Foaming and Other Functional Properties of Freeze-Dried Mare’s Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Mare’s Milk
2.2. Freeze-Drying and Reconstituted Freeze-Dried Mare’s Milk
2.3. Moisture Content, Bulk Density and Water Activity
2.4. Foaming Properties
2.5. Oil-Binding Capacity and Emulsifying Property
2.6. Powder and Foam Microstructure Illustration
2.7. Fatty Acid Profiles
2.8. Statistical Evaluation
3. Results and Discussion
3.1. Composition and Physical Properties of Freeze-Dried Mare’s Milk
3.2. Composition, Bulk Density, and Water Activity of Raw and Reconstituted Mare’s Milk
3.3. Characteristics of Foam Formed from Raw and Reconstituted Freeze-Dried Mare’s Milk
3.4. Ability of Raw and Reconstituted Freeze-Dried Mare’s Milk to Form Emulsions
3.5. Structure of Freeze-Dried Mare’s Milk and Its Foam
3.6. Health Value of Raw and Reconstituted Freeze-Dried Mare’s Milk Fat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Musaev, A.; Sadykova, S.; Anambayeva, A.; Saizhanova, M.; Balkanay, G.; Kolbaev, M. Mare’s milk: Composition, properties, and application in medicine. Arch. Razi Inst. 2021, 76, 1125. [Google Scholar] [CrossRef]
- Kushugulova, A.; Kozhakhmetov, S.; Sattybayeva, R.; Nurgozhina, A.; Ziyat, A.; Yadav, H.; Marotta, F. Mare’s milk as a prospective functional product. Funct. Foods Health Dis. 2018, 8, 548. [Google Scholar] [CrossRef] [Green Version]
- Teichert, J.; Cais-Sokolińska, D.; Bielska, P.; Danków, R.; Chudy, S.; Kaczyński, Ł.K.; Biegalski, J. Milk fermentation affects amino acid and fatty acid profile of mare milk from Polish Coldblood mares. Int. Dairy J. 2021, 121, 105137. [Google Scholar] [CrossRef]
- Khajeh, E.; Jamshidian-Mojaver, M.; Naeemipour, M.; Farzin, H. The identification of a novel peptide derived from lactoferrin isolated from camel milk with potential antimicrobial activity. Iran. J. Med. Microbiol. 2021, 15, 302–316. [Google Scholar] [CrossRef]
- Cosentino, C.; Labella, C.; Elshafie, H.S.; Camele, I.; Musto, M.; Paolino, R.; D’Adamo, C.; Freschi, P. Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk. J. Dairy Sci. 2016, 99, 5173–5179. [Google Scholar] [CrossRef] [Green Version]
- Narmuratova, Z.; Hentati, F.; Girardet, J.M.; Narmuratova, M.; Cakir-Kiefer, C. Equine lactoferrin: Antioxidant properties related to divalent metal chelation. LWT 2022, 161, 113426. [Google Scholar] [CrossRef]
- Campione, E.; Cosio, T.; Rosa, L.; Lanna, C.; Girolamo, S.; Di Gaziano, R.; Valenti, P.; Bianchi, L. Lactoferrin as protective natural barrier of respiratory and intestinal mucosa against coronavirus infection and inflammation. Int. J. Mol. Sci. 2020, 21, 4903. [Google Scholar] [CrossRef]
- Kaić, A.; Luštrek, B.; Simčič, M.; Potočnik, K. Milk quantity, composition and hygiene traits of routinely machine milked lipizzan mares. Slov. Vet. Res. 2019, 56, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Miraglia, N.; Salimei, E.; Fantuz, F. Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Ciurzynska, A.; Lenart, A. Freeze-drying—Application in food processing and biotechnology—A review. Pol. J. Food Nutr. Sci. 2011, 61, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doneva, M.D.; Dyankova, S.M.; Miteva, D.P.; Nacheva, I.B.; Metodieva, P.M. Cryobiological studies and freeze drying of cow’s milk and curd. J. Chem. Technol. Meta. 2021, 56, 932–937. [Google Scholar]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Rożek, P.; Puta, M. The effect of freeze-drying and storage on lysozyme activity, lactoferrin content, superoxide dismutase activity, total antioxidant capacity and fatty acid profile of freeze-dried human milk. Dry. Technol. 2022, 40, 615–625. [Google Scholar] [CrossRef]
- Shukla, S. Freeze drying process: A review. Int. J. Pharm. Sci. 2011, 2, 3061–3068. [Google Scholar]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/freeze drying—A review. World J. Pharm. Res. 2015, 4, 516–543. [Google Scholar]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods-The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Tastemirova, U.; Ciprovica, I.; Shingisov, A. The comparison of the spray-drying and freeze-drying techniques for camel milk: A review. Livest. Res. Rural Dev. 2020, 35, 102–105. [Google Scholar] [CrossRef]
- Myrkalykov, B.; Shingisov, A.; Ospanov, A.; Simov, Z.; Latif, A.; Aripbaeva, A. Freeze drying of sheep milk: Calculating process duration. Eur. J. Soc. Sci. 2018, 7, 460–470. [Google Scholar]
- Zhang, Y.; Zheng, Z.; Liu, C.; Tan, C.; Xie, K.; Liu, Y. A comparative study between freeze-dried and spray-dried goat milk on lipid profiling and digestibility. Food Chem. 2022, 1, 132844. [Google Scholar] [CrossRef] [PubMed]
- Tastemirova, U.; Mukhtarkhanova, R.; Alimardanova, M.; Alibekov, R.; Shingisov, A. Impact of vacuum freeze-drying on the reconstituted camel milk composition. Food Sci. Technol. 2022, 42, e61722. [Google Scholar] [CrossRef]
- Polidori, P.; Spera, M.D.; Sabatini, A.; Vincenzetti, S. Comparison of nutritional characteristics of fresh and freeze-dried donkey milk. Food Sci. Nutr. Technol. 2019, 4, 172. [Google Scholar] [CrossRef]
- Teichert, J.; Cais-Sokolińska, D.; Danków, R.; Pikul, J.; Chudy, S.; Bierzuńska, P.; Kaczyński, Ł.K. Color stability of fermented mare’s milk and a fermented beverage from cow’s milk adapted to mare’s milk composition. Foods 2020, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Kondybayev, A.; Konuspayeva, G.; Strub, C.; Loiseau, G.; Mestres, C.; Grabulos, J.; Manzano, M.; Akhmedsadykowa, S.; Achir, N. Growth and metabolism of Lacticaseibacillus casei and Lactobacillus kefiri isolated from qymyz, a traditional fermented central asian beverage. Fermentation 2022, 8, 367. [Google Scholar] [CrossRef]
- Yoo, S.R.; Lee, S.W.; Jeon, H.M. The role of customer experience, food healthiness, and value for revisit intention in Grocerant. Sustainability 2020, 12, 2359. [Google Scholar] [CrossRef] [Green Version]
- Harizi, N.; Madureira, J.; Zouari, A.; Ayadi, M.A.; Cabo Verde, S.; Boudhrioua, N. Effects of spray drying, freeze drying and gamma irradiation on the antioxidant activities of camel and cow milk fractions. Processes 2023, 11, 897. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, Y.H.; Kwak, H.S. Physicochemical properties of reconstituted milk made from freeze-dried milk powder or spray-dried milk powder. Korean J. Food Sci. Ani. Resour. 2010, 30, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Duley, J.A.; Cowley, D.M.; Reed, S.; Arachchige, B.J.; Bhandari, B.; Shaw, P.N.; Bansal, N. Physicochemical properties and whey proteomes of camel milk powders produced by different concentration and dehydration processes. Foods 2022, 11, 727. [Google Scholar] [CrossRef]
- Castro-Albarran, J.; Aguilar Uscanga, B.; Calon, F.; St-Amour, I.; Solis, J.; Saucier, L.; Ratti, C. Spray and freeze drying of human milk on the retention of immunoglobulins (IgA, IgG, IgM). Dry. Technol. 2016, 34, 1801–1809. [Google Scholar] [CrossRef]
- ISO 707; Milk and Milk Products—Guidance on Sampling. International Organization for Standardization: Geneva, Switzerland, 2008.
- Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.-J.; Vincenzetti, S. Nutritional properties of camelids and equids fresh and fermented milk. Dairy 2021, 2, 288–302. [Google Scholar] [CrossRef]
- Yang, Y.F.; Zhao, X.H. Structure and property changes of whey protein isolate in response to the chemical modification mediated by horseradish peroxidase, glucose oxidase and d-glucose. Food Chem. 2022, 373, 131328. [Google Scholar] [CrossRef]
- Alamprese, C.; Rollini, M.; Musatti, A.; Ferranti, P.; Barbiroli, A. Emulsifying and foaming properties of a hydrophobin-based food ingredient from Trichoderma reesei: A phenomenological comparative study. LWT 2022, 157, 113060. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.; Hussain, M.; Li, X.; Liu, L.; Liu, Y.; Jiang, S. Influence of milk fat globule membrane and milk protein concentrate treated by ultrasound on the structural and emulsifying stability of mimicking human fat emulsions. Ultrason. Sonochem. 2022, 82, 105881. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hartel, R.W. Measurement of air cell distributions in dairy foams. Int. Dairy J. 2002, 12, 463–472. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Pikul, J.; Wójtowski, J.; Danków, R.; Teichert, J.; Czyżak-Runowska, G.; Bagnicka, E. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds. J. Sci. Food Agric. 2015, 95, 1343–1349. [Google Scholar] [CrossRef]
- Kara, K. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Vet. Med. 2020, 65, 8. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Pilarczyk, R.; Wójcik, J.; Sablik, P.; Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of simmental and holstein-friesian cows from an organic farm. S. Afr. J. Anim. Sci. 2015, 45, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed. 2019, 62, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Sulieman, A.M.E.; Elamin, O.M.; Elkhalifa, E.A.; Laleye, L. Utilization of differential scanning calorimetry (DSC) in differentiation between cow milk and camel milk powder. EC Nutr. 2017, 11, 194–200. [Google Scholar]
- Meena, G.S.; Singh, A.K.; Arora, S.; Borad, S.; Sharma, R.; Gupta, V.K. Physico-chemical, functional and rheological properties of milk protein concentrate 60 as affected by disodium phosphate addition, diafiltration and homogenization. J. Food Sci. Technol. 2017, 54, 1678–1688. [Google Scholar] [CrossRef] [Green Version]
- Brożek, O.M.; Kiełczewska, K.; Bohdziewicz, K. Fatty acid profile and thermal characteristics of ovine and bovine milk and their mixtures. Int. Dairy J. 2022, 129, 105339. [Google Scholar] [CrossRef]
- Alves, E.S.; Ferreira, C.S.R.; Souza, P.R.; Bruni, A.R.S.; Castro, M.C.; Saqueti, B.H.F.; Santos, O.O.; Madrona, G.S.; Visentainer, J.V. Freeze-dried human milk microcapsules using gum arabic and maltodextrin: An approach to improving solubility. Int. J. Biol. Macromol. 2023, 238, 124100. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, H.İ. The effect of different lyophilisation pressures on the microbiological stability, physicochemical, microstructural, and sensorial properties of yoghurt powders. Int. Dairy J. 2022, 129, 105347. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Perez-Palacios, T.; Ruiz-Carrascal, J. Physico-chemical and sensory characteristics of freeze-dried and air-dehydrated yogurt foam. LWT 2017, 80, 328–334. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Danków, R.; Bierzuńska, P.; Kaczyński, Ł.K.; Chudy, S.; Teichert, J.; Pikul, J. Freezing point and other technological properties of milk of the Polish Coldblood horse breed. J. Dairy Sci. 2018, 101, 9637–9646. [Google Scholar] [CrossRef] [Green Version]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J. Rheological, texture and sensory properties of kefir from mare’s milk and its mixtures with goat and sheep milk. Mljekarstvo 2016, 66, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Vilela, A.; Cosme, F.; Pinto, T. Emulsions, foams, and suspensions: The microscience of the beverage industry. Beverages 2018, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Rouimi, S.; Schorsch, C.; Valentini, C.; Vaslin, S. Foam stability and interfacial properties of milk protein–surfactant systems. Food Hydrocoll. 2005, 19, 467–478. [Google Scholar] [CrossRef]
- Martínez-Padilla, L.P.; García-Mena, V.; Casas-Alencáster, N.B.; Sosa-Herrera, M.G. Foaming properties of skim milk powder fortified with milk proteins. Int. Dairy J. 2014, 36, 21–28. [Google Scholar] [CrossRef]
- Kamath, S.; Huppertz, T.; Houlihan, A.V.; Deeth, H.C. The influence of temperature on the foaming of milk. Int. Dairy J. 2008, 18, 994–1002. [Google Scholar] [CrossRef]
- Borcherding, K.; Lorenzen, P.C.; Hoffmann, W.; Schrader, K. Effect of foaming temperature and varying time/temperature-conditions of pre-heating on the foaming properties of skimmed milk. Int. Dairy J. 2008, 18, 349–358. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Ulbrich, M.; Sever, S.; Kunzek, H. Formation of milk protein–pectin conjugates with improved emulsifying properties by controlled dry heating. Food Hydrocoll. 2005, 19, 329–340. [Google Scholar] [CrossRef]
- Priyanka, V.; Shilpashree, B.G.; Ashwini, A. Physico-chemical and techno-functional attributes of dairy powders. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 1941–1947. [Google Scholar]
- Khalesi, M.; FitzGerald, R.J. Impact of variation in calcium level on the technofunctional properties of milk protein concentrate. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 12874. [Google Scholar] [CrossRef]
- Patil, A.T.; Meena, G.S.; Upadhyay, N.; Khetra, Y.; Borad, S.; Singh, A.K. Production and characterization of milk protein concentrates 60 (MPC60) from buffalo milk. LWT 2018, 91, 368–374. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Z.C.; Deng, Y.Y.; Dong, H.; Zhang, Y.; Tang, X.J.; Zhang, M.W. Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules 2020, 25, 458. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Zisu, B.; Chandrapala, J. Interfacial and emulsification properties of sono-emulsified grape seed oil emulsions stabilized with milk proteins. Food Chem. 2020, 309, 125758. [Google Scholar] [CrossRef]
- McClements, D.J.; Lu, J.; Grossmann, L. Proposed methods for testing and comparing the emulsifying properties of proteins from animal, plant, and alternative sources. Colloid Interface Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Shah, K.; Salunke, P.; Metzger, L. Effect of storage of skim milk powder, nonfat dry milk and milk protein concentrate on functional properties. Dairy 2022, 3, 565–576. [Google Scholar] [CrossRef]
- Braun, K.; Hanewald, A.; Vilgis, T.A. Milk emulsions: Structure and stability. Foods 2019, 8, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nantapo, C.T.W.; Muchenje, V.; Hugo, A. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian × Jersey cross cow milk under a pasture-based dairy system. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
Raw Mare’s Milk | Reconstituted Freeze-Dried Mare’s Milk | |||||
---|---|---|---|---|---|---|
Parameters | Mean | P5 | P95 | Mean | P5 | P95 |
Solids—not-fat, g/kg | 88.3 a | 88.3 | 88.3 | 88.4 a | 88.0 | 88.6 |
Fat, g/kg | 17.2 a | 17.2 | 17.3 | 17.4 a | 16.2 | 18.1 |
Moisture, g/kg | 898.5 a | 898.1 | 898.8 | 897.3 a | 888.9 | 905.7 |
Total protein 1, g/kg | 23.8 a | 23.6 | 24.1 | 23.7 a | 22.6 | 24.8 |
Casein 2, g/kg | 12.8 a | 12.6 | 13.0 | 12.5 a | 12.2 | 12.8 |
Whey protein 3, g/kg | 10.9 a | 10.7 | 11.1 | 10.8 a | 10.3 | 11.0 |
Lactose, g/kg | 63.2 a | 63.0 | 63.4 | 62.3 a | 60.6 | 64.1 |
Ash, g/kg | 5.8 a | 5.6 | 6.1 | 5.6 a | 5.5 | 5.8 |
Solids—not-fat/total protein | 3.7 a | 3.7 a | ||||
Total protein/lactose | 0.4 a | 0.4 a | ||||
Density in 20 °C, g/mL | 1.036 a | 1.034 | 1.039 | 1.039 b | 1.038 | 1.040 |
Water activity, - | 0.9901 a | 0.9895 | 0.9907 | 0.9896 a | 0.9883 | 0.9908 |
Raw Mare’s Milk | Reconstituted Freeze-Dried Mare’s Milk | |||||
---|---|---|---|---|---|---|
Parameters | Mean | P5 | P95 | Mean | P5 | P95 |
FP, % | 101.8 a | 100.3 | 103.4 | 111.3 b | 109.6 | 113.0 |
FS, % | 0.03 a | −0.05 | 0.12 | 0.16 b | −0.26 | 0.59 |
FSW, % | 352.1 b | 344.0 | 361.1 | 106.3 a | 103.5 | 109.1 |
Φ, % | 0.781 b | 0.699 | 0.782 | 0.511 a | 0.500 | 0.522 |
Raw Mare’s Milk | Reconstituted Freeze-Dried Mare’s Milk | |||||
---|---|---|---|---|---|---|
Parameters | Mean | P5 | P95 | Mean | P5 | P95 |
Oil-binding capacity, g/g protein | 2.20 a | 2.06 | 2.48 | 2.19 a | 2.12 | 2.26 |
EAI, m2/g | 41.5 a | 39.2 | 43.6 | 42.5 a | 41.1 | 43.9 |
ESI, min | 53.0 a | 51.1 | 54.0 | 56.0 b | 53.3 | 58.6 |
Raw Mare’s Milk | Reconstituted Freeze-Dried Mare’s Milk | |||||
---|---|---|---|---|---|---|
Parameters | Mean | P5 | P95 | Mean | P5 | P95 |
AI | 1.01 a | 0.98 | 1.05 | 1.02 a | 0.98 | 1.07 |
TI | 0.51 a | 0.43 | 0.59 | 0.53 a | 0.46 | 0.60 |
HcFA | 25.07 a | 24.28 | 25.86 | 25.01 a | 24.15 | 25.87 |
DFA | 53.64 a | 52.60 | 54.68 | 53.67 a | 52.62 | 54.71 |
OFA | 45.63 a | 44.57 | 46.69 | 45.64 a | 44.57 | 46.71 |
DFA/OFA | 1.18 a | 1.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cais-Sokolińska, D.; Teichert, J.; Gawałek, J. Foaming and Other Functional Properties of Freeze-Dried Mare’s Milk. Foods 2023, 12, 2274. https://doi.org/10.3390/foods12112274
Cais-Sokolińska D, Teichert J, Gawałek J. Foaming and Other Functional Properties of Freeze-Dried Mare’s Milk. Foods. 2023; 12(11):2274. https://doi.org/10.3390/foods12112274
Chicago/Turabian StyleCais-Sokolińska, Dorota, Joanna Teichert, and Jolanta Gawałek. 2023. "Foaming and Other Functional Properties of Freeze-Dried Mare’s Milk" Foods 12, no. 11: 2274. https://doi.org/10.3390/foods12112274
APA StyleCais-Sokolińska, D., Teichert, J., & Gawałek, J. (2023). Foaming and Other Functional Properties of Freeze-Dried Mare’s Milk. Foods, 12(11), 2274. https://doi.org/10.3390/foods12112274