Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Development of ic-ELISA
2.3. Determination of Sensitivity and Specificity
2.4. Sample Preparation
2.5. Assay Validation
3. Results and Discussion
3.1. Optimization of Working Parameters
3.2. Establishment of icELISA Standard Curve
3.3. Determination of Specificity
3.4. Removal of Matrix Effects
3.5. Analysis of Spiked Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vergalli, J.; Atzori, A.; Pajovic, J.; Dumont, E.; Malloci, G.; Masi, M.; Vargiu, A.V.; Winterhalter, M.; Réfrégiers, M.; Ruggerone, P.; et al. The Challenge of Intracellular Antibiotic Accumulation, a Function of Fluoroquinolone Influx versus Bacterial Efflux. Commun. Biol. 2020, 3, 198. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yang, H.; Wen, K.; Ke, Y.; Shen, J.; Wang, Z. Current Advances in Immunoassays for Quinolones in Food and Environmental Samples. TrAC Trends Anal. Chem. 2022, 157, 116726. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, L.; Wang, Z.; Chen, Y.; Zhao, Z.; Zhu, L.; Wu, X.; Wan, Y.; He, F.; Shen, J. Development of an Immunochromatography Strip for the Rapid Detection of 12 Fluoroquinolones in Chicken Muscle and Liver. J. Agric. Food Chem. 2008, 56, 5469–5474. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.-A.; Klugman, K.; Davies, S. Access to Effective Antimicrobials: A Worldwide Challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Masi, M.; Réfregiers, M.; Pos, K.M.; Pagès, J.-M. Mechanisms of Envelope Permeability and Antibiotic Influx and Efflux in Gram-Negative Bacteria. Nat. Microbiol. 2017, 2, 17001. [Google Scholar] [CrossRef]
- Fernández, F.; Hegnerová, K.; Piliarik, M.; Sanchez-Baeza, F.; Homola, J.; Marco, M.-P. A Label-Free and Portable Multichannel Surface Plasmon Resonance Immunosensor for on Site Analysis of Antibiotics in Milk Samples. Biosens. Bioelectron. 2010, 26, 1231–1238. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of Action of Antimicrobials: Focus on Fluoroquinolones. Clin. Infect. Dis. 2001, 32, S9–S15. [Google Scholar] [CrossRef]
- Endtz, H.P.; Ruijs, G.J.; van Klingeren, B.; Jansen, W.H.; van der Reyden, T.; Mouton, R.P. Quinolone Resistance in Campylobacter Isolated from Man and Poultry Following the Introduction of Fluoroquinolones in Veterinary Medicine. J. Antimicrob. Chemother. 1991, 27, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Lomaestro, B.M. Fluoroquinolone-Induced Renal Failure. Drug-Saf. 2000, 22, 479–485. [Google Scholar] [CrossRef]
- Andreu, V.; Blasco, C.; Picó, Y. Analytical Strategies to Determine Quinolone Residues in Food and the Environment. TrAC Trends Anal. Chem. 2007, 26, 534–556. [Google Scholar] [CrossRef]
- Appelbaum, P.C.; Hunter, P.A. The Fluoroquinolone Antibacterials: Past, Present and Future Perspectives. Int. J. Antimicrob. Agents 2000, 16, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Pasteris, S.E.; Guidoli, M.G.; Otero, M.C.; Bühler, M.I.; Nader-Macías, M.E. In Vitro Inhibition of Citrobacter Freundii, a Red-Leg Syndrome Associated Pathogen in Raniculture, by Indigenous Lactococcus Lactis CRL 1584. Vet. Microbiol. 2011, 151, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Pasteris, S.E.; Bühler, M.I.; Nader-Macías, M.E. Microbiological and Histological Studies of Farmed-Bullfrog (Rana catesbeiana) Tissues Displaying Red-Leg Syndrome. Aquaculture 2006, 251, 11–18. [Google Scholar] [CrossRef]
- Grogan, L.F.; Robert, J.; Berger, L.; Skerratt, L.F.; Scheele, B.C.; Castley, J.G.; Newell, D.A.; McCallum, H.I. Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Front. Immunol. 2018, 9, 2536. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Dong, B.; Kong, S.; Mao, Y.; Zheng, R. Pathogen Resistance and Gene Frequency Stability of Major Histocompatibility Complex Class IIB Alleles in the Giant Spiny Frog Quasipaa Spinosa. Aquaculture 2017, 468, 410–416. [Google Scholar] [CrossRef]
- Huang, F.; An, Z.; Moran, M.J.; Liu, F. Recognition of Typical Antibiotic Residues in Environmental Media Related to Groundwater in China (2009−2019). J. Hazard. Mater. 2020, 399, 122813. [Google Scholar] [CrossRef]
- Gonzalez Ronquillo, M.; Angeles Hernandez, J.C. Antibiotic and Synthetic Growth Promoters in Animal Diets: Review of Impact and Analytical Methods. Food Control. 2017, 72, 255–267. [Google Scholar] [CrossRef]
- Muñoz-Olivas, R. Screening Analysis: An Overview of Methods Applied to Environmental, Clinical and Food Analyses. TrAC Trends Anal. Chem. 2004, 23, 203–216. [Google Scholar] [CrossRef]
- Trullols, E.; Ruisánchez, I.; Rius, F.X. Validation of Qualitative Analytical Methods. TrAC Trends Anal. Chem. 2004, 23, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Mitani, K.; Kataoka, H. Determination of Fluoroquinolones in Environmental Waters by In-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2006, 562, 16–22. [Google Scholar] [CrossRef]
- Yu, H.; Mu, H.; Hu, Y.-M. Determination of Fluoroquinolones, Sulfonamides, and Tetracyclines Multiresidues Simultaneously in Porcine Tissue by MSPD and HPLC–DAD. J. Pharm. Anal. 2012, 2, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.J.; Donoghue, D.J. Multiresidue Determination of Fluoroquinolone Antibiotics in Eggs Using Liquid Chromatography–Fluorescence–Mass Spectrometryn. Anal. Chim. Acta 2003, 483, 39–49. [Google Scholar] [CrossRef]
- Delatour, T.; Savoy, M.-C.; Tarres, A.; Bessaire, T.; Mottier, P.; Desmarchelier, A. Low False Response Rates in Screening a Hundred Veterinary Drug Residues in Foodstuffs by LC-MS/MS with Analyte-Specific Correction of the Matrix Effect. Food Control. 2018, 94, 353–360. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Z.; Beier, R.C.; Jiang, H.; Wu, Y.; Shen, J. Simultaneous Determination of 13 Fluoroquinolone and 22 Sulfonamide Residues in Milk by a Dual-Colorimetric Enzyme-Linked Immunosorbent Assay. Anal. Chem. 2013, 85, 1995–1999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhou, R.; Zhang, H.; Cai, D.; Lin, X.; Lang, Y.; Qiu, Y.; Shentu, X.; Ye, Z.; Yu, X. A Smartphone Colorimetric Sensor Based on Pt@Au Nanozyme for Visual and Quantitative Detection of Omethoate. Foods 2022, 11, 2900. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, B.; Cai, D.; Tu, W.; Zhang, J.; Shentu, X.; Ye, Z.; Yu, X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. Biosensors 2023, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Van Coillie, E.; De Block, J.; Reybroeck, W. Development of an Indirect Competitive ELISA for Flumequine Residues in Raw Milk Using Chicken Egg Yolk Antibodies. J. Agric. Food Chem. 2004, 52, 4975–4978. [Google Scholar] [CrossRef]
- Fernández, F.; Pinacho, D.G.; Gratacós-Cubarsí, M.; García-Regueiro, J.-A.; Castellari, M.; Sánchez-Baeza, F.; Marco, M.-P. Immunochemical Determination of Fluoroquinolone Antibiotics in Cattle Hair: A Strategy to Ensure Food Safety. Food Chem. 2014, 157, 221–228. [Google Scholar] [CrossRef]
- Du, B.; Wen, F.; Guo, X.; Zheng, N.; Zhang, Y.; Li, S.; Zhao, S.; Liu, H.; Meng, L.; Xu, Q.; et al. Evaluation of an ELISA-Based Visualization Microarray Chip Technique for the Detection of Veterinary Antibiotics in Milk. Food Control 2019, 106, 106713. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R.C.; Li, J.; Jiang, H.; Feng, C.; Wan, Y.; Zhang, S.; et al. Development of a Monoclonal Antibody-Based Broad-Specificity ELISA for Fluoroquinolone Antibiotics in Foods and Molecular Modeling Studies of Cross-Reactive Compounds. Anal. Chem. 2007, 79, 4471–4483. [Google Scholar] [CrossRef]
- Hu, K.; Huang, X.; Jiang, Y.; Fang, W.; Yang, X. Monoclonal Antibody Based Enzyme-Linked Immunosorbent Assay for the Specific Detection of Ciprofloxacin and Enrofloxacin Residues in Fishery Products. Aquaculture 2010, 310, 8–12. [Google Scholar] [CrossRef]
- Duan, J.; Yuan, Z. Development of an Indirect Competitive ELISA for Ciprofloxacin Residues in Food Animal Edible Tissues. J. Agric. Food Chem. 2001, 49, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, Z.; Wang, C.; Peng, J.; Lai, W.-H. Using Hapten Cross-Reactivity to Screen Heterologous Competitive Antigens for Improving the Sensitivity of ELISA. Food Chem. 2020, 303, 125379. [Google Scholar] [CrossRef]
- Tufa, R.A.; Pinacho, D.G.; Pascual, N.; Granados, M.; Companyó, R.; Marco, M.P. Development and Validation of an Enzyme Linked Immunosorbent Assay for Fluoroquinolones in Animal Feeds. Food Control 2015, 57, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.; Zhang, B.; Zhao, Q.; Wang, S.; Zhang, Y. Preparation of a Broad-Spectrum Heterocyclic Aromatic Amines (HAAs) Antibody and Its Application in Detection of Eight HAAs in Heat Processed Meat. J. Agric. Food Chem. 2020, 68, 15501–15508. [Google Scholar] [CrossRef]
- The Ministry of China Agriculture Announcement No.1025−8−2008. Available online: https://www.moa.gov.cn/nybgb/2008/dwuq/201806/t20180609_6151576.htm (accessed on 21 April 2023).
- The Chinese National Standard GB 31656.3−2021. Available online: http://www.aqsc.agri.cn/zlbz/bzgg/202201/t20220126_396511.htm (accessed on 23 April 2023).
- Quantitative Determination of Gatifloxacin, Levofloxacin, Lomefloxacin and Pefloxacin Fluoroquinolonic Antibiotics in Pharmaceutical Preparations by High-Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 2006, 40, 179–184. [CrossRef] [PubMed]
- Mukunzi, D.; Isanga, J.; Suryoprabowo, S.; Liu, L.; Kuang, H. Rapid and Sensitive Immunoassays for the Detection of Lomefloxacin and Related Drug Residues in Bovine Milk Samples. Food Agric. Immunol. 2017, 28, 599–611. [Google Scholar] [CrossRef] [Green Version]
Time (min) | A: 0.3% Phosphoric Acid-5% Acetonitrile Aqueous Solution (%) | B: Methanol (%) |
---|---|---|
0 | 85 | 15 |
5 | 85 | 15 |
45 | 60 | 40 |
50 | 85 | 15 |
Name | IC50 (μg/L) | Cross-Reactivity (%) |
---|---|---|
ENR | 19.23 | 100.00 |
CIP | 18.69 | 102.88 |
SAR | 21.55 | 89.24 |
OFL | 22.52 | 85.41 |
NOR | 21.84 | 88.06 |
PM | 20.93 | 91.88 |
PEF | 21.96 | 87.58 |
ENX | 21.84 | 88.07 |
MAR | 21.69 | 88.64 |
FLE | 21.90 | 87.81 |
LOM | 22.35 | 86.06 |
DAN | 20.61 | 93.31 |
DIF | 22.52 | 85.38 |
nalidixic acid | 128.43 | 14.97 |
malachite green | >15,000 | <0.2 |
metronidazole | >15,000 | <0.2 |
tetracycline | >15,000 | <0.2 |
florfenicol | >15,000 | <0.2 |
thiamphenicol | >15,000 | <0.2 |
chloramphenicol | >15,000 | <0.2 |
sulfamethazine | >15,000 | <0.2 |
sulfamethoxazole | >15,000 | <0.2 |
Sample | Spiked Concn (μg/kg) | ic-ELISA | HPLC | ||||
---|---|---|---|---|---|---|---|
Detected (Mean ± SD a) (μg/kg) | Recovery (%) | CV (%) b | Detected (Mean ± SD) (μg/kg) | Recovery (%) | CV (%) | ||
Rana catesbeianus | 0 | ND c | − | − | ND | − | − |
50 | 46.94 ± 1.81 | 93.87 | 3.86 | 42.94 ± 3.01 | 85.88 | 7.01 | |
100 | 90.39 ± 2.08 | 90.39 | 2.30 | 102.70 ± 3.27 | 102.70 | 3.18 | |
200 | 181.78 ± 9.29 | 90.89 | 5.11 | 184.35 ± 2.81 | 92.18 | 1.52 |
Sample | FQs | HPLC | ic-ELISA | |||
---|---|---|---|---|---|---|
Detected (Mean ± SD a) (μg/kg) | CV b (%) | Total (μg/kg) | Detected (Mean ± SD) (μg/kg) | CV (%) | ||
Rana catesbeianus | PEF | 71.36 ± 6.89 | 9.66 | 897.60 | 782.91 ± 66.78 | 8.53 |
DAN | 94.11 ± 2.70 | 2.87 | ||||
MAR | 96.93 ± 1.82 | 1.88 | ||||
FLE | 103.76 ± 0.81 | 0.78 | ||||
OFL | 106.76 ± 1.87 | 1.75 | ||||
NOR | 106.18 ± 0.86 | 0.81 | ||||
CIP | 118.30 ± 2.51 | 2.12 | ||||
LOM | 94.37 ± 9.14 | 9.69 | ||||
ENR | 105.83 ± 8.18 | 7.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Lang, Y.; Guo, B.; Cao, Z.; Cheng, J.; Cai, D.; Shentu, X.; Yu, X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods 2023, 12, 2530. https://doi.org/10.3390/foods12132530
Zhang B, Lang Y, Guo B, Cao Z, Cheng J, Cai D, Shentu X, Yu X. Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods. 2023; 12(13):2530. https://doi.org/10.3390/foods12132530
Chicago/Turabian StyleZhang, Biao, Yihan Lang, Bowen Guo, Zhengyang Cao, Jin Cheng, Danfeng Cai, Xuping Shentu, and Xiaoping Yu. 2023. "Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus" Foods 12, no. 13: 2530. https://doi.org/10.3390/foods12132530
APA StyleZhang, B., Lang, Y., Guo, B., Cao, Z., Cheng, J., Cai, D., Shentu, X., & Yu, X. (2023). Indirect Competitive Enzyme-Linked Immunosorbent Assay Based on Broad-Spectrum Antibody for Simultaneous Determination of Thirteen Fluoroquinolone Antibiotics in Rana catesbeianus. Foods, 12(13), 2530. https://doi.org/10.3390/foods12132530