Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate Peel Powder Preparation and In Vitro Efficacy
2.2. Pad Development
2.3. Scanning Electron Microscopy (SEM)
2.4. PPP and Active Pad Efficacy in Previously Inoculated Soy Milk and Apple Juice
2.5. Data Elaboration and Statistical Analyses
3. Results and Discussion
3.1. In Vitro Test: Influence of Granulometry on PPP Efficacy
3.2. SEM Images of Pad
3.3. PPP Efficacy in Previously Inoculated Soymilk and Apple Juice
3.4. Active Pad Efficacy in Previously Inoculated Soymilk and Apple Juice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sala, S.; Anton, A.; McLaren, S.J.; Notarnicola, B.; Saouter, E.; Sonesson, U. In quest of reducing the environmental impacts of food production and consumptiom. J. Clean. Prod. 2017, 140, 387–398. [Google Scholar] [CrossRef]
- Vagsholm, I.; Arzoomand, N.S.; Boqvist, S. Food Security, Safety, and Sustainability-Getting the Trade-Offs Right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.; Radhakrishna, K. Potential applications of plant-based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Abid, Y.; Azabou, S.; Jridi, M.; Khemakhem, I.; Bouaziz, M.; Attia, H. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products. Food Chem. 2017, 233, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Arjeh, E.; Akhavan, H.R.; Barzegar, M.; Carbonell-Barrachina, A.A. Bio-active compounds and functional properties of pistachio hull: A review. Trends Food Sci. Technol. 2020, 97, 55–64. [Google Scholar] [CrossRef]
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review: Food Industry By-Products used as a Functional Food Ingredients. Int. J. Waste Res. 2016, 6, 248. [Google Scholar]
- Kim, J.H.; Hong, W.S.; Oh, S.W. Effect of layer-by-layer antimicrobial edible coating of alginate and chitosan with grapefruit seed extract for shelf-life extension of shrimp (Litopenaeus vannamei) stored at 4 °C. Int. J. Biol. Macromol. 2018, 120, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. A new method to bio-preserve sea bass fillets. Int. J. Food Microbiol. 2018, 271, 60–66. [Google Scholar] [CrossRef]
- Nardella, S.; Conte, A.; del Nobile, M.A. State-of-Art on the Recycling of By-Products from Fruits and Vegetables of Mediterranean Countries to Prolong Food Shelf Life. Foods 2022, 11, 665. [Google Scholar] [CrossRef]
- Panza, O.; Conte, A.; Del Nobile, M.A. Recycling of fig peels to enhance the quality of handmade pasta. LWT 2022, 168, 113872. [Google Scholar] [CrossRef]
- Bonesi, M.; Tundis, R.; Sicari, V.; Loizzo, M.R. The juice of pomegranate (Punica granatum L.): Recent studies on its bioactivities. In Quality Control in the Beverage Industry; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: New York, NY, USA, 2019; Volume 17, pp. 459–489. [Google Scholar]
- El Barnossi, A.; Moussaid, F.; Housseini, A.I. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. Biotechnol. Rep. 2021, 29, e00574. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Cedola, A.; Conte, A.; Del Nobile, M.A. Juice and by-products from pomegranate to enrich pancake: Characterization and shelf-life evaluation. Int. J. Food Sci. Technol. 2021, 56, 2886–2894. [Google Scholar] [CrossRef]
- Bourekoua, H.; Rózyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Pomegranate seed powder as a functional component of gluten-free bread (Physical, sensorial and antioxidant evaluation). Food Sci. Technol. 2018, 53, 1906–1913. [Google Scholar] [CrossRef]
- Panza, O.; Conte, A.; Del Nobile, M.A. Zero-Waste Approach Applied to Pomegranates for prolonging Fish Burger Shelf Life. Foods 2022, 11, 551. [Google Scholar] [CrossRef]
- El-Nashi, H.B.; Fattah, A.F.A.K.A.; Rahman, N.R.A.; El Razik, M.A. Quality characteristics of beef sausage containing pomegranate peels during refrigerated storage. Ann. Agric. Sci. 2015, 60, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable use of fruit and vegetable by-products to enhance food packaging performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Jakobsen, A.N.; Lerfall, J. Sustainable edible packaging systems based on active compounds from food processing by-products: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 198–226. [Google Scholar] [CrossRef]
- Kandylis, P.; Kokkinomagoulos, E. Food Applications and Potential Health Benefits of Pomegranate and its Derivatives. Foods 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, M.; Gani, A.; Gani, A.; Punoo, H.A.; Masoodi, F.A. Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innov. Food Sci. Emerg. Technol. 2018, 48, 25–32. [Google Scholar] [CrossRef]
- Bertolo, M.R.; Martins, V.C.; Horn, M.M.; Brenelli, L.B.; Plepis, A.M. Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydr. Polym. 2020, 228, 115386. [Google Scholar] [CrossRef]
- Berizi, E.; Hosseinzadeh, S.; Shekarforoush, S.S.; Barbieri, G. Microbial, chemical, textural and sensory properties of coated rainbow trout by chitosan combined with pomegranate peel extract during frozen storage. Int. J. Biol. Macromol. 2018, 106, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Lv, H.; Tang, W.; Zhang, X.; Sun, H. Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Contam. 2016, 59, 818–823. [Google Scholar] [CrossRef]
- Giannelli, M.; Lacivita, V.; Posati, T.; Aluigi, A.; Conte, A.; Zamboni, R.; Del Nobile, M.A. Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods 2021, 10, 2921. [Google Scholar] [CrossRef] [PubMed]
- Bouhanna, I.; Boussaa, A.; Boumaza, A.; Rigano, D.; Maisto, M.; Basile, A.; Rollini, M.; Limbo, S.; Idoui, T. Characterization and antibacterial activity of gelatin-based film incorporated with Arbutus unedo L. fruit extract on Sardina pilchardus. J. Food Process. Preserv. 2021, 45, 15424. [Google Scholar] [CrossRef]
- Bayati, M.; Tavakoli, M.M.; Ebrahimi, S.N.; Aliahmadi, A.; Rezadoost, H. Optimization of effective parameters in cold pasteurization of pomegranate juice by response surface methodology and evaluation of physicochemical characteristics. LWT 2021, 147, 111679. [Google Scholar] [CrossRef]
- Kaddumukasa, P.; Imathiu, S.; Mathara, J.; Nakavuma, J. Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [Google Scholar] [CrossRef]
- Koutchma, T.; Popovic, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Comp. Rev. Food Sci. Food Saf. 2016, 15, 844–867. [Google Scholar] [CrossRef] [Green Version]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.M.; Roig, A.X.; García-Galindo, H.S.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermo-sonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Szczepanska, J.; Skyapska, S.; Polaska, M.; Marszalek, K. High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice. Food Chem. 2022, 370, 131023. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, G.; Yu, Y.; Xu, Y.; Wu, J.; Peng, J.; Li, L. Effects of high pressure and thermal processing on quality properties and volatile compounds of pineapple fruit juice. Food Contam. 2021, 130, 108293. [Google Scholar] [CrossRef]
- Yildiz, S.; Pokhrel, P.R.; Unluturk, S.; Barbosa-Canovas, G.V. Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes. Food Res. Int. 2021, 140, 110040. [Google Scholar] [CrossRef]
- Adulvitayakorn, S.; Azhari, S.H.; Hasan, H. The effects of conventional thermal, microwave heating, and thermosonication treatments on the quality of sugarcane juice. J. Food Proc. Preserv. 2020, 44, e14322. [Google Scholar] [CrossRef]
- Dhumal, S.S.; Karale, A.R.; More, T.A.; Nimbalkar, C.A. Preparation of Pomegranate Juice Concentrate by Various Heating Methods and Appraisal of Its Physicochemical Characteristics. Int. Soc. Hortic. Sci. 2015, 1089, 473–484. [Google Scholar] [CrossRef]
- Starek, A.; Sagan, A.; Andrejko, D.; Chudzik, B.; Kobus, Z.; Kwiatowski, M.; Terebun, P.; Pawlat, J. Possibility to extend the shelf life of NFC tomato juice using cold atmospheric pressure plasma. Sci. Rep. 2020, 10, 20959. [Google Scholar] [CrossRef]
- Park, S.J.; Nurika, I.; Suhartini, S.; Cho, W.H.; Moon, K.D.; Jung, H.J. Carbonation of not from concentrate apple juice positively impacts shelf-life. LWT 2020, 134, 110128. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; Lu, Q.; Zhang, X.; Kluge, J.A.; Uppal, N.; Omenetto, F.; Kaplan, D.L. Insoluble and Flexible Silk Films Containing Glycerol. Biomacromolecules 2010, 11, 143–150. [Google Scholar] [CrossRef]
- Andrade, M.A.; Lima, V.; Sanches Silva, A.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends Food Sci. Technol. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, M.; Wen, J.; Ren, F.; Yang, Z.; Jiang, X.; Chen, Y. The bioactivity and applications of pomegranate peel extract: A review. J. Food Biochem. 2022, 46, e14105. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoglu, I.; Gan, Y.; Li, M. Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. J. Food Qual. 2020, 2020, 8850339. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial potential of pomegranate peel: A review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacivita, V.; Incoronato, A.L.; Conte, A.; Del Nobile, M.A. Pomegranate Peel Powder as a Food Preservative in Fruit Salad: A Sustainable Approach. Foods 2021, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Vannini, L.; Kamder, S.L.S.; Lanciotti, R.; Guerzoni, M.E. Potential of high-pressure homogenization to inactivate Zygosaccharomyces bailii in fruit juices. J. Food Sci. 2010, 75, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Lei, S.; Akhtar, H.M.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Aleo, A.; Corona, O.; Sardina, M.T.; Mammina, C.; Settanni, L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Contam. 2014, 40, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ou, Z.M.; Wu, C.D. Growth media affect assessment of antimicrobial activity of plant-derived polyphenols. BioMed Res. Int. 2018, 2018, 8308640. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Proestos, C.; Kapsokefalou, M.; Komaitis, M. Antimicrobial effect of Filipendula ulmaria plant extract against selected foodborne pathogenic and spoilage bacteria in laboratory media, fish flesh and fish roe product. Food Technol. Biotechnol. 2011, 49, 263. [Google Scholar]
- da Cruz Cabral, L.; Fernández Pinto, V.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 2019, 129, 1120–1126. [Google Scholar] [CrossRef]
- Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydroc. 2020, 104, 105735. [Google Scholar] [CrossRef]
- Hanani, Z.A.; Aelma Husna, A.B.; Nurul Syahida, S.; Nor Khaizura, M.A.; Jamilah, B. Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Pack. Shelf Life 2018, 18, 201–211. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Yee, F.C.; Nor-Khaizura, M.A.R. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydroc. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible coatings incorporating pomegranate peel extract and biocontrol yeast to reduce Penicillium digitatum postharvest decay of oranges. Food Microbiol. 2018, 74, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nanda, P.K.; Chowdhury, N.R.; Dandapat, P.; Gagaoua, M.; Chauhan, P.; Pateiro, M.; Lorenzo, J.M. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021, 26, 467. [Google Scholar] [CrossRef]
Food Matrix | Soy Milk | Apple Juice |
---|---|---|
Fat | 1.7 g/100 mL | - |
Carbohydrates | 2.9 g/100 mL | 11 g/100 mL |
Proteins | 3 g/100 mL | - |
Fibres | 0.2 g/100 mL | - |
Salt | 0.10 g/100 mL | - |
Vitamin B2 | 0.21 mg/100 mL | - |
Vitamin B12 | 0.38 g/100 mL | - |
Vitamin D | 1.5 µg/100 mL | - |
Calcium | 120 µg/100 mL | - |
Time (h) | CTRL | 500 μm | 400 μm | 250 μm | 150 μm | 100 μm |
---|---|---|---|---|---|---|
0 | 6.89 ± 0.01 dE | 3.98 ± 0.00 aB | 4.02 ± 0.01 a,bC | 3.89 ± 0.02 aB | 3.94 ± 0.01 aA | 4.07 ± 0.01 cD |
4 | 7.01 ± 0.04 dE | 4.19 ± 0.01 dD | 4.07 ± 0.01 cC | 4.04 ± 0.01 bB,C | 3.97 ± 0.01 aB | 3.81 ± 0.12 aA |
24 | 6.03 ± 0.02 aD | 4.06 ± 0.03 b,cC | 4.00 ± 0.02 aB | 4.02 ± 0.01 bB | 3.94 ± 0.01 aA | 3.96 ± 0.02 bA |
48 | 6.41 ± 0.04 bD | 4.04 ± 0.01 bC | 4.04 ± 0.01 bC | 4.04 ± 0.00 bC | 3.82 ± 0.03 aA | 3.92 ± 0.00 bB |
72 | 6.56 ± 0.05 cB | 4.08 ± 0.02 cA | 4.10 ± 0.02 dA | 4.08 ± 0.03 cA | 3.74 ± 0.45 aA | 3.97 ± 0.01 bA |
Time (h) | CTRL | 500 μm | 400 μm | 250 μm | 150 μm | 100 μm |
---|---|---|---|---|---|---|
0 | 6.97 ± 0.00 dD | 4.13 ± 0.01 cC | 4.09 ± 0.00 cB | 4.10 ± 0.00 bB | 4.05 ± 0.00 cA | 4.04 ± 0.01 cA |
4 | 6.85 ± 0.02 cD | 4.05 ± 0.00 bC | 4.06 ± 0.02 b,cC | 4.07 ± 0.01 a,bC | 3.87 ± 0.03 aB | 3.83 ± 0.02 aA |
24 | 6.82 ± 0.11 cC | 4.12 ± 0.00 cB | 4.16 ± 0.01 dB | 4.19 ± 0.07 cB | 3.98 ± 0.02 bA | 3.88 ± 0.05 aA |
48 | 6.48 ± 0.02 bE | 4.13 ± 0.01 cD | 3.94 ± 0.01 aB | 4.01 ± 0.01 aC | 3.99 ± 0.01 bC | 3.86 ± 0.02 aA |
72 | 6.25 ± 0.02 aC | 4.03 ± 0.02 aB | 4.04 ± 0.03 bB | 4.05 ± 0.01 a,bB | 3.97 ± 0.01 bA | 3.99 ± 0.01 bA |
Time (Day) | CTRL | 5% | 7.5% | 10% |
---|---|---|---|---|
0 | 3.52 ± 0.01 bA | 3.54 ± 0.01 cA | 3.52 ± 0.01 bA | 3.54 ± 0.01 cA |
1 | 3.46 ± 0.02 aA | 3.46 ± 0.02 bA | 3.48 ± 0.01 cA,B | 3.50 ± 0.00 bB |
2 | 3.55 ± 0.01 cA | 3.58 ± 0.01 dB | 3.56 ± 0.01 dA | 3.55 ± 0.00 cA |
5 | 3.46 ± 0.01 aA | 3.53 ± 0.00 cC | 3.52 ± 0.01 bB,C | 3.51 ± 0.01 bB |
6 | 3.45 ± 0.00 aA,B | 3.46 ± 0.01 bB | 3.44 ± 0.01 aA | 3.46 ± 0.01 aB |
7 | 3.51 ± 0.01 bC | 3.42 ± 0.02 aA | 3.44 ± 0.01 aA,B | 3.46 ± 0.01 aB |
9 | 3.51 ± 0.01 bB | 3.41 ± 0.01 aA | 3.42 ± 0.02 aA | 3.44 ± 0.02 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacivita, V.; Lordi, A.; Posati, T.; Zamboni, R.; Del Nobile, M.A.; Conte, A. Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods 2023, 12, 1173. https://doi.org/10.3390/foods12061173
Lacivita V, Lordi A, Posati T, Zamboni R, Del Nobile MA, Conte A. Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods. 2023; 12(6):1173. https://doi.org/10.3390/foods12061173
Chicago/Turabian StyleLacivita, Valentina, Adriana Lordi, Tamara Posati, Roberto Zamboni, Matteo Alessandro Del Nobile, and Amalia Conte. 2023. "Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods" Foods 12, no. 6: 1173. https://doi.org/10.3390/foods12061173
APA StyleLacivita, V., Lordi, A., Posati, T., Zamboni, R., Del Nobile, M. A., & Conte, A. (2023). Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods, 12(6), 1173. https://doi.org/10.3390/foods12061173