HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zanthoxylum Samples
2.2. Volatile Compounds Analysis
2.2.1. HS-SPME Conditions
2.2.2. GC×GC-TOFMS Conditions under SPME Method
2.2.3. Statistical Analysis
2.2.4. Flavoromics Analysis
2.3. Contents of Numb Taste Components Analysis
2.3.1. Samples Preparation
2.3.2. Preparation of Standard Solution
2.3.3. Quantification of Hydroxy-α-sanshool, Hydroxy-β-sanshool, and Hydroxy-γ-sanshool via RP-HPLC
2.4. Antimicrobial Activities
2.4.1. Essential Oil Extraction
2.4.2. Tested Bacterial and Plant Pathogens
2.4.3. Antibacterial Activity Screening
2.4.4. Antifungal Activity Screening
3. Results
3.1. Essential Oil Analysis by GC×GC-TOFMS
3.2. Multivariate Statistical Analysis
3.3. Flavoromics Profile and Sensory Analysis of the MEO and BEO
3.4. Quantification of Hydroxy-α-sanshool, Hydroxy-β-sanshool, and Hydroxy-γ-sanshool in the Z. motuoense and Z. bungeanum Peel
3.5. Antibacterial Activity
3.6. Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Sun, B.G.; Ren, F.Z.; Chen, H.T.; Zhang, N.; Zhang, Y.Y. Characterization of Key Odorants in Hanyuan and Hancheng Fried Pepper (Zanthoxylum bungeanum) Oil. J. Agric. Food Chem. 2020, 68, 6403–6411. [Google Scholar] [CrossRef] [PubMed]
- Epifano, F.; Curini, M.; Carla, M.; Genovese, S. Searching for novel cancer chemopreventive plants and their products: The genus Zanthoxylum. Curr. Drug Targets 2011, 12, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum maxim. (rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.W.; Yu, D.M.; Wu, Z.C.; Wang, C.; Yu, L.; Wei, A.Z.; Wang, D.M. Comparative transcriptome analysis and expression of genes reveal the biosynthesis and accumulation patterns of key flavonoids in different varieties of Zanthoxylum bungeanum leaves. J. Agric. Food Chem. 2019, 67, 13258–13268. [Google Scholar] [CrossRef]
- Yang, X.G. Aroma Constituents and Alkylamides of Red and Green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 2008, 56, 1689–1696. [Google Scholar] [CrossRef]
- Nooreen, Z.; Tandon, S.; Yadav, N.P.; Kumar, P.; Xuan, T.D.; Ahmad, A. Zanthoxylum: A Review of its Traditional Uses, Naturally Occurring Constituents and Pharmacological Properties. Curr. Org. Chem. 2019, 23, 1307–1341. [Google Scholar] [CrossRef]
- Zhang, D.X.; Thomas, G.H.; David, J.M. Flora of China; Science Press: Beijing, China, 2018; Volume 11, p. 10781. [Google Scholar]
- Yang, J.; Chen, W.Y.; Fu, Y.; Yang, T.; Luo, X.D.; Wang, Y.H.; Wang, Y.H. Medicinal and edible plants used by the Lhoba people in Medog County, Tibet, China. J. Ethnopharmacol. 2020, 249, 112430. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhou, Y.; Shi, X.L.; Xia, X.; He, Y.J.; Zhu, Y.Y.; Xie, T.Z.; Liu, T.; Xu, X.J.; Luo, X.D. Comparison of chemical constituents in diverse zanthoxylum herbs, and evaluation of their relative antibacterial and nematicidal activity. Food Biosci. 2021, 42, 101206. [Google Scholar] [CrossRef]
- Du, L.P.; Wang, C.; Zhang, C.X.; Ma, L.J.; Xu, Y.Q.; Xiao, D.G. Characterization of the volatile and sensory profile of instant Pu-erh tea using GC × GC-TOFMS and descriptive sensory analysis. Microchem. J. 2019, 146, 986–996. [Google Scholar] [CrossRef]
- Fidelis, C.H.V.; Sampaio, P.T.B.; Krainovic, P.M.; Augusto, F.; Barsta, L.E.S. Correlation between maturity of tree and GC × GC-qMS chemical profiles of essential oil from leaves of Aniba rosaeodora Ducke. Microchem. J. 2013, 109, 73–77. [Google Scholar] [CrossRef]
- Mohler, R.E.; Ahn, S.; O’Reilly, K.; Zemo, D.A.; Devine, C.E.; Magaw, R.; Sihota, N. Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC × GC-TOFMS and Orbitrap ESI-MS. Chemosphere 2020, 244, 125504. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; Jom, K.N.; Ge, Y. Infuence of roasting condition on flavor Profile of sunfower seeds: A favoromics approach. Sci. Rep. 2019, 9, 11295. [Google Scholar] [CrossRef]
- Wehrens, R. Chemometrics with R: Multivariate Data Analysis in the Natural Sciences and Life Sciences; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Feng, T.; Shui, M.Z.; Song, S.Q.; Zhuang, H.N.; Sun, M.; Yao, L.Y. Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach. Molecules 2019, 24, 3305. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.F.; Xiao, R.; Luo, F.J.; Lin, Q.L.; Ouyang, D.F.; Dong, J.; Zeng, W.B. Food bioactive small molecule databases: Deep boosting for the study of food molecular behaviors. Innov. Food Sci. Emerg. 2020, 66, 102499. [Google Scholar] [CrossRef]
- Wuc, Z.; Wang, W.; Sun, L.; Wei, A.; Wang, D. Accumulation and biosynthesis of hydroxyl-α-sanshool in varieties of Zanthoxylum bungeanum Maxim. by HPLC-fingerprint and transcriptome analyses. Ind. Crops Prod. 2020, 145, 111998. [Google Scholar]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Plant Food Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef]
- Zhu, R.X.; Zhong, K.; Zeng, W.C.; He, X.Y.; Gu, X.Q.; Zhao, Z.F.; Gao, H. Essential oil composition and antibacterial activity of Zanthoxylum bungeanum. Afr. J. Microbiol. Res. 2011, 5, 4631–4637. [Google Scholar]
- Vaseeharan, B.; Ramasamy, P.; Chen, J.C. Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett. Appl. Microbiol. 2010, 50, 352–356. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement (M100-S22); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Singh, R.; Vora, J.; Nadhe, S.B.; Wadhwani, S.A.; Shedbalkar, U.U.; Chopade, B.A. Antibacterial Activities of Bacteriagenic Silver Nanoparticles Against Nosocomial Acinetobacter baumannii. J. Nanosci. Nanotech. 2018, 18, 3806–3815. [Google Scholar] [CrossRef]
- Tian, Z.Y.; Liao, A.C.; Kang, J.; Gao, Y.Y.; Lu, A.D.; Wang, Z.W.; Wang, Q.M. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. J. Agric. Food Chem. 2021, 69, 9754–9763. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fernández, R.E.; Sánchez-Fuentes, R.; Rangel-Sánchez, H.; Hernández-Ortega, S.; López-Cortés, J.G.; Macías-Rubalcava, M.L. Antifungal and antioomycete activities and modes of action of isobenzofuranones isolated from the endophytic fungus Hypoxylon anthochroum strain Gseg1. Pestic. Biochem. Phys. 2020, 169, 104670. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, J.; Zhu, L. Tea quality evaluation by applying E-nose combined with chemometrics methods. J. Food Sci. Technol. 2021, 58, 1549–1561. [Google Scholar] [CrossRef]
- Feng, X.Y.; Wang, H.W.; Wang, Z.R.; Huang, P.M.; Kan, J.Q. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-HC-IMS and HS-SPME-GC-MS. Food Chem. 2022, 375, 131671. [Google Scholar] [CrossRef]
- Huang, B.M.; Zha, Q.L.; Chen, T.B.; Xiao, S.Y.; Xie, Y.; Luo, P.; Wang, Y.P.; Liu, L.; Zhou, H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine 2018, 45, 8–17. [Google Scholar] [CrossRef]
- Huang, Q.; Dong, K.; Wang, H.; Wang, G.Z.; An, F.P.; Luo, Z.; Luo, P. Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chem. 2022, 371, 131103. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew. Chem. Int. Edit. 2014, 53, 7124–7143. [Google Scholar] [CrossRef]
- Zhu, G.T.; Gou, J.B.; Klee, H.; Huang, S.W. Next-Gen Approaches to Flavor-Related Metabolism. Annu. Rev. Plant Biol. 2019, 70, 187–212. [Google Scholar] [CrossRef]
- Feng, S.; Gmitter, J.F.G.; Grosser, W.; Wang, Y. Identification of Key Flavor Compounds in Citrus Fruits: A Flavoromics Approach. ACS Food Sci. Technol. 2021, 1, 2076–2085. [Google Scholar] [CrossRef]
- Pavagadhi, S.; Swarup, S. Metabolomics for evaluating flavor-associated metabolites in plant-based products. Metabolites 2020, 10, 197. [Google Scholar] [CrossRef]
- Wany, A.; Jha, S.; Nigam, V.K.; Pandey, D.M. Chemical analysis and therapeutic uses of Citronella oil from Cymaopogon winterianus: A short review. Int. J. Adv. Res. 2013, 1, 504–521. [Google Scholar]
- Selli, S.; Cabaroglu, T.; Canbas, A. Volatile flavour components of orange juice obtained from the cv. Kozan of Turkey. J. Food Compos. Anal. 2004, 17, 789–796. [Google Scholar] [CrossRef]
- Silva, K.A.; Robles-Dutenhefner, P.A.; Sousa, E.M.B.; Kozhevnikova, E.F.; Gusevskaya, E.V. Cyclization of (+)-citronellal to (−)-isopulegol catalyzed by H3PW12O40/SiO2. Catal. Commun. 2004, 5, 425–429. [Google Scholar] [CrossRef]
- Chung, M.S. Volatilecompounds of Zanthoxylum piperitum A.P.DC. Food Sci. Biotechnol. 2005, 14, 529–532. [Google Scholar]
- Zhang, L.L.; Zhao, L.; Wang, H.Y.; Shi, B.L.; Liu, L.Y.; Chen, Z.X. The relationship between alkymide compound content and pungency intensity of Zanthoxylum bungeanum based on sensory evaluation and ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) analysis. J. Sci. Food Agric. 2019, 99, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Marei, G.I.K.; Rasoul, M.A.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Soylu, E.M.; Kurt, Ş.; Soylu, S. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. Int. J. Food Microbiol. 2010, 143, 183–189. [Google Scholar] [CrossRef]
NO. | Compounds | CAS | rt (min) | Molecular Weight | Molecular Formula | VIP | p-Value | log2(FC_A/B) |
---|---|---|---|---|---|---|---|---|
1 | (+)-4-Carene | 29050-33-7 | 28.5 | 136.23 | C10H16 | 1.770693031 | 0.03 | −8.6689 |
2 | α-Pinene | 80-56-8 | 19.6667 | 136.23 | C10H16 | 1.540234605 | 0.029 | −3.443 |
3 | β-Myrcene | 123-35-3 | 16 | 136.23 | C10H16 | 3.131640524 | 0.03 | −1.3939 |
4 | γ-Terpinene | 99-85-4 | 25.0833 | 136.23 | C10H16 | 2.456300509 | 0.03 | −3.1802 |
5 | 1,8-Nonadiyne | 2396-65-8 | 19.25 | 120.19 | C9H12 | 1.302772377 | 0.029 | −9.1911 |
6 | (E,E)-2,4-Hexadienal | 142-83-6 | 23 | 96.13 | C6H8O | 1.532866599 | 0.03 | −4.3574 |
7 | 2-Butene, 1-bromo-3-methyl- | 870-63-3 | 20.25 | 149.03 | C5H9Br | 2.560639238 | 0.03 | −7.4076 |
8 | (E,Z)-3,6-Nonadien-1-ol | 56805-23-3 | 25.4167 | 140.23 | C9H16O | 1.905607225 | 0.029 | +9.24 |
9 | 4-Carene, (1S,3S,6R)-(−)- | 5208-50-4 | 25 | 136.23 | C10H16 | 1.143406224 | 0.03 | −3.1904 |
10 | 6-Octen-1-ol, 3,7-dimethyl-, acetate | 150-84-5 | 29.4167 | 198.30 | C12H22O2 | 2.277011945 | 0.026 | +5.5667 |
11 | (R)-6-Octenal, 3,7-dimethyl- | 2385-77-5 | 25.3333 | 154.25 | C10H18O | 4.163651501 | 0.026 | +7.0734 |
12 | Acetic acid | 64-19-7 | 24.0833 | 60.05 | C2H4O2 | 1.913005062 | 0.03 | −4.118 |
13 | Allyl methallyl ether | 14289-96-4 | 25.4167 | 112.17 | C7H12O | 2.048043888 | 0.03 | +9.961 |
14 | Caryophyllene | 87-44-5 | 28.3333 | 204.36 | C15H24 | 1.661784003 | 0.029 | −2.7406 |
15 | Citronellal | 106-23-0 | 25.3333 | 154.25 | C10H18O | 4.464295154 | 0.03 | +5.2502 |
16 | Ethanol | 64-17-5 | 8.58333 | 46.07 | C2H6O | 1.741290164 | 0.03 | −0.52856 |
17 | Ethanol, 2-(vinyloxy)- | 764-48-7 | 47.1667 | 88.11 | C4H8O2 | 1.310679373 | 0.03 | −1.4438 |
18 | Germacrene D | 23986-74-5 | 30.9167 | 204.35 | C15H24 | 1.799569472 | 0.03 | −4.5682 |
19 | Humulene | 6753-98-6 | 30.0833 | 204.36 | C15H24 | 1.319712086 | 0.03 | −3.4072 |
20 | Isobutyl acetate | 110-19-0 | 10.8333 | 116.16 | C6H12O2 | 1.087154338 | 0.03 | −6.5814 |
21 | Isopulegol | 89-79-2 | 27.75 | 154.25 | C10H18O | 2.157177505 | 0.026 | +7.152 |
22 | Limonene | 138-86-3 | 17.0833 | 136.23 | C10H16 | 4.755266283 | 0.03 | −2.8155 |
23 | Linalool | 78-70-6 | 26.5833 | 154.25 | C10H18O | 5.238708648 | 0.03 | −3.7743 |
24 | Linalyl acetate | 115-95-7 | 26.9167 | 196.28 | C10H20O | 4.231364101 | 0.03 | −4.9328 |
25 | Terpinen-4-ol | 562-74-3 | 28.25 | 154.25 | C10H18O | 1.606004596 | 0.03 | −4.5477 |
26 | trans-β-Ocimene | 3779-61-1 | 11.25 | 136.23 | C10H16 | 2.117693803 | 0.026 | −9.3875 |
Name | CAS | rt (min) | Range of Odor Min | Range of Odor Max | Odor Character | Flavor_Profile | MEO | BEO |
---|---|---|---|---|---|---|---|---|
Citronellal | 106-23-0 | 25.3333 | herbal, dry, fat, rose, aldehydic, floral, sweet, cherry, lemon, citrus, waxy | 26,709.40 | 935.64 | |||
D-Limonene | 5989-27-5 | 25.3333 | mint, fresh, orange, sweet, lemon, citrus | 6174.66 | 3558.32 | |||
Isopulegol | 89-79-2 | 27.75 | medicinal, cooling, minty, woody | 6089.05 | 0.15 | |||
Linalool | 78-70-6 | 26.5833 | green, flower, lavender, orange, floral, sweet, lemon, blueberry, citrus, bois de rose, woody | 3070.13 | 42,008.66 | |||
Citronellol | 106-22-9 | 32 | leather, rose, bitter, floral, citrus, rose bud, geranium, waxy | 2583.72 | 0.15 | |||
Decanal | 112-31-2 | 25.6667 | tallow, aldehydic, floral, sweet, citrus, soap, orange peel, waxy | 1468.81 | 218.80 | |||
Caryophyllene | 87-44-5 | 28.3333 | spicy, wood, woody | 1289.66 | 4310.19 | |||
Acetaldehyde | 75-07-0 | 47.1667 | 0.0015 | 1000 | pungent, fruity, suffocating, fresh, green | 954.74 | 1437.09 | |
1-Heptanol | 111-70-6 | 26.0833 | herbal, violet, green, leafy, coconut, sweet, peony, musty, chemical, strawberry, woody | 363.65 | 149.53 | |||
Octanal | 124-13-0 | 19.75 | fat, green, aldehydic, lemon, citrus, fatty, soap, orange peel, waxy | 312.65 | 76.40 | |||
Formaldehyde | 50-00-0 | 47.0833 | 0.027 | 9770 | pungent | 207.04 | 560.89 | |
Terpinen-4-ol | 562-74-3 | 28.25 | turpentine, pepper, must, sweet, nutmeg, musty, earth, woody | 154.19 | 3606.38 | |||
Hexanal | 66-25-1 | 13.0833 | leafy, fruity, sweaty, grass, fatty, aldehydic, green, fresh, tallow, fat | 135.52 | 137.42 | |||
Propylene Glycol | 57-55-6 | 40.5833 | 5.14 | 0 | 128.37 | 123.91 | ||
Methyl Alcohol | 67-56-1 | 7.5 | 3.05 | 198,686 | sour, sweet, alcohol | 95.71 | 344.33 | |
Benzaldehyde | 100-52-7 | 26.25 | 0.0015 | 783 | bitter almond, fruit, vanilla | 54.01 | 51.20 | |
Propane | 74-98-6 | 43.0833 | 1497 | 19,964 | natural gas | 47.37 | 22.32 | |
1-Octanol | 111-87-5 | 27.25 | 0.0009 | 1.69 | penetrating | 42.06 | 34.52 | |
Heptanal | 111-71-7 | 16.5 | citrus, wine-lee, rancid, ozone, fatty, herbal, aldehydic, green, fresh, fat | 27.70 | 11.11 | |||
1-Hexanol | 111-27-3 | 21.75 | fruity, ethereal, green, flower, sweet, alcoholic, resin, fusel, oil | 23.22 | 32.07 | |||
Acetonitrile | 75-05-8 | 10.4167 | 13 | 1161 | etherish | 21.08 | 42.46 | |
Camphene | 79-92-5 | 12.5833 | herbal, camphor, fir needle, woody | 12.20 | 383.64 | |||
Pentanal | 110-62-3 | 9.75 | fruity, malt, bready, nutty, pungent, almond, fermented, berry | 11.59 | 30.33 | |||
Nerolidol | 142-50-7 | 37.4167 | green, wax, flower, floral, citrus, wood, woody, waxy | 7.34 | 0.15 | |||
2-Undecanone | 112-12-9 | 32.8333 | fruity, green, creamy, fresh, orange, orris, floral, fatty, iris, waxy | 6.57 | 0.15 | |||
Isoprene | 78-79-5 | 23.9167 | 0.047 | 3.59 | aromatic | 5.25 | 6.48 | |
1-Pentanol | 71-41-0 | 18.6667 | balsamic, vanilla, balsam, sweet, fusel, oil | 4.34 | 12.25 | |||
2-Pentanol | 6032-29-7 | 32.3333 | green, mild, fusel, fermented, oil | 2.80 | 3.90 | |||
Styrene | 100-42-5 | 18.8333 | balsamic, floral, balsam, sweet, plastic, gasoline | 1.49 | 0.15 | |||
Furfural | 98-01-1 | 23.5833 | 0.002 | 0.713 | bread, almond | 1.16 | 41.56 | |
Acetophenone | 98-86-2 | 29.4167 | 0.00024 | 0.59 | sweet, almond, pungent, oranges, river water | acacia, flower, must, pungent, hawthorn, almond, bitter, sweet, hawthorne, mimosa, chemical | 0.98 | 144.54 |
3-Nonanone | 925-78-0 | 21.75 | herbal, leaf, fruity, fresh, sweet, jasmin, spicy | 0.15 | 87.48 |
No. | Samples | Hydroxy-α-sanshool (mg/g) | Hydroxy-β-sanshool (mg/g) | Hydroxy-γ-sanshool (mg/g) | Total Sanshools Content (mg/g) |
---|---|---|---|---|---|
1 | Zanthoxylum motuoense | 1.31 ± 0.07 | 2.61 ± 0.16 | 77.91 ± 5.79 | 81.83 ± 6.02 |
2 | Zanthosylum bungeanum | 78.71 ± 5.59 | 151.23 ± 11.67 | 1.79 ± 0.12 | 231.73 ± 17.38 |
Bacterial | MIC (mg/mL) | |
---|---|---|
MEO | BEO | |
Staphylococcus aureus | 0.375 | 0.750 |
Pseudomonas aeruginosa | 1.500 | 1.500 |
Escherichia coil | 0.188 | 0.750 |
Ralstonia solanacearum | 0.750 | 1.500 |
Fungus | Inhibition Rate (%) | ||
---|---|---|---|
MEO | BEO | Carbendazim 1 | |
Sclerotinia sclerotiorum | 100.00 | 100.00 | 100.00 |
Phytophthora parasitic var. Nicotianae | 100.00 | 74.36 | 100.00 |
Fusarium graminearum | 100.00 | 81.54 | 100.00 |
Cylindrocarpon destructans | 100.00 | 27.16 | 100.00 |
Fusarium oxysporum | 68.19 | 57.26 | 100.00 |
Cytospora mandshurica | 65.37 | 55.88 | 100.00 |
Phomopsis Viticola | <50 | 55.33 | 100.00 |
Botryosphaeria dothidea | <50 | <50 | 86.81 |
Alternaria tenuissima | <50 | 57.48 | 100.00 |
Fungus | IC50 (μg/mL) | ||
---|---|---|---|
MEO | BEO | Hymexazol * | |
Sclerotinia sclerotiorum | 220 ± 40 c,E | 536 ± 9 a,E | 49 ± 2.5 |
Phytophthora parasitic var. Nicotianae | 270 ± 18 b,D | 1000 ± 158 a,B | 7 ± 0.9 |
Fusarium graminearum | 230 ± 28 c,E | 780 ± 21 a,D | 25 ± 3.8 |
Cylindrocarpon destructans | 390 ± 17 b,C | - | 37 ± 1.9 |
Fusarium oxysporum | 511 ± 59 c,B | 938 ± 59 a,C | 28 ± 4.8 |
Cytospora mandshurica | 718 ± 88 b,A | 1129 ± 69 a,A | 21 ± 1.6 |
Alternaria tenuissima | - | 951 ± 70 a,C | 45 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Wei, Y.; Fu, X.; Gu, R.; Chen, J.; Jian, J.; Huang, L.; Yuan, C.; Guan, W.; Hao, X. HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense. Foods 2023, 12, 2225. https://doi.org/10.3390/foods12112225
Gu W, Wei Y, Fu X, Gu R, Chen J, Jian J, Huang L, Yuan C, Guan W, Hao X. HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense. Foods. 2023; 12(11):2225. https://doi.org/10.3390/foods12112225
Chicago/Turabian StyleGu, Wei, Yinghuan Wei, Xianjie Fu, Ronghui Gu, Junlei Chen, Junyou Jian, Liejun Huang, Chunmao Yuan, Wenling Guan, and Xiaojiang Hao. 2023. "HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense" Foods 12, no. 11: 2225. https://doi.org/10.3390/foods12112225
APA StyleGu, W., Wei, Y., Fu, X., Gu, R., Chen, J., Jian, J., Huang, L., Yuan, C., Guan, W., & Hao, X. (2023). HS-SPME/GC×GC-TOFMS-Based Flavoromics and Antimicrobial Properties of the Aroma Components of Zanthoxylum motuoense. Foods, 12(11), 2225. https://doi.org/10.3390/foods12112225