Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivars under Study
2.2. Sample Preparation
2.3. Chemicals and Reagents
2.4. Evaluation of the Dry Mass Percentage
2.5. Antioxidant Activity Assays
2.5.1. DPPH Radical Scavenging Assay
2.5.2. β-Carotene Bleaching Assay
2.6. Total Phenolics Content (TPC) Assay
2.7. Total Flavonoids Content (TFC) Assay
2.8. Fructose Content Assay
2.9. UHPLC-ToF-MS Conditions
2.10. Validation of the UHPLC-ToF-MS Method
2.11. Principal Component Analysis (PCA)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Dry Mass Percentage Assay
3.2. Antioxidant Capacity Assays
3.3. Fructose Content Assay
3.4. Validation of the Analytical Method
3.5. Quantification of Individual Phenolic Compounds
3.6. Results of the Principal Component Analysis
3.6.1. Principal Component Analysis
3.6.2. Classification with Machine Learning Algorithms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, J.; van Zonneveld, M.; Achigan-Dako, E.G.; Bajwa, B.; Brouwer, I.D.; Choudhury, D.; de Jager, I.; de Steenhuijsen Piters, B.; Dulloo, M.E.; Guarino, L.; et al. Fruit and Vegetable Biodiversity for Nutritionally Diverse Diets: Challenges, Opportunities, and Knowledge Gaps. Glob. Food Secur. 2022, 33, 100618. [Google Scholar] [CrossRef]
- Peng, F.; Ren, X.; Du, B.; Niu, K.; Yu, Z.; Yang, Y. Insoluble Dietary Fiber of Pear Fruit Pomace (Pyrus Ussuriensis Maxim) Consumption Ameliorates Alterations of the Obesity-Related Features and Gut Microbiota Caused by High-Fat Diet. J. Funct. Foods 2022, 99, 105354. [Google Scholar] [CrossRef]
- Ma, Q.; Bi, J.; Yi, J.; Wu, X.; Li, X.; Zhao, Y. Stability of Phenolic Compounds and Drying Characteristics of Apple Peel as Affected by Three Drying Treatments. Food Sci. Hum. Wellness 2021, 10, 174–182. [Google Scholar] [CrossRef]
- Home|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/en (accessed on 10 March 2023).
- Mignard, P.; Beguería, S.; Reig, G.; Font i Forcada, C.; Moreno, M.A. Genetic Origin and Climate Determine Fruit Quality and Antioxidant Traits on Apple (Malus x Domestica Borkh). Sci. Hortic. 2021, 285, 110142. [Google Scholar] [CrossRef]
- Tao, H.; Sun, H.; Wang, Y.; Wang, X.; Guo, Y. Effects of Water Stress on Quality and Sugar Metabolism in ‘Gala’ Apple Fruit. Hortic. Plant J. 2023, 9, 60–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Huo, H.; Xu, J.; Tian, L.; Dong, X.; Qi, D.; Liu, C. An Assessment of the Genetic Diversity of Pear (Pyrus L.) Germplasm Resources Based on the Fruit Phenotypic Traits. J. Integr. Agric. 2022, 21, 2275–2290. [Google Scholar] [CrossRef]
- Salazar-Orbea, G.L.; García-Villalba, R.; Bernal, M.J.; Hernández, A.; Tomás-Barberán, F.A.; Sánchez-Siles, L.M. Stability of Phenolic Compounds in Apple and Strawberry: Effect of Different Processing Techniques in Industrial Set Up. Food Chem. 2023, 401, 134099. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Chemical Composition and Antioxidant Capacity of Different Anatomical Parts of Pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Moni Bottu, H.; Mero, A.; Husanu, E.; Tavernier, S.; Pomelli, C.S.; Dewaele, A.; Bernaert, N.; Guazzelli, L.; Brennan, L. The Ability of Deep Eutectic Solvent Systems to Extract Bioactive Compounds from Apple Pomace. Food Chem. 2022, 386, 132717. [Google Scholar] [CrossRef]
- Wei, L.; Liao, Z.; Ma, H.; Wei, J.; Peng, C. Antioxidant Properties, Anti- SARS-CoV-2 Study, Collagenase and Elastase Inhibition Effects, Anti-Human Lung Cancer Potential of Some Phenolic Compounds. J. Indian Chem. Soc. 2022, 99, 100416. [Google Scholar] [CrossRef]
- Adelusi, T.I.; Boyenle, I.D.; Tolulope, A.; Adebisi, J.; Fatoki, J.O.; Ukachi, C.D.; Oyedele, A.-Q.K.; Ayoola, A.M.; Timothy, A.A. GCMS Fingerprints and Phenolic Extracts of Allium Sativum Inhibit Key Enzymes Associated with Type 2 Diabetes. J. Taibah Univ. Med. Sci. 2023, 18, 337–347. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for Antioxidant and Antibacterial Activities of Phenolics from Golden Delicious Apple Pomace. Chem. Cent. J. 2016, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and Characterization of Anthocyanins and Non-Anthocyanin Phenolics from Australian Native Fruits and Their Antioxidant, Antidiabetic, and Anti-Alzheimer Potential. Food Res. Int. 2022, 162, 111951. [Google Scholar] [CrossRef]
- Vetrani, C. (Poly)Phenols and Cardiovascular Diseases_ Looking in to Move Forward. J. Funct. Foods 2020, 71, 104013. [Google Scholar] [CrossRef]
- Fatima, M.T.; Bhat, A.A.; Nisar, S.; Fakhro, K.A.; Al-Shabeeb Akil, A.S. The Role of Dietary Antioxidants in Type 2 Diabetes and Neurodegenerative Disorders: An Assessment of the Benefit Profile. Heliyon 2023, 9, e12698. [Google Scholar] [CrossRef] [PubMed]
- Mesías, F.J.; Martín, A.; Hernández, A. Consumers’ Growing Appetite for Natural Foods: Perceptions towards the Use of Natural Preservatives in Fresh Fruit. Food Res. Int. 2021, 150, 110749. [Google Scholar] [CrossRef]
- Talwar, S.; Kaur, P.; Kumar, S.; Hossain, M.; Dhir, A. What Determines a Positive Attitude towards Natural Food Products? An Expectancy Theory Approach. J. Clean. Prod. 2021, 327, 129204. [Google Scholar] [CrossRef]
- Lavilla, M.; Gayán, E. Consumer Acceptance and Marketing of Foods Processed Through Emerging Technologies. In Innovative Technologies for Food Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 233–253. ISBN 978-0-12-811031-7. [Google Scholar]
- Bruno de Sousa Sabino, L.; Leônia da Costa Gonzaga, M.; de Siqueira Oliveira, L.; Souza Gomes Duarte, A.; Alexandre e Silva, L.M.; Sousa de Brito, E.; Wilane de Figueiredo, R.; Morais Ribeiro da Silva, L.; Machado de Sousa, P.H. Polysaccharides from Acerola, Cashew Apple, Pineapple, Mango and Passion Fruit Co-Products: Structure, Cytotoxicity and Gastroprotective Effects. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100228. [Google Scholar] [CrossRef]
- Sette, P.; Fernandez, A.; Soria, J.; Rodriguez, R.; Salvatori, D.; Mazza, G. Integral Valorization of Fruit Waste from Wine and Cider Industries. J. Clean. Prod. 2020, 242, 118486. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s New in Biopotential of Fruit and Vegetable by-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Antonio, A.S.; Wiedemann, L.S.M.; Galante, E.B.F.; Guimarães, A.C.; Matharu, A.S.; Veiga-Junior, V.F. Efficacy and Sustainability of Natural Products in COVID-19 Treatment Development: Opportunities and Challenges in Using Agro-Industrial Waste from Citrus and Apple. Heliyon 2021, 7, e07816. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Zafra-Calvo, N.; Purvis, A.; Verburg, P.H.; Obura, D.; Leadley, P.; Chaplin-Kramer, R.; De Meester, L.; Dulloo, E.; Martín-López, B.; et al. Set Ambitious Goals for Biodiversity and Sustainability. Science 2020, 370, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, L.; Chapman, C.A.; Peres, C.A.; Lee, T.M.; Fan, P.-F. Growing Disparity in Global Conservation Research Capacity and Its Impact on Biodiversity Conservation. One Earth 2023, 6, 147–157. [Google Scholar] [CrossRef]
- Macfarlane, N.B.W.; Adams, J.; Bennett, E.L.; Brooks, T.M.; Delborne, J.A.; Eggermont, H.; Endy, D.; Esvelt, K.M.; Kolodziejczyk, B.; Kuiken, T.; et al. Direct and Indirect Impacts of Synthetic Biology on Biodiversity Conservation. iScience 2022, 25, 105423. [Google Scholar] [CrossRef]
- Cortés-Capano, G.; Hausmann, A.; Di Minin, E.; Kortetmäki, T. Ethics in Biodiversity Conservation: The Meaning and Importance of Pluralism. Biol. Conserv. 2022, 275, 109759. [Google Scholar] [CrossRef]
- Horwitz, W. (Ed.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006; ISBN 978-0-935584-77-6. [Google Scholar]
- Martins, C.; Vilarinho, F.; Sanches Silva, A.; Andrade, M.; Machado, A.V.; Castilho, M.C.; Sá, A.; Cunha, A.; Vaz, M.F.; Ramos, F. Active Polylactic Acid Film Incorporated with Green Tea Extract: Development, Characterization and Effectiveness. Ind. Crops Prod. 2018, 123, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.E. A Simplified Method for the Evaluation of Antioxidants. J. Am. Oil Chem. Soc. 1971, 48, 91. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Extract, Blackseed (Nigella sativa L.) Essential Oil, Carnosic Acid, Rosmarinic Acid and Sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Séndon, R.; Silva, A.S.; Ramos, F.; Vilarinho, F.; Khwaldia, K.; Barbosa-Pereira, L. Industrial Fruits By-Products and Their Antioxidant Profile: Can They Be Exploited for Industrial Food Applications? Foods 2021, 10, 272. [Google Scholar] [CrossRef]
- Ashwell, G. Colorimetric Analysis of Sugars. Methods Enzym. 1957, 3, 73–105. [Google Scholar] [CrossRef]
- INSA_pt. Available online: http://portfir.insa.pt/foodcomp/food?21438 (accessed on 10 March 2023).
- INSA_pt. Available online: http://portfir.insa.pt/foodcomp/food?22189 (accessed on 10 March 2023).
- Sara, J.; Abdolrasoul, E.; Ahmad, K.; Hossain, B. Evaluation of Antioxidant Activity of Malus Domestica Fruit Extract from Kashan Area. Afr. J. Agric. Res. 2015, 10, 2136–2140. [Google Scholar] [CrossRef] [Green Version]
- Guan, J. Chapter 17—How Cultivars Influence Fruit Composition: Total Phenols, Flavonoids Contents, and Antioxidant Activity in the Pulp of Selected Asian Pears. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; p. 7. [Google Scholar]
- Oaldje-Pavlovic, M.; Alimpic-Aradski, A.; Savic, A.; Jankovic, S.; Milutinovic, M.; Marin, P.; Duletic-Lausevic, S. Traditional Varieties and Wild Pear from Serbia: A Link among Antioxidant, Antidiabetic and Cytotoxic Activities of Fruit Peel and Flesh. Bot. Serb. 2021, 45, 203–213. [Google Scholar] [CrossRef]
- Koleva, I.I.; van Beek, T.A.; Linssen, J.P.H.; Groot, A.D.; Evstatieva, L.N. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Ceymann, M.; Arrigoni, E.; Schärer, H.; Bozzi Nising, A.; Hurrell, R.F. Identification of Apples Rich in Health-Promoting Flavan-3-Ols and Phenolic Acids by Measuring the Polyphenol Profile. J. Food Compos. Anal. 2012, 26, 128–135. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Purves, R.; Karbancioglu-Guler, F.; Kilic-Akyilmaz, M. Enhancement of Phenolic Antioxidants in Industrial Apple Waste by Fermentation with Aspergillus spp. Biocatal. Agric. Biotechnol. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Sinha, A.; Gill, P.P.S.; Jawandha, S.K.; Kaur, P.; Grewal, S.K. Chitosan-Enriched Salicylic Acid Coatings Preserves Antioxidant Properties and Alleviates Internal Browning of Pear Fruit under Cold Storage and Supermarket Conditions. Postharvest Biol. Technol. 2021, 182, 111721. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Stockmann, R.; Terefe, N.S. Effect of Citric Acid and High Pressure Thermal Processing on Enzyme Activity and Related Quality Attributes of Pear Puree. Innov. Food Sci. Emerg. Technol. 2018, 45, 196–207. [Google Scholar] [CrossRef]
- Wu, C.-S.; Gao, Q.-H.; Guo, X.-D.; Yu, J.-G.; Wang, M. Effect of Ripening Stage on Physicochemical Properties and Antioxidant Profiles of a Promising Table Fruit ‘Pear-Jujube’ (Zizyphus Jujuba Mill.). Sci. Hortic. 2012, 148, 177–184. [Google Scholar] [CrossRef]
- Costa, D.C.; Costa, H.S.; Albuquerque, T.G.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Šavikin, K.; Živković, J.; Zdunić, G.; Gođevac, D.; Đorđević, B.; Dojčinović, B.; Đorđević, N. Phenolic and Mineral Profiles of Four Balkan Indigenous Apple Cultivars Monitored at Two Different Maturity Stages. J. Food Compos. Anal. 2014, 35, 101–111. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Hammam, W.E.; El-Mahdy El-Tantawi, M.; Yassin, N.A.Z.; Kirollos, F.N.; Abdelhameed, M.F.; Abdelfattah, M.A.O.; Wink, M.; Sobeh, M. Apple Leaves and Their Major Secondary Metabolite Phlorizin Exhibit Distinct Neuroprotective Activities: Evidence from in Vivo and in Silico Studies. Arab. J. Chem. 2021, 14, 103188. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wei, L.; Hu, C.Y.; Deng, H.; Guo, Y.; Meng, Y.H. Apple Phlorizin Oxidation Product 2 Inhibits Proliferation and Differentiation of 3T3-L1 Preadipocytes. J. Funct. Foods 2019, 62, 103525. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Antioxidant Capacity and Phenolic Composition of Peel and Flesh of Some Apple Varieties: Antioxidant Capacity and Phenolic Content of Apples. J. Sci. Food Agric. 2013, 93, 867–875. [Google Scholar] [CrossRef]
- Mihailović, N.R.; Mihailović, V.B.; Kreft, S.; Ćirić, A.R.; Joksović, L.G.; Đurđević, P.T. Analysis of Phenolics in the Peel and Pulp of Wild Apples (Malus sylvestris (L.) Mill.). J. Food Compos. Anal. 2018, 67, 1–9. [Google Scholar] [CrossRef]
- Bílková, A.; Baďurová, K.; Svobodová, P.; Vávra, R.; Jakubec, P.; Chocholouš, P.; Švec, F.; Sklenářová, H. Content of Major Phenolic Compounds in Apples: Benefits of Ultra-Low Oxygen Conditions in Long-Term Storage. J. Food Compos. Anal. 2020, 92, 103587. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Janulis, V.; Viskelis, P. Phenolic Antioxidant Profiles in the Whole Fruit, Flesh and Peel of Apple Cultivars Grown in Lithuania. Sci. Hortic. 2017, 216, 186–192. [Google Scholar] [CrossRef]
- Cui, T.; Nakamura, K.; Ma, L.; Li, J.-Z.; Kayahara, H. Analyses of Arbutin and Chlorogenic Acid, the Major Phenolic Constituents in Oriental Pear. J. Agric. Food Chem. 2005, 53, 3882–3887. [Google Scholar] [CrossRef]
- Brahem, M.; Renard, C.M.G.C.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and Quantification of Fruit Phenolic Compounds of European and Tunisian Pear Cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Colaric, M.; Stampar, F.; Solar, A.; Hudina, M. Influence of Branch Bending on Sugar, Organic Acid and Phenolic Content in Fruits of ‘Williams’ Pears (Pyrus communis L.). J. Sci. Food Agric. 2006, 86, 2463–2467. [Google Scholar] [CrossRef]
- Salta, J.; Martins, A.; Santos, R.G.; Neng, N.R.; Nogueira, J.M.F.; Justino, J.; Rauter, A.P. Phenolic Composition and Antioxidant Activity of Rocha Pear and Other Pear Cultivars—A Comparative Study. J. Funct. Foods 2010, 2, 153–157. [Google Scholar] [CrossRef]
- Weltgesundheitsorganisation; FAO (Eds.) Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a WHO-FAO Expert Consultation; Joint WHO-FAO Expert Consultation on Diet, Nutrition, and the Prevention of Chronic Diseases, 2002, Geneva, Switzerland; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-120916-8. [Google Scholar]
Fruit | Cultivar | Dry Mass Percentage |
---|---|---|
Apple | Pêro Coimbra | 18.8 ± 0.4 |
Repinau | 20.8 ± 0.4 | |
Pardo Lindo | 22.8 ± 0.5 | |
Pêro de Borbela | 18.6 ± 0.1 | |
Noiva | 18.3 ± 0.7 | |
Pear | Bela-Feia | 20.2 ± 1.4 |
Torres Novas | 17.3 ± 1.0 | |
Carapinheira Roxa | 20.5 ± 0.3 | |
Lambe-os-Dedos | 16.7 ± 1.0 | |
Amorim | 20.7 ± 1.5 | |
Carapinheira | 19.7 ± 0.5 |
Cultivar | Portion | Inhibition Percentage (%) | µg Trolox Equivalents (TE)/g FW | Antioxidant Activity Coefficient (AAC) | |||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Peel | 9.22 a ± 0.15 | 7.69 i ± 0.87 | 148 a ± 1.81 | 130 i ± 10.3 | 124 A ± 10.9 | 134 AG ± 2.21 | |
Pardo Lindo | Seed | 5.10 b ± 0.46 | 4.15 g ± 0.22 | 98.8 b ± 5.44 | 87.7 g ± 2.57 | 62.7 B ± 10.9 | 88.9 C ± 4.41 |
Pulp | 0.06 c ± 0.55 | 0.62 c ± 0.00 | 39.3 c ± 6.47 | 45.8 c ± 0.00 | 76.8 BC ± 9.05 | 64.0 B ± 4.41 | |
Peel | 14.5 d ± 0.00 | 12.5 g ± 0.65 | 210 d ± 0.00 | 186 g ± 7.72 | 89.6 C ± 12.7 | 88.9 C ± 4.41 | |
Repinau | Seed | 5.42 b ± 0.31 | 6.46 b ± 0.44 | 103 b ± 3.63 | 115 b ± 5.15 | 42.3 D ± 10.9 | 37.4 D ± 2.21 |
Pulp | 0.13 c ± 0.46 | 1.85 c ± 0.00 | 40.1 c ± 5.39 | 60.4 c ± 0.00 | 82.0 CE ± 9.05 | 51.5 BD ± 4.41 | |
Peel | 19.2 e ± 0.15 | 24.7 d ± 0.39 | 266 e ± 1.82 | 331 d ± 4.65 | 127 AF ± 10.9 | 142 FG ± 4.41 | |
Pêro Coimbra | Seed | 5.21 b ± 0.00 | 6.67 bg ± 0.79 | 100 b ± 0.00 | 117 g ± 9.29 | 147 G ± 10.9 | 150 G ± 2.21 |
Pulp | 0.00 c ± 0.00 | 1.39 c ± 0.39 | 33.4 c ± 7.25 | 55.0 c ± 4.65 | 85.8 C ± 14.5 | 70.2 BE ± 0.00 | |
Peel | 27.8 f ± 0.61 | 39.7 j ± 0.87 | 367 f ± 7.25 | 508 j ± 10.3 | 143 FG ± 9.05 | 245 J ± 4.41 | |
Pêro de Borbela | Seed | 6.72 g ± 0.92 | 14.6 d ± 1.09 | 118 g ± 10.9 | 211 d ± 12.9 | 109 A ± 7.24 | 130 AG ± 4.41 |
Pulp | 0.98 c ± 0.46 | 1.38 c ± 0.22 | 50.1 c ± 5.44 | 54.9 c ± 2.57 | 71.7 BE ± 5.43 | 87.4 C ± 6.62 | |
Peel | 53.4 h ± 1.00 | 51.5 k ± 1.96 | 670 h ± 11.9 | 648 k ± 23.2 | 283 H ± 3.62 | 270 H ± 8.83 | |
Noiva | Seed | 13.3 d ± 0.18 | 11.5 d ± 0.65 | 196 d ± 2.16 | 175 d ± 7.72 | 196 I ± 7.24 | 122 A ± 6.62 |
Pulp | 3.93 b ± 0.36 | 6.15 g ± 0.44 | 85.1 b ± 4.31 | 111 g ± 5.15 | 76.8 BC ± 9.05 | 65.5 BE ± 6.62 |
Cultivar | Portion | Inhibition Percentage (%) | µg Trolox Equivalent (TE)/g FW | Antioxidant Activity Coefficient (AAC) | |||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | ||
Bela-Feia | Peel | 13.2 a ± 0.31 | 15.8 h ± 0.89 | 195 a ± 3.63 | 225 h ± 10.5 | 161 A ± 9.05 | 178 A ± 11.0 |
Seed | 11.9 a ± 0.31 | 12.8 a ± 0.30 | 180 a ± 3.63 | 190 a ± 3.51 | 122 B ± 7.24 | 90.5 C ± 6.62 | |
Pulp | 1.63 b ± 0.15 | 3.15 g ± 0.30 | 57.8 b ± 1.81 | 75.8 g ± 3.51 | 83.2 C ± 3.62 | 68.6 CD ± 6.62 | |
Torres Novas | Peel | 7.37 c ± 0.00 | 8.19 c ± 0.30 | 126 c ± 0.00 | 135 c ± 3.51 | 88.4 C ± 3.62 | 112 B ± 11.0 |
Seed | 8.03 c ± 0.31 | 7.98 c ± 0.59 | 133 c ± 3.63 | 133 c ± 7.03 | 85.8 C ± 10.9 | 76.4 CE ± 8.83 | |
Pulp | 0.00 d ± 0.00 | 0.00 d ± 0.00 | 24.5 d ± 5.44 | 46.0 b ± 3.51 | 64.0 D ± 9.05 | 57.7 D ± 4.41 | |
Carapinheira Roxa | Peel | 12.6 a ± 0.00 | 15.8 h ± 1.49 | 187 a ± 0.00 | 225 h ± 17.6 | 96.0 CE ± 7.24 | 109 BE ± 11.0 |
Seed | 7.48 c ± 0.15 | 7.77 c ± 0.30 | 127 c ± 1.81 | 130 c ± 3.51 | 60.2 D ± 10.9 | 49.9 D ± 2.20 | |
Pulp | 0.11 e ± 0.46 | 3.15 g ± 0.30 | 39.9 e ± 5.44 | 75.8 g ± 3.51 | 52.5 DF ± 10.9 | 35.9 F ± 4.41 | |
Lambe-os-Dedos | Peel | 9.98 f ± 0.61 | 12.2 a ± 0.59 | 157 f ± 7.25 | 183 a ± 7.03 | 129 B ± 7.24 | 139 B ± 0.00 |
Seed | 3.47 g ± 0.31 | 9.03 cf ± 0.89 | 79.6 g ± 3.63 | 145 cf ± 10.54 | 39.7 F ± 10.9 | 67.1 CD ± 8.83 | |
Pulp | 0.22 e ± 0.61 | 3.57 g ± 0.89 | 41.1 e ± 7.25 | 80.8 g ± 10.54 | 60.2 D ± 7.24 | 62.4 D ± 3.54 | |
Amorim | Peel | 15.4 h ± 1.31 | 13.7 ah ± 1.89 | 221 h ± 3.63 | 200 ah ± 10.54 | 216 G ± 7.24 | 228 G ± 2.21 |
Seed | 12.9 a ± 0.15 | 14.5 ah ± 0.89 | 191 a ± 1.81 | 210 ah ± 10.54 | 152 A ± 10.9 | 175 A ± 6.62 | |
Pulp | 8.57 c ± 0.46 | 8.19 c ± 0.89 | 140 c ± 5.44 | 135 c ± 10.54 | 76.8 CD ± 9.05 | 98.3 C ± 4.41 | |
Carapinheira | Peel | 14.8 h ± 0.00 | - * | 213 h ± 0.00 | - * | 163 A ± 7.24 | - * |
Seed | 21.4 i ± 0.15 | - * | 291 i ± 1.81 | - * | 165 A ± 7.24 | - * | |
Pulp | 0.65 b ± 0.31 | - * | 46.3 b ± 3.63 | - * | 41.0 F ± 9.05 | - * |
Cultivar | Portion | Total Phenolics Content (µg GAE/g FW) | Total Flavonoids Content (µg EE/g FW) | ||
---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||
Peel | 846 a ± 13.1 | 748 j ± 2.19 | 295 A ± 0.00 | 427 I ± 12.4 | |
Pardo Lindo | Seed | 587 b ± 12.0 | 298 e ± 1.09 | 211 B ± 4.14 | 246 AB ± 12.4 |
Pulp | 366 c ± 1.09 | 149 k ± 2.19 | 43.7 C ± 0.00 | 35.0 C ± 4.14 | |
Peel | 962 d ± 21.9 | 744 j ± 2.19 | 562 D ± 12.4 | 579 D ± 20.7 | |
Repinau | Seed | 598 b ± 19.7 | 276 e ± 2.19 | 262 A ± 8.28 | 225 B ± 16.6 |
Pulp | 326 ce ± 3.28 | 127 k ± 2.19 | 37.9 C ± 0.00 | 37.9 C ± 0.00 | |
Peel | 1207 f ± 27.3 | 1146 l ± 49.2 | 749 E ± 12.4 | 667 J ± 29.0 | |
Pêro Coimbra | Seed | 623 b ± 13.1 | 875 a ± 8.74 | 360 F ± 0.00 | 237 B ± 24.8 |
Pulp | 291 e ± 0.00 | 276 e ± 26.2 | 70.1 C ± 4.14 | 17.4 C ± 12.4 | |
Peel | 1424 g ± 43.7 | 1651 m ± 43.7 | 778 G ± 12.4 | 1205 K ± 20.7 | |
Pêro de Borbela | Seed | 627 b ± 5.46 | 700 i ± 2.19 | 228 B ± 4.14 | 497 L ± 4.14 |
Pulp | 294 e ± 0.00 | 310 e ± 12.0 | 37.9 C ± 0.00 | 64.2 C ± 4.14 | |
Peel | 1964 h ± 0.00 | 1801 n ± 38.2 | 1284 H ± 0.00 | 1389 M ± 24.8 | |
Noiva | Seed | 690 i ± 2.19 | 627 b ± 3.28 | 357 F ± 4.14 | 313 A ± 16.6 |
Pulp | 261 e ± 1.09 | 275 e ± 1.09 | 64.2 C ± 4.14 | 84.7 C ± 8.28 |
Cultivar | Portion | Total Phenolics Content (µg GAE/g) | Total Flavonoids Content (µg EE/g) | ||
---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||
Peel | 948 a ± 25.1 | 1027 a ± 74.3 | 389 A ± 8.28 | 418 A ± 24.8 | |
Bela-Feia | Seed | 778 b ± 24.0 | 1399 e ± 238 | 155 B ± 8.28 | 196 B ± 41.4 |
Pulp | 339 c ± 2.19 | 199 g ± 73.2 | 11.6 C ± 20.7 | 5.70 C ± 12.4 | |
Peel | 862 a ± 12.0 | 783 b ± 18.6 | 339 D ± 12.4 | 430 A ± 57.9 | |
Torres Novas | Seed | 632 d ± 7.65 | 474 d ± 9.83 | 216 E ± 4.14 | 208 E ± 24.8 |
Pulp | 280 c ± 6.56 | 187 g ± 39.3 | 0.00 C ± 0.00 | 0.00 C ± 0.00 | |
Peel | 991 a ± 32.8 | 1139 f ± 44.8 | 257 E ± 12.4 | 319 DF ± 8.28 | |
Carapinheira Roxa | Seed | 484 d ± 13.1 | 500 d ± 50.3 | 111 B ± 12.4 | 114 B ± 16.6 |
Pulp | 306 c ± 1.09 | 237 c ± 21.9 | 0.00 C ± 0.00 | 0.00 C ± 0.00 | |
Peel | 731 bd ± 19.7 | 1064 af ± 44.8 | 292 F ± 12.4 | 354 AD ± 24.8 | |
Lambe-os-Dedos | Seed | 466 c ± 17.5 | 511 d ± 108 | 126 B ± 0.00 | 137 B ± 8.28 |
Pulp | 299 c ± 7.65 | 170 g ± 30.6 | 0.00 C ± 0.00 | 0.00 C ± 0.00 | |
Peel | 1409 e ± 40.4 | 1095 f ± 43.7 | 547 G ± 33.1 | 541 G ± 41.4 | |
Amorim | Seed | 865 ab ± 25.1 | 500 d ± 80.9 | 237 E ± 16.6 | 158 B ± 12.4 |
Pulp | 367 c ± 4.37 | 197 g ± 29.5 | 23.3 C ± 4.14 | 26.2 C ± 8.28 | |
Peel | 1102 f ± 35.0 | - * | 371 A ± 24.8 | - * | |
Carapinheira | Seed | 1164 f ± 39.3 | - * | 448 D ± 8.28 | - * |
Pulp | 376 c ± 4.37 | - * | 61.3 H ± 0.00 | - * |
Apple Cultivar | Portion | Total Fructose Content (mg Fructose/g FW) | Pear Cultivar | Portion | Total Fructose Content (mg Fructose/g FW) | ||
---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | ||||
Peel | 95.0 a ± 4.61 | 96.0 a ± 4.17 | Peel | 48.3 A ± 3.95 | 47.7 A ± 2.20 | ||
Pardo Lindo | Seed | 84.6 b ± 5.71 | 82.8 b ± 3.95 | Bela-Feia | Seed | 57.6 AB ± 4.83 | 62.4 BC ± 5.05 |
Pulp | 107 a ± 5.05 | 110 a ± 2.85 | Pulp | 56.5 AB ± 5.93 | 52.4 A ± 4.39 | ||
Peel | 89.6 a ± 4.83 | 87.4 c ± 3.51 | Peel | 57.3 AB ± 4.39 | 60.0 BC ± 3.73 | ||
Repinau | Seed | 71.8 a ± 5.05 | 74.6 a ± 3.73 | Torres Novas | Seed | 68.8 C ± 4.83 | 66.9 BC ± 3.95 |
Pulp | 88.5 a ± 4.61 | 89.0 ac ± 5.27 | Pulp | 44.3 A ± 3.07 | 39.2 A ± 4.61 | ||
Peel | 97.7 a ± 3.95 | 101 a ± 4.61 | Peel | 60.4 BC ± 4.39 | 62.6 BC ± 4.39 | ||
Pêro Coimbra | Seed | 94.0 a ± 6.15 | 92.4 a ± 2.20 | Carapinheira Roxa | Seed | 66.0 BC ± 3.51 | 66.0 BC ± 5.71 |
Pulp | 95.8 c ± 5.71 | 97.5 c ± 2.41 | Pulp | 63.7 BC ± 5.05 | 57.6 AB ± 3.95 | ||
Peel | 89.6 a ± 3.95 | 84.2 a ± 4.75 | Peel | 48.9 A ± 4.39 | 51.9 A ± 5.05 | ||
Pêro de Borbela | Seed | 75.2 b ± 5.49 | 82.8 a ± 6.19 | Lambe-os-Dedos | Seed | 49.3 A ± 4.39 | 51.4 A ± 6.15 |
Pulp | 107 c ± 4.17 | 102 c ± 2.55 | Pulp | 57.9 A ± 5.27 | 56.2 A ± 5.49 | ||
Peel | 73.6 b ± 5.05 | 79.0 b ± 3.75 | Peel | 69.9 C ± 3.73 | 75.2 D ± 2.85 | ||
Noiva | Seed | 71.3 b ± 5.71 | 82.5 a ± 3.99 | Amorim | Seed | 87.6 D ± 2.41 | 88.4 D ± 3.51 |
Pulp | 85.6 a ± 6.59 | 94.9 a ± 4.92 | Pulp | 51.1 A ± 2.20 | 61.4 BC ± 2.63 | ||
Peel | 46.8 A ± 3.95 | - * | |||||
Carapinheira | Seed | 51.3 A ± 4.61 | - * | ||||
Pulp | 68.8 C ± 4.39 | - * |
Standard | rt (min) | Equation | r2 | Recovery Percentage | Linear Range (µg/mL) | LOQ (µg/g) | LOD (µg/g) | |
---|---|---|---|---|---|---|---|---|
Spiking Level 0.1 (mg/100 g) | Spiking Level 1.0 (mg/100 g) | |||||||
4-Hydroxybenzoic Acid | 3.34 | y = 329,563x + 21,605 | 0.9805 | 92.0 | 97.3 | 0.25–10 | 2.5 | 1.0 |
Apigenin | 6.21 | y = 4 × 107+ 89,331 | 0.9993 | 85.1 | 77.1 | 0.0025–5 | 0.025 | 0.01 |
Caffeic Acid | 3.52 | y = 385,020x + 7627 | 0.9960 | 95.8 | 87.9 | 0.5–10 | 5.0 | 2.5 |
Catechin | 3.34 | y = 3 × 106 + 105,538 | 0.9933 | 75.2 | 76.9 | 0.25–10 | 2.5 | 1.0 |
Chlorogenic Acid | 3.23 | y = 393,929x + 7739.1 | 0.9929 | n.d. | 78.3 | 0.25–10 | 2.5 | 1.0 |
Epicatechin | 3.59 | y = 3 × 106 + 53,261 | 0.9935 | 72.4 | 83.3 | 0.1–10 | 1.0 | 0.5 |
Eriodyctiol | 5.53 | y = 8 × 106 + 27,573 | 0.9986 | 84.3 | 87.8 | 0.005–10 | 0.05 | 0.025 |
Gallic Acid | 1.18 | y = 90,742x + 6145.5 | 0.9814 | 82.5 | 87.7 | 0.01–10 | 0.1 | 0.05 |
Luteolin | 5.71 | y = 2 × 107 + 288,365 | 0.9937 | 87.0 | 75.2 | 0.025–5 | 0.25 | 0.1 |
Naringenin | 6.06 | y = 5 × 106 + 5148.3 | 0.9994 | 80.6 | 87.0 | 0.25–10 | 2.5 | 1.0 |
o-Coumaric Acid | 4.86 | y = 246,146x + 1871.2 | 0.9905 | 85.6 | 88.2 | 0.5–10 | 5.0 | 2.5 |
p-Coumaric Acid | 4.11 | y = 261,740x + 10,462 | 0.9923 | 81.5 | 87.5 | 0.5–10 | 5.0 | 2.5 |
Phlorizin | 4.88 | y = 49,825x + 1778.4 | 0.9915 | 75.4 | 85.8 | 0.025–5 | 0.25 | 0.1 |
Quercetin | 5.79 | y = 4 × 106 + 5067.2 | 0.9983 | 84.4 | 86.7 | 0.025–10 | 0.25 | 0.1 |
Quercetin-3-B-D-Glucoside | 4.32 | y = 3 × 106 + 4105.4 | 0.9969 | 94.0 | 88.1 | 0.025–10 | 0.25 | 0.1 |
Quercitrin | 4.62 | y = 1 × 106 + 1287.9 | 0.9992 | 77.5 | 85.4 | 0.025–10 | 0.25 | 0.1 |
Rutin | 4.13 | y = 1 × 106 + 3288.2 | 0.9946 | 80.5 | 87.1 | 0.25–10 | 2.5 | 1.0 |
Sinapic Acid | 4.14 | y = 415,150x + 11,493 | 0.9960 | 82.2 | 86.5 | 0.25–5 | 2.5 | 1.0 |
Syringic Acid | 3.48 | y = 492,820x + 5813.3 | 0.9957 | 70.2 | 88.5 | 1.0–10 | 10.0 | 5.0 |
trans-Ferulic Acid | 4.24 | y = 418,556x + 1616.9 | 0.9953 | n.d. | 82.2 | 1.0–10 | 10.0 | 5.0 |
Vanillic Acid | 3.49 | y = 287,981x + 31,116 | 0.9853 | 76.0 | 88.9 | 1.0–10 | 10.0 | 5.0 |
Standard | Spiking Level | RSDr (%) | RSDR (%) | Standard | Spiking Level | RSDr (%) | RSDR (%) |
---|---|---|---|---|---|---|---|
4-Hydroxybenzoic Acid | 0.1 mg/100 g | 2.50 1.63 1.53 | 0.78 | p-Coumaric Acid | 0.1 mg/100 g | 10.1 4.37 6.08 | 10.2 |
1.0 mg/100 g | 11.0 4.97 2.65 | 3.03 | 1.0 mg/100 g | 3.33 2.74 2.88 | 4.39 | ||
Apigenin | 0.1 mg/100 g | 2.18 1.55 1.38 | 7.35 | Phlorizin | 0.1 mg/100 g | 4.34 2.23 5.89 | 5.93 |
1.0 mg/100 g | 2.62 1.32 0.74 | 4.10 | 1.0 mg/100 g | 4.72 1.69 1.12 | 6.34 | ||
Caffeic Acid | 0.1 mg/100 g | 12.2 7.87 8.88 | 23.8 | Quercetin | 0.1 mg/100 g | 5.71 3.74 4.08 | 3.73 |
1.0 mg/100 g | 3.60 3.03 3.53 | 4.89 | 1.0 mg/100 g | 2.96 2.84 1.47 | 4.61 | ||
Catechin | 0.1 mg/100 g | 4.01 1.56 1.99 | 3.82 | Quercetin-3-B-D-Glucoside | 0.1 mg/100 g | 5.52 2.84 3.78 | 4.38 |
1.0 mg/100 g | 6.39 1.35 2.61 | 5.37 | 1.0 mg/100 g | 3.40 2.11 1.16 | 4.79 | ||
Chlorogenic Acid | 0.1 mg/100 g | 6.33 1.27 2.40 | 4.52 | Quercitrin | 0.1 mg/100 g | 8.51 1.94 3.97 | 13.3 |
1.0 mg/100 g | 3.97 1.73 1.51 | 6.56 | 1.0 mg/100 g | 1.83 1.49 1.05 | 5.37 | ||
Epicatechin | 0.1 mg/100 g | 2.78 2.04 1.74 | 5.39 | Rutin | 0.1 mg/100 g | 7.65 4.60 4.73 | 5.88 |
1.0 mg/100 g | 5.48 6.60 1.70 | 3.49 | 1.0 mg/100 g | 4.52 2.88 2.35 | 4.35 | ||
Eriodyctiol | 0.1 mg/100 g | 6.38 2.43 2.21 | 5.17 | Sinapic Acid | 0.1 mg/100 g | 6.97 5.07 2.98 | 4.42 |
1.0 mg/100 g | 4.30 2.40 1.62 | 5.50 | 1.0 mg/100 g | 3.56 5.47 2.21 | 6.91 | ||
Gallic Acid | 0.1 mg/100 g | 2.10 7.18 6.25 | 14.2 | Syringic Acid | 0.1 mg/100 g | 5.90 2.50 2.25 | 8.78 |
1.0 mg/100 g | 10.8 16.6 6.48 | 10.2 | 1.0 mg/100 g | 3.40 2.00 1.69 | 5.62 | ||
Luteolin | 0.1 mg/100 g | 3.51 1.49 1.90 | 7.54 | trans-Ferulic Acid | 0.1 mg/100 g | 11.4 6.42 5.67 | 8.93 |
1.0 mg/100 g | 3.91 1.35 1.77 | 5.99 | 1.0 mg/100 g | 4.67 1.33 3.15 | 4.20 | ||
Naringenin | 0.1 mg/100 g | 22.5 14.9 12.9 | 20.1 | Vanillic Acid | 0.1 mg/100 g | 12.3 7.28 10.6 | 9.26 |
1.0 mg/100 g | 9.74 3.08 1.27 | 7.61 | 1.0 mg/100 g | 3.37 3.37 1.69 | 5.51 | ||
o-Coumaric Acid | 0.1 mg/100 g | 5.93 6.69 5.93 | 6.81 | ||||
1.0 mg/100 g | 2.32 2.05 2.27 | 6.07 |
Phenolic Compound | Pardo Lindo | Repinau | Pêro Coimbra | Pêro de Borbela | Noiva | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | S | M | P | S | M | P | S | M | P | S | M | P | S | M | |
4-Hydroxybenzoic Acid | 2.226 | - | - | 2.112 | <LOQ | - | 12.37 | 1.025 | - | 40.98 | 27.10 | 1.119 | 36.35 | 8.274 | 1.688 |
Apigenin | <LOQ | <LOQ | - | - | <LOQ | - | - | <LOQ | - | - | - | - | - | <LOQ | - |
Caffeic Acid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Catechin | - | - | - | 3.536 | - | - | - | - | - | 4.508 | 5.389 | - | 5.986 | 0.612 | - |
Chlorogenic Acid | 34.92 | 9.955 | 3.189 | 1.062 | 6.155 | 0.610 | 65.84 | - | 9.003 | 43.07 | 293.5 | 10.42 | 123.6 | 183.9 | 55.21 |
Epicatechin | <LOQ | 4.590 | <LOQ | 4.495 | 0.824 | <LOQ | 25.84 | - | <LOQ | 96.11 | 59.31 | 3.095 | 80.70 | 16.37 | 3.745 |
Eriodyctiol | 0.010 | 0.014 | - | - | 0.050 | - | 0.010 | <LOQ | <LOQ | - | - | - | - | - | - |
Gallic Acid | 5.445 | 4.126 | 3.781 | 4.785 | 5.535 | 4.079 | 2.756 | 1.867 | 2.320 | 4.530 | 5.608 | 4.539 | 6.876 | 6.715 | 7.857 |
Luteolin | <LOQ | <LOQ | - | - | - | - | <LOQ | - | <LOQ | - | - | - | - | - | - |
Naringenin | 0.078 | 0.052 | - | 0.074 | 0.078 | - | 0.346 | 0.158 | 0.033 | - | - | - | - | - | - |
o-Coumaric Acid | 6.099 | 5.904 | - | - | 12.61 | - | 2.504 | - | - | 16.16 | 23.67 | 0.634 | 7.350 | 6.440 | - |
p-Coumaric Acid | <LOQ | <LOQ | - | - | 3.394 | - | 2.368 | - | - | 15.46 | 10.46 | - | 6.158 | 1.908 | - |
Phlorizin | 11.36 | 33.36 | - | 2.704 | 58.82 | <LOQ | 23.11 | 13.37 | 1.364 | 137.8 | 318.7 | 9.778 | 67.26 | 86.40 | 4.165 |
Quercetin | 2.479 | - | - | - | 0.096 | - | 0.514 | - | - | 2.295 | 0.254 | - | 0.180 | <LOQ | - |
Quercetin-3-B-D-Glucoside | 4.647 | 0.991 | - | 23.96 | 1.741 | - | 49.69 | 1.708 | 0.117 | 154.4 | 20.27 | 0.293 | 9.352 | 0.923 | 0.064 |
Quercitrin | 16.08 | 2.323 | 0.476 | 20.27 | 2.702 | - | 59.52 | 9.973 | 1.251 | - | 8.793 | 2.914 | 1.540 | 0.859 | 0.406 |
Rutin | 0.595 | 0.093 | - | 2.154 | 0.099 | - | 4.122 | - | - | 87.24 | 4.053 | - | 3.707 | 0.376 | - |
Sinapic Acid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Syringic Acid | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
trans-Ferulic Acid | 1.090 | <LOQ | - | <LOQ | 1.516 | - | 1.108 | 3.829 | <LOQ | <LOQ | - | - | - | - | - |
Vanillic Acid | 8.997 | 4.092 | <LOQ | 6.863 | 4.989 | 1.427 | 9.957 | 5.739 | 2.357 | 9.181 | 5.495 | <LOQ | 6.153 | 5.587 | 2.546 |
SUM | 94.02 | 65.50 | 7.447 | 72.01 | 98.61 | 6.116 | 260.1 | 37.67 | 16.45 | 611.8 | 782.6 | 32.79 | 355.2 | 318.4 | 75.68 |
Phenolic Compound | Bela Feia | Torres Novas | Carapinheira Roxa | Lambe-os-Dedos | Amorim | Carapinheira | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | S | M | P | S | M | P | S | M | P | S | M | P | S | M | P | S | M | |
4-Hydroxybenzoic Acid | 4.679 | 4.151 | - | 2.193 | - | - | 16.59 | 1.894 | - | 17.05 | 8.045 | - | 13.65 | 4.042 | - | 16.10 | 13.57 | - |
Apigenin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Caffeic Acid | 14.53 | - | - | 23.84 | 9.508 | 3.994 | 17.27 | 3.835 | - | 22.80 | - | - | 27.09 | 8.777 | - | 15.80 | 5.894 | 2.574 |
Catechin | 0.620 | 1.224 | - | - | 2.530 | - | 4.263 | 1.992 | - | 2.781 | 2.173 | - | 2.358 | 0.263 | - | 1.782 | 2.579 | <LOQ |
Chlorogenic Acid | 46.36 | 21.40 | - | 103.0 | 123.1 | 33.29 | 277.5 | 32.83 | 45.17 | 118.0 | 118.3 | 65.12 | 63.23 | 66.87 | 75.13 | 340.2 | 156.7 | 21.95 |
Epicatechin | 8.953 | 8.782 | - | 0.190 | 5.100 | - | 36.85 | 4.567 | 0.683 | 37.30 | 14.90 | 0.192 | 29.61 | 9.053 | 0.312 | 30.87 | 28.21 | 0.760 |
Eriodyctiol | 0.095 | - | - | 0.036 | 0.059 | - | - | - | - | <LOQ | - | - | <LOQ | - | - | <LOQ | - | - |
Gallic Acid | - | 1.708 | - | - | - | - | 2.836 | - | 3.037 | 2.131 | - | 5.802 | - | - | - | 2.803 | 4.454 | 3.408 |
Luteolin | - | - | - | - | <LOQ | - | - | - | - | <LOQ | - | - | - | - | - | - | - | - |
Naringenin | 0.329 | 0.028 | - | 0.192 | 0.112 | - | 0.110 | <LOQ | <LOQ | 0.122 | <LOQ | - | 0.130 | <LOQ | - | 0.062 | <LOQ | - |
o-Coumaric Acid | - | - | - | 1.015 | 0.748 | - | - | - | - | - | - | - | - | - | - | - | - | - |
p-Coumaric Acid | 2.469 | - | - | - | 4.067 | - | - | - | - | 0.971 | - | - | - | - | - | - | - | - |
Phlorizin | - | - | 2.605 | - | - | - | 2.139 | - | - | - | - | - | - | - | 0.792 | 4.445 | 5.753 | 4.904 |
Quercetin | 0.861 | 0.109 | - | - | 0.978 | - | 0.826 | 0.191 | - | 0.350 | <LOQ | - | 0.530 | - | - | 0.508 | 0.044 | - |
Quercetin-3-B-D-Glucoside | 14.68 | 1.085 | <LOQ | 22.27 | 1.406 | 0.028 | 5.580 | 0.531 | 0.066 | 4.751 | 0.770 | 0.052 | 7.868 | 0.290 | <LOQ | 19.76 | 1.296 | <LOQ |
Quercitrin | 1.432 | 0.176 | - | 5.333 | 0.403 | - | 0.915 | 0.179 | - | 1.264 | 0.330 | - | 3.100 | 0.152 | - | 4.801 | 0.488 | 0.212 |
Rutin | 0.307 | - | - | 32.60 | 0.762 | - | 1.611 | 0.060 | - | - | 0.163 | - | 0.453 | 0.124 | - | 59.61 | 4.979 | - |
Sinapic Acid | - | - | - | - | - | - | - | - | - | - | - | - | 1.078 | 0.612 | - | - | - | - |
Syringic Acid | 2.198 | 1.438 | 1.309 | - | 1.322 | 0.519 | 7.897 | 3.917 | 2.080 | 5.167 | 6.036 | 3.348 | 4.297 | 5.761 | 3.472 | 1.805 | 1.307 | - |
trans-Ferulic Acid | 1.351 | 1.533 | <LOQ | - | 1.680 | - | 1.936 | <LOQ | - | 1.659 | 2.932 | 1.669 | 1.575 | 3.921 | 1.092 | - | <LOQ | - |
Vanillic Acid | 4.486 | - | 3.482 | 13.37 | - | 5.012 | 25.69 | 7.677 | 9.662 | 15.39 | 29.49 | 22.67 | 11.65 | 69.36 | 24.85 | 18.88 | 13.47 | 5.571 |
SUM | 103.3 | 41.64 | 7.397 | 204.0 | 151.7 | 42.84 | 402.0 | 57.67 | 60.69 | 229.7 | 183.1 | 98.85 | 166.6 | 169.2 | 105.7 | 517.4 | 238.8 | 39.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, J.D.; Soares Mateus, A.R.; Sanchez, C.; Parpot, P.; Almeida, C.; Sanches Silva, A. Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications. Foods 2023, 12, 1537. https://doi.org/10.3390/foods12071537
Teixeira JD, Soares Mateus AR, Sanchez C, Parpot P, Almeida C, Sanches Silva A. Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications. Foods. 2023; 12(7):1537. https://doi.org/10.3390/foods12071537
Chicago/Turabian StyleTeixeira, João David, Ana Rita Soares Mateus, Claudia Sanchez, Pier Parpot, Carina Almeida, and Ana Sanches Silva. 2023. "Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications" Foods 12, no. 7: 1537. https://doi.org/10.3390/foods12071537
APA StyleTeixeira, J. D., Soares Mateus, A. R., Sanchez, C., Parpot, P., Almeida, C., & Sanches Silva, A. (2023). Antioxidant Capacity and Phenolics Profile of Portuguese Traditional Cultivars of Apples and Pears and Their By-Products: On the Way to Newer Applications. Foods, 12(7), 1537. https://doi.org/10.3390/foods12071537