, X.; Wang, W. Structural studies of a new fraction obtained by gradient ethanol precipitation from Acacia seyal gum. Food Hydrocolloids 2020, 107, 105932. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Qu, Y.; Guo, X.; Yang, X.; Cui, X.; Wang, C. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells. Int. J. Biol. Macromol. 2020, 161, 797–809. [Google Scholar] [CrossRef]
- Sun, Y.; Huo, J.; Zhong, S.; Zhu, J.; Li, Y.; Li, X. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohyd. Polym. 2021, 268, 118214. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Shen, W.; Zhou, Y.; Ma, L.; Xu, D.; Ding, J.; He, L.; Shen, B.; Zhou, C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. Int. J. Biol. Macromol. 2020, 162, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Wang, Q.; Lin, R.; He, P.; Lai, F.; Zhang, M.; Wu, H. Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit. Int. J. Biol. Macromol. 2020, 145, 1080–1090. [Google Scholar] [CrossRef]
- Fan, R.; Xie, Y.; Zhu, C.; Qiu, D.; Zeng, J.; Liu, Z. Structural elucidation of an acidic polysaccharide from Citrus grandis ‘Tomentosa’ and its anti-proliferative effects on LOVO and SW620 cells. Int. J. Biol. Macromol. 2019, 138, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Gong, Z.; Liu, H.; Wang, J.; Wang, D.; Yang, Y.; Zhong, S. Structural characterization and anti-tumor activity in vitro of a water-soluble polysaccharide from dark brick tea. Int. J. Biol. Macromol. 2022, 205, 615–625. [Google Scholar] [PubMed]
- Chau, C.; Chen, C.; Wang, Y. Effects of a novel pomace fiber on lipid and cholesterol metabolism in the hamster. Nutr. Res. 2004, 24, 337–345. [Google Scholar] [CrossRef]
- Chen, R.; Jin, C.; Tong, Z.; Lu, J.; Tan, L.; Tian, L.; Chang, Q. Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohyd. Polym. 2016, 136, 187–197. [Google Scholar]
- Chen, G.; Chen, Y.; Hou, Y.; Huo, Y.; Gao, A.; Li, S.; Chen, Y. Preparation, characterization and the in vitro bile salts binding capacity of celery seed protein hydrolysates via the fermentation using B. subtilis. LWT-Food Sci. Technol. 2020, 117, 108571. [Google Scholar] [CrossRef]
- Jeong, H.K.; Lee, D.; Kim, H.P.; Baek, S. Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula. Carbohydr. Polym. 2019, 211, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, M.; Xie, B. Quantification of Uronic Acids in Tea Polysaccharide Conjugates and Their Antioxidant Properties. J. Agric. Food Chem. 2004, 52, 3333–3336. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Yu, P.; Mao, G.; Zhao, T.; Feng, W.; Yang, L.; et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa. Carbohyd. Polym. 2017, 161, 42–52. [Google Scholar]
- Wang, P.; Huang, Q.; Chen, C.; You, L.; Liu, R.H.; Luo, Z.; Zhao, M.; Fu, X. The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. J. Funct. Foods. 2019, 54, 64–73. [Google Scholar]
- Chen, Y.; Liu, X.; Xiao, Z.; Huang, Y.; Liu, B. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. Int. J. Biol. Macromol. 2016, 91, 505–509. [Google Scholar] [CrossRef]
- An, Q.; Ye, X.; Han, Y.; Zhao, M.; Chen, S.; Liu, X.; Li, X.; Zhao, Z.; Zhang, Y.; Ouyang, K.; et al. Structure analysis of polysaccharides purified from Cyclocarya paliurus with DEAE-Cellulose and its antioxidant activity in RAW264.7 cells. Int. J. Biol. Macromol. 2020, 157, 604–615. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. Comparison Study on Polysaccharide Fractions from Laminaria japonica.: Structural Characterization and Bile Acid Binding Capacity. J. Agric. Food Chem. 2017, 65, 9790–9798. [Google Scholar]
- Sun, Y.; Yang, K.; Zhang, X.; Li, L.; Zhang, H.; Zhou, L.; Liang, J.; Li, X. In vitro binding capacities, physicochemical properties and structural characteristics of polysaccharides fractionated from Passiflora edulis peel. Food Biosci. 2022, 50, 102016. [Google Scholar]
- Wu, D.; Zhao, Y.; Guo, H.; Gan, R.; Peng, L.; Zhao, G.; Zou, L. Physicochemical and Biological Properties of Polysaccharides from Dictyophora indusiata Prepared by Different Extraction Techniques. Polymers 2021, 13, 2357. [Google Scholar]
- STORY, J.A. Comparison of the Binding of Various Bile Acids and Bile Salts In Vitro by Several Types of Fiber. J. Nutr. 1976, 106, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Bi, J.; Chen, J.; Wang, R.; Richel, A. Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocolloids 2021, 112, 106350. [Google Scholar] [CrossRef]
- Bhandari, M.R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [PubMed]
- Nguyen, H.X.; Le, T.C.; Do, T.N.V.; Le, T.H.; Nguyen, N.T.; Nguyen, M.T.T. α-Glucosidase inhibitors from the bark of Mangifera mekongensis. Chem. Cent. J. 2016, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Ikegami, H.; Inoue, K.; Kawabata, Y.; Ogihara, T. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism 2005, 54, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Li, X.; Wang, M.; Zha, X.; Yang, X.; Liu, Z.; Luo, Y.; Luo, J. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int. J. Biol. Macromol. 2014, 64, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xiu, W.; Wang, X.; Yu, S.; Luo, Y.; Gu, X. Structural characterization and in vitro antioxidant and hypoglycemic activities of degraded polysaccharides from sweet corncob. J. Cereal. Sci. 2022, 108, 103579. [Google Scholar] [CrossRef]
- Fu, Y.; Feng, K.; Wei, S.; Xiang, X.; Ding, Y.; Li, H.; Zhao, L.; Qin, W.; Gan, R.; Wu, D. Comparison of structural characteristics and bioactivities of polysaccharides from loquat leaves prepared by different drying techniques. Int. J. Biol. Macromol. 2020, 145, 611–619. [Google Scholar] [CrossRef]
- Zeng, A.; Yang, R.; Yu, S.; Zhao, W. A novel hypoglycemic agent: Polysaccharides from laver (Porphyra spp.). Food Funct. 2020, 11, 9048–9056. [Google Scholar] [CrossRef]
- Cao, C.; Huang, Q.; Zhang, B.; Li, C.; Fu, X. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction. Int. J. Biol. Macromol. 2018, 109, 357–368. [Google Scholar] [CrossRef] [PubMed]
NO. | RT (min) | PMAA | Mass Fragments (m/z) | Area (%) | Linkage Type |
---|---|---|---|---|---|
1 | 10.358 | 2,3,5-Me3-Araf | 43,71,87,101,117,129,145,161 | 0.71 | Araf-1 |
2 | 15.475 | 2,3-Me2-Araf | 43,87,99,101,117,129,189 | 5.35 | Araf-1-5 |
3 | 18.483 | 2,3,4,6-Me4-Galp | 43,71,87,101,117,129,145,161,205 | 2.88 | Galp-1/GalAp-1 |
4 | 19.292 | 2-Me1-Araf | 43,85,99,117,127,159,201,261 | 2.69 | Araf-1-3-5 |
5 | 19.733 | 3-Me1-Rhap | 43,87,101,117,129,143,159,189,203 | 5.17 | Rhap-1-2-4 |
6 | 22.067 | 2,3,6-Me3-Galp | 43,71,87,99,101,113,117,129,131,161,173,233 | 24.18 | Galp-1-4/ GalAp-1-4 |
7 | 22.408 | 2,3,6-Me3-Glcp | 43,71,87,99,101,113,117,129,131,161,173,233 | 26.06 | Glcp-1-4/ GalAp-1-4 |
8 | 23.233 | 2,4,6-Me3-Galp | 43,71,87,101,117,129,161,173,233 | 2.19 | Galp-1-3 |
9 | 25.908 | 2,6-Me2-Galp | 43,87,97,117,129,143,159,185 | 14.36 | Galp-1-3-4/ GalAp-1-3-4 |
10 | 30.908 | 2,4-Me2-Galp | 43,87,99,101,117,129,139,159,173,189,233 | 2.38 | Galp-1-3-6 |
Glycosyl Residue | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | C6/H6a,b | Me/Ac |
---|---|---|---|---|---|---|---|
α-D-GalAp-(1→ | 5.71 | 4.20 | 3.65 | 3.88 | ns | ||
(A) | 108.19 | 72.11 | 71.32 | 70.71 | ns | 176.51 | |
→4)-α-D-GalAp | 5.26 | 3.75 | 3.96 | 4.35 | 4.73 | ||
(B) | 93.63 | 69.61 | 75.31 | 79.13 | 72.71 | 170.80 | |
→4)-α-D-GalAp-(1→ | 5.03 | 3.68 | 3.94 | 4.33 | 4.69 | 3.73 | |
(C) | 100.39 | 69.41 | 70.06 | 79.16 | 72.66 | 176.71 | 54.23 |
→3,4)-α-D-GalAp-(1→ | 4.84 | 4.20 | 4.1 | 4.49 | 5.08 | 1.81 | |
(D) | 101.35 | 72.71 | 82.56 | 80.29 | 71.84 | 176.71 | 24.9 |
→4)-β-D-GalAp | 4.52 | 3.42 | 3.67 | 4.28 | 4.67 | ||
(E) | 97.49 | 72.83 | 73.29 | 79.2 | 72.76 | 170.80 | |
→3)-β-D-Galp-(1→ | 4.55 | 3.58 | 3.80 | 4.12 | 3.67 | 3.56 | 3.48 |
(G) | 105.39 | 72.1 | 83.22 | 69.74 | 76.9 | 63.87 | |
→3,6)-β-D-Galp-(1→ | 4.47 | 3.57 | 3.76 | 4.05 | 3.87 | 3.96 | 3.86 |
(H) | 104.69 | 71.31 | 83.21 | 69.82 | 74.81 | 70.76 | |
β-D-Galp-(1→ | 4.36 | 3.45 | 3.58 | 3.86 | 3.71 | ||
(K) | 105.06 | 72.13 | 74.23 | 70.71 | 76.51 | 62.41 | |
α-L-Araf-(1→ | 5.16 | 4.12 | 3.89 | 4.07 | 3.73 | ||
(L) | 110.63 | 82.63 | 77.94 | 85.27 | 62.5 | ||
α-L-Araf-(1→ | 5.12 | 4.06 | 3.88 | 3.97 | 3.72 | ||
(L′) | 108.63 | 83.61 | 78.14 | 85.24 | 62.51 | ||
→3,5)-α-L-Araf-(1→ | 5.07 | 4.22 | 4.01 | 4.25 | 3.86,3.74 | ||
(M) | 108.91 | 80.62 | 83.66 | 83.31 | 67.81 | ||
→5)-α-L-Araf-(1→ | 5.02 | 4.08 | 3.95 | 4.16 | 3.86,3.74 | ||
(N) | 108.89 | 82.19 | 78.13 | 83.69 | 68.28 | ||
→2,4)-α-L-Rha-(1→ | 5.21 | 4.02 | 3.85 | 3.61 | 3.78 | 1.19 | |
(O) | 99.81 | 78.76 | 75.11 | 76.81 | 74.76 | 17.96 |
Treatment | Bile-Salt-Binding Ability (%) | |
---|---|---|
Sodium Taurocholate | Sodium Glycocholate | |
TPS-5 | 10.50 ± 0.70a | 31.46 ± 0.71a |
Cholestyramine | 86.98 ± 0.85b | 73.00 ± 0.17b |
TPS-5 relative to cholestyramine | 12.07 ± 0.47 | 43.10 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Huang, L.; Du, L.; Sun, Q.; Chen, C.; Tang, J.; Teng, J.; Wei, B. Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea. Foods 2023, 12, 2226. https://doi.org/10.3390/foods12112226
Wei L, Huang L, Du L, Sun Q, Chen C, Tang J, Teng J, Wei B. Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea. Foods. 2023; 12(11):2226. https://doi.org/10.3390/foods12112226
Chicago/Turabian StyleWei, Lu, Li Huang, Lijuan Du, Qinju Sun, Can Chen, Jie Tang, Jianwen Teng, and Baoyao Wei. 2023. "Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea" Foods 12, no. 11: 2226. https://doi.org/10.3390/foods12112226
APA StyleWei, L., Huang, L., Du, L., Sun, Q., Chen, C., Tang, J., Teng, J., & Wei, B. (2023). Structural Characterization and In Vitro Antioxidant, Hypoglycemic and Hypolipemic Activities of a Natural Polysaccharide from Liupao Tea. Foods, 12(11), 2226. https://doi.org/10.3390/foods12112226