Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotypic Traits of Samaras and Seeds
2.3. Determination of Oil, Protein, and Soluble Sugar Content in ATB Seeds
2.3.1. Extension of Seed Oil and Determination of Its Content
2.3.2. Protein
2.3.3. Soluble Sugar
2.4. Determination of the Nutritional Composition of oil in ATB Seeds
2.4.1. Determination of Alpha-Tocopherol Content
2.4.2. Composition Analysis of Fatty Acid by Methyl Esterification
2.5. Selection of Optimal Sources of ATB
2.6. Statistical Analysis
3. Results
3.1. Morphological Diversity of ATB Fruits and Kernel Seeds
3.2. The Oil, Protein, and Soluble Sugar in ATB Seeds
3.3. The Composition of Fatty Acid in ATB Seed Oil
3.4. Alpha-Tocopherol of ATB Seed Oil
3.5. Screening for ATB Region
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATB | Acer truncatum Bunge |
C16:0 | palmitic acid |
C16:1 | hexadecenoic acid |
C17:0 | heptadecanoic acid |
C18:0 | stearic acid |
C18:1 | oleic acid |
C18:2 | linoleic acid |
C18:3 | linolenic acid |
C20:0 | arachidic acid |
C20:1 | cis-11-eicosanoic acid |
C22:0 | behenic acid |
C22:1 | erucic acid |
C24:0 | xylic acid |
C24:1 | nervonic acid |
SFA | saturated fatty acid |
UFA | unsaturated fatty acid |
MUFA | monounsaturated fatty acid |
PUFA | polyunsaturated fatty acid |
References
- Bai, Y.; Zhai, Y.; Ji, C.; Zhang, T.; Chen, W.; Shen, X.; Hong, J. Environmental sustainability challenges of China’s edible vegetable oil industry: From farm to factory. Resour. Conserv. Recycl. 2021, 170, 105606. [Google Scholar] [CrossRef]
- Fang, C.; Beghin, J.C. Urban demand for edible oils and fats in China: Evidence from household survey data. J. Comp. Econ. 2002, 30, 732–753. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Wang, W.; Yuan, F.; Liu, X.; Li, D.; Yang, K.Q. Characterization of yuanbaofeng (Acer truncatum Bunge) samaras: Oil, fatty acid, and phytosterol content. Ind. Crops Prod. 2019, 135, 344–351. [Google Scholar] [CrossRef]
- Li, L.; Manning, W.J.; Tong, L.; Wang, X. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing. China. Environ. Pollut. 2015, 201, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.H.; Morcol, T.; Liu, B.; Shi, M.J.; Kennelly, E.J.; Long, C.L. GC–MS, UPLC-QTOF-MS, and bioactivity characterization of Acer truncatum seeds. Ind. Crops Prod. 2019, 138, 111480. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, X.; Ren, H.; An, K.; Feng, Z.; Cheng, T.; Sun, Z. Oil Content and nervonic acid content of Acer truncatum seeds from 14 regions in China. Hortic. Plant J. 2019, 5, 24–30. [Google Scholar] [CrossRef]
- NMCPRC: National Health Commission of the People’s Republic of China. 2011. Available online: http://www.nhc.gov.cn/sps/s7891/201103/cffd9def6007444ea271189c18063b54.shtml (accessed on 10 January 2023).
- Song, X.; Li, H.; Li, C.; Xu, J.; Hu, D. Effects of VOCs from leaves of Acer truncatum Bunge and Cedrus deodara on human physiology and psychology. Urban For. Urban Green 2016, 19, 29–34. [Google Scholar] [CrossRef]
- Ang, X.; Chen, H.; Xiang, J.Q.; Wei, F.; Quek, S.Y. Preparation and functionality of lipase-catalysed structured phospholipid—A review. Trends Food Sci. Technol. 2019, 88, 373–383. [Google Scholar] [CrossRef]
- Chen, H.; Wei, F.; Dong, X.Y.; Xiang, J.Q.; Quek, S.Y.; Wang, X. Lipidomics in food science. Curr. Opin. Food Sci. 2017, 16, 80–87. [Google Scholar] [CrossRef]
- Dong, X.Y.; Zhong, J.; Wei, F.; Lv, X.; Wu, L.; Lei, Y.; Liao, B.S.; Quek, S.Y.; Chen, H. Triacylglycerol composition profiling and comparison of high-oleic and normal peanut oils. J. Am. Oil Chem. Soc. 2015, 92, 233–242. [Google Scholar] [CrossRef]
- Dai, Y.J.; Jiang, G.Z.; Liu, W.B.; Abasubong, K.P.; Zhang, D.D.; Li, X.F.; Chi, C.; Liu, W.B. Evaluation of dietary linoleic acid on growth as well as hepatopancreatic index, lipid accumulation oxidative stress and inflammation in Chinese mitten crabs (Eriocheir sinensis). Aquac. Rep. 2022, 22, 100983. [Google Scholar] [CrossRef]
- Fousekis, P. Price risk connectedness in the principal olive oil markets of the EU. J. Econ. Asymmetries 2022, 26, e00258. [Google Scholar] [CrossRef]
- Hu, W.; Fitzgerald, M.; Topp, B.; Alam, M.; O’Hare, T.J. Fatty acid diversity and interrelationships in macadamia nuts. Lwt 2022, 154, 112839. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Amaral Júnior, A.T.D.; Vergara-Diaz, O.; Gracia-Romero, A.; Fernandez-Gallego, J.A.; Chang-Espino, M.C.; Buchaillot, M.L.; Rezzouk, F.Z.; Lima, V.J.D.; Serret, M.D.; et al. Heterosis and reciprocal effects for physiological and morphological traits of popcorn plants under different water conditions. Agric. Water Manag. 2022, 261, 107371. [Google Scholar] [CrossRef]
- Grivet, D.; Climent, J.; Zabal-Aguirre, M.; Neale, D.B.; Vendramin, G.G.; Gonzalez-Martinez, S.C. Adaptive evolution of Mediterranean pines. Mol. Phylogenet. Evol. 2013, 68, 555–566. [Google Scholar] [CrossRef]
- Zacharias, M.; Pampuch, T.; Heer, K.; Avanzi, C.; Wurth, D.G.; Trouillier, M.; Bog, M.; Wilmking, M.; Schnittler, M. Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. Sci. Total Environ. 2021, 798, 149267. [Google Scholar] [CrossRef]
- Xu, J.J.; Zhu, Y.H.; Wang, G. Comprehensive evaluation and phenotypic diversity analysis of camellia meiocarpa ln Guizhou. J. Zhejiang For. Sci. Technol. 2021, 41, 15–23. [Google Scholar]
- Rodriguez-Romero, J.J.; Duran-Castaneda, A.C.; Cardenas-Castro, A.P.; Sanchez-Burgos, J.A.; Zamora-Gasga, V.M.; Sayago-Ayerdi, S.G. What we know about protein gut metabolites: Implications and insights for human health and diseases. Food Chem. X 2022, 13, 100195. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, J.; Liu, C.; Jiang, J.; Yang, H.; Li, J. Genetic characteristics and QTL analysis of the soluble sugar content in ripe tomato fruits. Sci. Hortic. 2021, 276, 109785. [Google Scholar] [CrossRef]
- Vichaiya, T.; Faiyue, B.; Rotarayanont, S.; Uthaibutra, J.; Saengnil, K. Exogenous trehalose alleviates chilling injury of ‘Kim Ju’ guava by modulating soluble sugar and energy metabolisms. Sci. Hortic. 2022, 301, 111138. [Google Scholar] [CrossRef]
- Chang, P.; Ma, J.; Xin, H.; Wang, S.; Chen, Z.; Hong, X.; Zhang, B.; Li, L. Comparative Study of the Fatty Acid Composition of the Acer truncatum Bunge from Different Producing Areas. Forests 2022, 13, 1409. [Google Scholar] [CrossRef]
- Krummel, B.; von Hanstein, A.S.; Plotz, T.; Lenzen, S.; Mehmeti, I. Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat beta-cells. J. Nutr. Biochem. 2022, 106, 109013. [Google Scholar] [CrossRef]
- Wang, X.; Sun, B.; Wei, L.; Jian, X.; Shan, K.; He, Q.; Huang, F.; Ge, X.; Gao, X.; Feng, N.; et al. Cholesterol and saturated fatty acids synergistically promote the malignant progression of prostate cancer. Neoplasia 2022, 24, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Zhang, L.; Fang, C.; Yang, J.; Li, J.; Zhao, Y.; Wu, Y. Assessment of dietary intakes of total fat and fatty acids for residents in China in 2015–2018. J. Food Compos. Anal. 2021, 102, 104045. [Google Scholar] [CrossRef]
- Szajewska, H.; Szajewski, T. Saturated fat controversy: Importance of systematic reviews and meta-analyses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1947–1951. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Gutierrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the american heart association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated fats and health: A reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X. Virgin avocado oil: An emerging source of functional fruit oil. J. Funct. Foods 2019, 54, 381–392. [Google Scholar] [CrossRef]
- Hernández, D.; Fernández-Puratich, H.; Rebolledo-Leiva, R.; Tenreiro, C.; Gabriel, D. Evaluation of sustainable manufacturing of pellets combining wastes from olive oil and forestry industries. Ind. Crops Prod. 2019, 134, 338–346. [Google Scholar] [CrossRef]
- De Souza, C.O.; Valenzuela, C.A.; Baker, E.J.; Miles, E.A.; Rosa Neto, J.C.; Calder, P.C. Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mol. Nutr. Food Res. 2018, 62, e1800322. [Google Scholar] [CrossRef]
- Song, W.; Zhang, K.; Xue, T.; Han, J.; Peng, F.; Ding, C.; Lin, F.; Li, J.; Sze, F.T.A.; Gan, J.; et al. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct. 2022, 13, 2475–2490. [Google Scholar] [CrossRef]
- Riecan, M.; Paluchova, V.; Lopes, M.; Brejchova, K.; Kuda, O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol. Ther. 2022, 231, 107972. [Google Scholar] [CrossRef]
- Babin, F.; Sarda, P.; Limasset, B.; Descomps, B.; Rieu, D.; Mendy, F.; Crastes de Paulet, A. Nervonic acid in red blood cell sphingomyelin in premature infants: An index of myelin maturation? Lipids 1993, 28, 627–630. [Google Scholar] [CrossRef]
- Martínez, M.; Mougan, I. Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 1998, 71, 2528–2533. [Google Scholar] [CrossRef]
- Cook, C.; Barnett, J.; Coupland, K.; Sargent, J. Effects of feeding Lunaria oil rich in nervonic and erucic acids on the fatty acid compositions of sphingomyelins from erythrocytes, liver, and brain of the quaking mouse mutant. Lipids 1998, 33, 993–1000. [Google Scholar] [CrossRef]
- Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med. 2022, 178, 26–41. [Google Scholar] [CrossRef]
- Burton, G.W.; Joyce, A.; Ingold, K.U. Is Vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch. Biochem. Biophys. 2022, 726, 109230. [Google Scholar] [CrossRef]
- Poli, V.; Aparna, Y.; Madduru, R.; Motireddy, S.R. Protective effect of Vitamin C and E on enzymatic and antioxidant system in liver and kidney toxicity of Cadmium in rats. Appl. Food Res. 2022, 2, 100098. [Google Scholar] [CrossRef]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components. Lwt 2019, 112, 107648. [Google Scholar] [CrossRef]
- Mu, H.; Wei, C.; Xu, W.; Gao, W.; Zhang, W.; Mai, K. Effects of replacement of dietary fish oil by rapeseed oil on growth performance, anti-oxidative capacity and inflammatory response in large yellow croaker Larimichthys crocea. Aquac. Rep. 2020, 16, 100251. [Google Scholar] [CrossRef]
- Zainal, Z.; Khaza’ai, H.; Kutty Radhakrishnan, A.; Chang, S.K. Therapeutic potential of palm oil Vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res. Int. 2022, 156, 111175. [Google Scholar] [CrossRef]
Province | City | Locality | Label | Longitude (N) | Latitude (E) | Annual Average Temperature (°C) | Annual Rainfall (mm) | Frost-Free Season (d) | >10 °C Accumulated Temperature (°C) | Altitude (m) |
---|---|---|---|---|---|---|---|---|---|---|
Inner Mongolia | Chifeng | Wudan | AT1 | 43°13′50″ | 119°32′23″ | 7 | 375 | 115 | 1100 | 2025.0 |
Chifeng | Bahrain Lindong | AT2 | 45°24′15″ | 120°58′52″ | 5 | 400 | 135 | 2000 | 1890.9 | |
Tongliao | Gilgarang | AT3 | 43°42′ | 123°42′ | 5.8 | 451.1 | 146 | 2900 | 308.4 | |
Hinggan League | Daichentala | AT4 | 45°18′28″ | 121°45′00″ | 5.6 | 388 | 120 | 3322 | 209.1 | |
Liaoning | Shenyang | Faku | AT5 | 42°39′29″ | 123°45′14″ | 6.7 | 600 | 150 | 3219 | 106.0 |
Fengcheng | Saima | AT6 | 41°06′ | 124°32′ | 8.1 | 1013.6 | 156 | 3210 | 500.0 | |
Fuxin | Zhangwu | AT7 | 42°51′ | 122°58′ | 7.1 | 510 | 156 | 2890 | 313.1 | |
Shandong | Qufu | AT8 | 39°49′ | 117°13′ | 13.6 | 666.3 | 199 | 4457 | 60.5 | |
Shaanxi | Yangling | AT9 | 34°20′ | 108°08′ | 12.9 | 635.1 | 211 | 4184 | 540.1 |
Origin | Oil | Protein | Soluble Sugar |
---|---|---|---|
AT1 | 45.75 ± 1.93 b | 14.76 ± 0.34 d | 4.68 ± 0.57 c |
AT2 | 18.87 ± 2.46 c | 12.97 ± 0.09 d | 4.16 ± 0.15 f |
AT3 | 52.23 ± 1.48 a | 20.57 ± 0.88 a | 4.73 ± 0.57 b |
AT4 | 48.55 ± 0.35 ab | 20.80 ± 0.56 a | 4.46 ± 0.18 d |
AT5 | 46.64 ± 0.40 b | 17.57 ± 1.10 c | 4.81 ± 0.10 a |
AT6 | 44.71 ± 2.09 b | 17.86 ± 0.75 bc | 4.70 ± 0.77 c |
AT7 | 44.45 ± 0.66 b | 20.21 ± 0.73 ab | 4.48 ± 0.18 d |
AT8 | 43.04 ± 2.65 b | 13.92 ± 0.40 d | 4.41 ± 0.55 e |
AT9 | 45.49 ± 1.08 b | 17.90 ± 1.39 c | 4.69 ± 0.06 c |
CV (%) | 22.05 | 16.85 | 4.52 |
AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | AT7 | AT8 | AT9 | CV (%) | |
---|---|---|---|---|---|---|---|---|---|---|
C16:0 | 4.71 ± 0.42 a | 5.14 ± 0.23 a | 4.55 ± 0.20 a | 4.80 ± 0.01 a | 5.02 ± 0.22 a | 4.83 ± 0.02 a | 4.50 ± 0.05 a | 4.86 ± 0.50 a | 4.83 ± 0.25 a | 4.17 |
C16:1 | 0.10 ± 0.25 a | 0.09 ± 0.15 a | ND | 0.10 ± 0.02 a | ND | 0.10 ± 0.02 a | ND | 0.10 ± 0.29 a | 0.12 ± 0.19 a | 55.56 |
C17:0 | 0.08 ± 0.29 a | 0.12 ± 0.16 a | 0.07 ± 0.07 a | 0.08 ± 0.02 a | 0.08 ± 0.15 a | 0.07 ± 0.02 a | 0.07 ± 0.05 a | 0.08 ± 0.34 a | 0.07 ± 0.21 a | 25.00 |
C18:0 | 2.59 ± 0.14 a | 2.74 ± 0.07 a | 1.79 ± 0.09 c | 2.76 ± 0.03 a | 2.32 ± 0.09 ab | 2.44 ± 0.02 ab | 2.65 ± 0.07 ab | 2.19 ± 0.23 b | 2.34 ± 0.04 ab | 12.81 |
C18:1 | 26.74 ± 0.21 ab | 22.38 ± 0.46 c | 25.28 ± 0.07 ab | 26.21 ± 1.24 a | 25.67 ± 0.08 ab | 26.79 ± 0.07 ab | 24.95 ± 0.14 ab | 25.09 ± 0.08 bc | 25.16 ± 0.45 ab | 5.21 |
C18:2 | 32.24 ± 1.61 bc | 37.95 ± 1.20 a | 32.12 ± 0.06 ab | 32.25 ± 0.77 abc | 32.65 ± 0.79 abc | 29.66 ± 0.26 b | 32.09 ± 0.01 abc | 30.26 ± 0.92 c | 31.27 ± 0.26 bc | 7.28 |
C18:3 | 1.76 ± 0.23 b | 1.02 ± 0.15 c | 1.92 ± 0.20 b | 1.75 ± 0.05 b | 2.01 ± 0.13 b | 1.90 ± 0.02 b | 1.35 ± 0.01 c | 2.16 ± 0.22 b | 2.53 ± 0.08 a | 24.18 |
C20:0 | 0.27 ± 0.40 a | 0.27 ± 0.24 a | 0.30 ± 0.20 a | 0.23 ± 0.08 a | 0.23 ± 0.24 a | 0.28 ± 0.03 a | 0.28 ± 0.06 a | 0.22 ± 0.43 a | 0.30 ± 0.29 a | 11.54 |
C20:1 | 8.24 ± 0.56 ab | 7.40 ± 0.25 b | 8.84 ± 0.40 a | 8.46 ± 0.21 a | 8.49 ± 0.22 a | 8.51 ± 0.04 a | 8.68 ± 0.13 a | 8.63 ± 0.67 a | 8.36 ± 0.76 a | 4.88 |
C22:0 | 0.81 ± 0.73 a | 0.77 ± 0.42 a | 0.90 ± 0.20 a | 0.72 ± 0.06 a | 0.67 ± 0.30 a | 0.95 ± 0.08 a | 0.93 ± 0.10 a | 0.59 ± 1.04 a | 0.61 ± 0.55 a | 18.18 |
C22:1 | 15.43 ± 1.24 ab | 14.15 ± 1.06 b | 17.24 ± 0.15 a | 15.66 ± 0.17 ab | 17.09 ± 0.79 a | 16.49 ± 0.02 a | 16.52 ± 0.35 a | 17.32 ± 1.82 a | 17.09 ± 2.07 a | 6.49 |
C24:0 | 0.19 ± 0.76 a | 0.17 ± 0.43 a | 0.12 ± 0.30 a | 0.19 ± 0.03 a | 0.15 ± 0.41 a | 0.24 ± 0.13 a | 0.22 ± 0.12 a | 0.27 ± 0.85 a | 0.25 ± 0.64 a | 25.00 |
C24:1 | 5.24 ± 0.39 abc | 4.06 ± 0.74 d | 4.76 ± 0.20 cd | 5.05 ± 0.02 bcd | 3.85 ± 0.29 e | 6.42 ± 0.02 ab | 5.77 ± 0.01 abc | 6.55 ± 0.34 a | 5.54 ± 0.07 abc | 17.9 |
SFA | 8.65 ± 0.44 ab | 9.21 ± 0.38 a | 7.55 ± 0.35 ab | 8.78 ± 0.22 ab | 8.47 ± 0.31 ab | 8.81 ± 0.11 ab | 8.65 ± 0.13 ab | 8.21 ± 0.32 ab | 8.40 ± 0.52 ab | 5.39 |
UFA | 89.75 ± 1.01 a | 87.05 ± 0.88 b | 90.16 ± 0.75 a | 89.46 ± 0.63 a | 89.74 ± 0.95 a | 89.86 ± 0.67 a | 89.33 ± 0.53 a | 90.09 ± 1.22 a | 90.05 ± 0.98 a | 1.07 |
MUFA | 55.75 ± 0.71 bc | 48.08 ± 0.45 b | 56.12 ± 0.51 bc | 58.30 ± 0.78 a | 55.46 ± 0.27 bcd | 55.08 ± 0.32 bc | 55.89 ± 0.49 bc | 57.67 ± 0.85 ab | 56.25 ± 0.43 ab | 5.29 |
PUFA | 34.00 ± 0.25 b | 38.97 ± 0.33 a | 34.04 ± 0.38 b | 34.00 ± 0.55 b | 34.66 ± 0.43 b | 31.56 ± 0.29 c | 33.44 ± 0.61 bc | 32.42 ± 0.41 c | 33.8 ± 0.26 bc | 6.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, X.; Zhang, W.; Sun, G.; Fan, J.; Zhu, M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods 2023, 12, 2444. https://doi.org/10.3390/foods12132444
Le X, Zhang W, Sun G, Fan J, Zhu M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods. 2023; 12(13):2444. https://doi.org/10.3390/foods12132444
Chicago/Turabian StyleLe, Xiaona, Wen Zhang, Guotao Sun, Jinshuan Fan, and Mingqiang Zhu. 2023. "Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions" Foods 12, no. 13: 2444. https://doi.org/10.3390/foods12132444
APA StyleLe, X., Zhang, W., Sun, G., Fan, J., & Zhu, M. (2023). Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods, 12(13), 2444. https://doi.org/10.3390/foods12132444