The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flours
2.2. Flour Characteristics
2.3. SEM Imaging
2.4. Flour Pasting Properties
2.5. Dough Behavior during Uniaxial Deformation
2.6. Bread Preparation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Flour Characteristics
3.2. Flour Pasting Properties
3.3. Behavior of Dough during the Uniaxial Elongation Test
3.4. Bread Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barak, S.; Mudgil, D.; Khatkar, B.S. Effect of flour particle size and damaged starch on the quality of cookies. J. Food Sci. Technol. 2014, 51, 1342–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Wang, C.; Li, L.; Wang, X. Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chem. 2020, 97, 172–182. [Google Scholar] [CrossRef]
- Bourré, L.; Frohlich, P.; Young, G.; Borsuk, Y.; Sopiwnyk, E.; Sarkar, A.; Nickerson, M.T.; Ai, Y.; Dyck, A.; Malcolmson, L. Influence of particle size on flour and baking properties of yellow pea, navy bean, and red lentil flours. Cereal Chem. 2019, 96, 655–667. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Zheng, X. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem. 2020, 315, 126267. [Google Scholar] [CrossRef] [PubMed]
- Belorio, M.; Sahagún, M.; Gómez, M. Influence of flour particle size distribution on the quality of maize gluten-free cookies. Foods 2019, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT 2021, 151, 112236. [Google Scholar] [CrossRef]
- Luo, S.; Yan, X.; Fu, Y.; Pang, M.; Chen, R.; Liu, Y.; Chen, J.; Liu, C. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chem. 2021, 348, 129032. [Google Scholar] [CrossRef]
- de la Hera, E.; Talegón, M.; Caballero, P.; Gómez, M. Influence of maize flour particle size on gluten-free breadmaking. J. Sci. Food Agric. 2013, 93, 924–932. [Google Scholar] [CrossRef]
- Juliano, B.O. Rice in Human Nutrition; FAO: Rome, Italy, 1993; pp. 101–124. [Google Scholar]
- Gujral, H.S.; Rosell, C.M. Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res. Int. 2004, 37, 75–81. [Google Scholar] [CrossRef]
- Burešová, I.; Tokár, M.; Mareček, J.; Hřivna, L.; Faměra, O.; Šottníková, V. The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. J. Cereal Sci. 2017, 75, 158–164. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Krkošková, B.; Mrázová, Z. Prophylactic components of buckwheat. Food Res. Int. 2005, 38, 561–568. [Google Scholar] [CrossRef]
- Zhu, F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci. Techol. 2021, 110, 155–167. [Google Scholar] [CrossRef]
- Heureka. Available online: https://www.heureka.cz/ (accessed on 4 June 2023).
- Berton, B.; Scher, J.; Villieras, F.; Hardy, J. Measurement of hydration capacity of wheat flour: Influence of composition and physical characteristics. Powder Technol. 2002, 128, 326–331. [Google Scholar] [CrossRef]
- ISO 1871; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 11085; Cereals, Cereals-Based Products and Animal Feeding Stuffs—Determination of Crude Fat and Total Fat Content by the Randall Extraction Method. International Organization for Standardization: Geneva, Switzerland, 2015.
- EN ISO 10520; Native Starch—Determination of Starch Content—Ewers Polarimetric Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- AACC International. Approved Methods of Analysis. Methods: 76-31.01 (Determination of Damaged Starch—Spectrophotometric Method), 11th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2010. [Google Scholar]
- Burešová, I.; Vaculová, K.; Zacharová, M.; Jirsa, O.; Sedláčková, I. The comparison of different methods used for measuring rheological characteristics of barley suspension and dough during heating and cooling. In Proceedings of the 12th International Conference on Polycarbohydrates-Glycoscience, Prague, Czechia, 19–21 October 2016; Czech Chemical Society: Prague, Czechia, 2016; pp. 118–121. [Google Scholar]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Burešová, I.; Kubínek, R. The behavior of amaranth, chickpea, millet, corn, quinoa, buckwheat and rice doughs under shear oscillatory and uniaxial elongational tests simulating proving and baking. J. Texture Stud. 2016, 47, 423–431. [Google Scholar] [CrossRef]
- Dunnewind, B.; Sliwinski, E.L.; Grolle, K.; Vliet, T.V. The Kieffer dough and gluten extensibility rig—An experimental evaluation. J. Texture Stud. 2004, 34, 537–560. [Google Scholar] [CrossRef]
- Burešová, I.; Masaříková, L.; Hřivna, L.; Kulhanová, S.; Bureš, D. The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread. LWT 2016, 68, 659–666. [Google Scholar] [CrossRef]
- Trinh, K.T.; Glasgow, S. On the texture profile analysis test. In Proceedings of the Chemeca, Wellington, New Zealand, 23–26 September 2012; Chemeca: Wellington, New Zealand, 2012; Volume 12, pp. 23–26. [Google Scholar]
- ISO 8586-1; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Asses. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 8589; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Callejo, M.J. Present situation on the descriptive sensory analysis of bread. J. Sens. Stud. 2011, 26, 255–268. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. Int. J. Food Prop. 2019, 22, 863–877. [Google Scholar] [CrossRef] [Green Version]
- de la Hera, E.; Gomez, M.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torbica, A.; Hadnađev, M.; Hadnađev, T.D. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012, 48, 277–283. [Google Scholar] [CrossRef]
- Bressiani, J.; Oro, T.; Santetti, G.S.; Almeida, J.L.; Bertolin, T.E.; Gómez, M.; Gutkoski, L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017, 75, 269–277. [Google Scholar] [CrossRef]
- Barrera, G.N.; Bustos, M.C.; Iturriaga, L.; Flores, S.K.; León, A.E.; Ribotta, P.D. Effect of damaged starch on the rheological properties of wheat starch suspensions. J. Food Eng. 2013, 116, 233–239. [Google Scholar] [CrossRef]
- Brandner, S.; Becker, T.; Jekle, M. Gluten–starch interface characteristics and wheat dough rheology—Insights from hybrid artificial systems. J. Food Sci. 2022, 87, 1375–1385. [Google Scholar] [CrossRef]
- Watanabe, A.; Larsson, H.; Eliasson, A.C. Effect of physical state of nonpolar lipids on rheology and microstructure of gluten-starch and wheat flour doughs. Cereal Chem. 2002, 79, 203–209. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Van der Goot, A.J.; Van Vliet, T.; Hamer, R.J.; Boom, R.M. Microstructure formation and rheological behaviour of dough under simple shear flow. J. Cereal Sci. 2006, 43, 183–197. [Google Scholar] [CrossRef]
- de la Hera, E.; Rosell, C.M.; Gómez, M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014, 151, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhu, Y.; Liu, Q.; Bao, J.; Liu, Q. Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. J. Funct. Foods 2017, 38, 363–369. [Google Scholar] [CrossRef]
- Klepacka, J.; Najda, A. Effect of commercial processing on polyphenols and antioxidant activity of buckwheat seeds. Int. J. Food Sci. Technol. 2021, 56, 661–670. [Google Scholar] [CrossRef]
- Baldino, N.; Laitano, F.; Lupi, F.R.; Curcio, S.; Gabriele, D. Effect of HPMC and CMC on rheological behavior at different temperatures of gluten-free bread formulations based on rice and buckwheat flours. Eur. Food Res. Technol. 2018, 244, 1829–1842. [Google Scholar] [CrossRef]
- Coronel, E.B.; Guiotto, E.N.; Aspiroz, M.C.; Tomás, M.C.; Nolasco, S.M.; Capitani, M.I. Development of gluten-free premixes with buckwheat and chia flours: Application in a bread product. LWT 2021, 141, 110916. [Google Scholar] [CrossRef]
Flour | Distribution of Flour Particles | D(0.50) μm | D(0.10) μm | D(0.90) μm | SPAN | 1st Peak μm | Particle Volume % | 2nd Peak μm | Particle Volume % |
---|---|---|---|---|---|---|---|---|---|
R60 | Monomodal | 60.2 | 10.5 | 148.1 | 2.28 | - | - | - | - |
R70 | Monomodal | 70.6 | 8.7 | 208.9 | 2.83 | - | - | - | - |
R100 | Monomodal | 106.8 | 19.7 | 251.1 | 2.17 | - | - | - | - |
R200 | Monomodal | 189.4 | 36.7 | 451.2 | 2.19 | - | - | - | - |
B60 | Bimodal | 56.4 | 9.7 | 141.6 | 2.34 | 11.25 | 28.7 | 79.62 | 71.3 |
B70 | Bimodal | 68.4 | 7.1 | 159.0 | 2.22 | 10.02 | 22.8 | 89.34 | 77.2 |
B100 | Bimodal | 95.8 | 39.9 | 267.0 | 2.37 | 11.25 | 7.2 | 100.24 | 92.8 |
Flour | Protein | Fat | Carbohydrates | Damaged Starch | Water Absorption |
---|---|---|---|---|---|
R60 | 6.0 ± 0.2 cd | 1.2 ± 0.2 c | 92.8 ± 0.6 a | 10.8 | 69.45 ± 0.07 b |
R70 | 6.8 ± 0.9 c | 0.8 ± 0.2 cd | 92.4 ± 0.8 a | 13.3 | 70.05 ± 0.07 a |
R100 | 6.9 ± 0.3 c | 1.0 ± 0.2 cd | 90.1 ± 0.5 b | 5.4 | 68.35 ± 0.08 e |
R200 | 6.1 ± 0.8 cd | 0.7 ± 0.3 d | 93.2 ± 0.3 a | 5.9 | 68.43 ± 0.04 de |
B60 | 5.8 ± 0.2 d | 1.9 ± 0.3 b | 92.3 ± 0.3 a | 3.4 | 68.56 ± 0.04 cd |
B70 | 8.3 ± 0.6 b | 1.7 ± 0.2 b | 90.0 ± 0.4 b | 3.0 | 68.69 ± 0.02 c |
B100 | 12.0 ± 0.8 a | 2.9 ± 0.6 a | 85.1 ± 0.4 c | 1.2 | 68.62 ± 0.02 c |
Flour | η30 (mPa·s) | T0 (°C) | ηPeak (mPa·s) | ηFinal (mPa·s) | Breakdown (mPa·s) | Total Setback (mPa·s) | Setback Region (mPa·s) |
---|---|---|---|---|---|---|---|
R60 | 3.1 ± 0.2 d | 51 ± 7 c | 91 ± 10 d | 163 ± 7 c | 27 ± 4 c | 92 ± 13 b | 79 ± 12 c |
R70 | 3.2 ± 0.3 d | 56 ± 9 bc | 85 ± 10 d | 80 ± 10 d | 78 ± 9 b | 90 ± 10 b | 12 ± 10 e |
R100 | 2.6 ± 0.2 e | 54 ± 9 c | 453 ± 10 a | 510 ± 16 a | 63 ± 9 b | 107 ± 40 b | 44 ± 12 d |
R200 | 2.5 ± 0.2 e | 63 ± 2 b | 472 ± 8 a | 540 ± 30 a | 18 ± 5 cd | 69 ± 33 b | 51 ± 17 d |
B60 | 16.0 ± 0.9 b | 58 ± 6 bc | 112 ± 10 c | 360 ± 10 b | 18 ± 4 d | 262 ± 12 a | 244 ± 15 a |
B70 | 72.9 ± 0.8 a | 50 ± 3 c | 196 ± 30 b | 380 ± 30 b | 24 ± 5 c | 204 ± 32 a | 180 ± 29 b |
B100 | 6.3 ± 0.2 c | 66 ± 3 a | 115 ± 10 c | 390 ± 40 b | 92 ± 1 a | 276 ± 60 a | 184 ± 16 b |
Flour | Peak Stress σM kPa | Hencky Peak Strain εHM - |
---|---|---|
R60 | 4.4 ± 0.5 c | 0.58 ± 0.02 c |
R70 | 3.8 ± 0.3 cd | 0.73 ± 0.02 a |
R100 | 5.9 ± 0.3 b | 0.74 ± 0.02 a |
R200 | 9.7 ± 0.9 a | 0.77 ± 0.03 a |
B60 | 3.7 ± 0.5 d | 0.71 ± 0.02 b |
B70 | 2.1 ± 0.2 e | 0.67 ± 0.05 b |
B100 | 4.4 ± 0.2 c | 0.73 ± 0.02 a |
Flour | Loaf Specific Volume mL/g | Baking Loss % | Hardness N | Springiness % | Cohesiveness % | Resilience % | Chewiness J |
---|---|---|---|---|---|---|---|
R60 | 1.24 ± 0.02 e | 16.6 ± 0.2 a | 28 ± 2 e | 74 ± 8 cd | 74 ± 6 cd | 49 ± 3 abc | 15.3 ± 1.2 d |
R70 | 1.02 ± 0.02 g | 13.2 ± 0.2 cd | 55 ± 2 b | 75 ± 8 cd | 82 ± 4 ab | 51 ± 4 ab | 34.0 ± 1.9 c |
R100 | 1.27 ± 0.02 d | 17.5 ± 0.2 a | 48 ± 3 cd | 85 ± 3 bc | 81 ± 1 b | 49 ± 1 abc | 33.0 ± 1.7 d |
R200 | 1.29 ± 0.04 cd | 15.9 ± 0.2 ab | 70 ± 3 a | 91 ± 3 ab | 77 ± 3 c | 47 ± 3 abc | 49.7 ± 2.8 a |
B60 | 1.38 ± 0.02 b | 15.9 ± 0.6 ab | 51 ± 1 bc | 85 ± 4 bc | 87 ± 8 ab | 46 ± 3 abc | 37.7 ± 2.9 bc |
B70 | 1.31 ± 0.02 c | 13.8 ± 0.6 bcd | 57 ± 2 b | 93 ± 6 ab | 82 ± 9 ab | 48 ± 4 abc | 43.4 ± 4.4 ab |
B100 | 1.43 ± 0.03 a | 14.6 ± 0.9 bc | 46 ± 2 d | 95 ± 2 a | 86 ± 5 a | 53 ± 1 a | 37.4 ± 1.4 b |
Flour | Crust Color | Crust Uniformity | Crumb Color | Size of Pores | Uniformity of Pores | Crumb Hardness | Flavor Intensity | Flavor Aftertaste | Odor Intensity | Overall Acceptability |
---|---|---|---|---|---|---|---|---|---|---|
R60 | 5.3 ± 0.6 c | 1.0 ± 0.7 d | 1.9 ± 0.5 b | 3.6 ± 0.6 d | 5.1 ± 0.2 a | 7.7 ± 0.2 bc | 2.2 ± 0.3 b | 1.1 ± 0.2 a | 4.4 ± 0.6 b | 9.3 ± 0.4 a |
R70 | 3.2 ± 0.3 d | 7.2 ± 0.5 b | 1.8 ± 0.7 b | 5.0 ± 0.7 cd | 5.4 ± 0.3 a | 1.1 ± 0.2 e | 1.8 ± 0.4 b | 1.3 ± 0.4 a | 4.3 ± 0.4 b | 6.2 ± 0.2 b |
R100 | 2.3 ± 0.4 d | 9.3 ± 0.2 a | 2.2 ± 0.6 b | 8.6 ± 0.6 a | 5.4 ± 0.6 a | 6.7 ± 0.5 c | 1.5 ± 0.2 b | 1.2 ± 0.2 a | 4.6 ± 0.2 b | 6.7 ± 0.2 b |
R200 | 3.1 ± 0.2 d | 4.3 ± 0.3 c | 2.4 ± 0.6 b | 5.0 ± 0.7 cd | 5.3 ± 0.2 a | 2.8 ± 0.3 d | 2.1 ± 0.4 b | 1.3 ± 0.4 a | 4.9 ± 0.2 b | 6.3 ± 0.2 b |
B60 | 5.5 ± 0.2 c | 5.4 ± 0.6 bc | 8.3 ± 0.7 a | 6.1 ± 0.2 bc | 3.2 ± 0.7 b | 8.1 ± 0.2 ab | 8.9 ± 0.4 a | 1.0 ± 0.2 a | 8.9 ± 0.4 a | 4.3 ± 0.2 c |
B70 | 7.1 ± 0.7 b | 4.5 ± 0.4 c | 8.5 ± 0.4 a | 6.2 ± 0.2 bc | 3.0 ± 0.2 b | 8.1 ± 0.2 ab | 9.3 ± 0.2 a | 1.4 ± 0.2 a | 9.3 ± 0.2 a | 4.1 ± 0.2 c |
B100 | 8.8 ± 0.4 a | 5.7 ± 0.5 bc | 6.9 ± 0.2 a | 7.1 ± 0.2 ab | 4.1 ± 0.2 ab | 8.9 ± 0.2 a | 9.2 ± 0.4 a | 1.2 ± 0.2 a | 9.2 ± 0.4 a | 4.5 ± 0.2 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burešová, I.; Lullien-Pellerin, V.; Červenka, L.; Mlček, J.; Šebestíková, R.; Masaříková, L. The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics. Foods 2023, 12, 2604. https://doi.org/10.3390/foods12132604
Burešová I, Lullien-Pellerin V, Červenka L, Mlček J, Šebestíková R, Masaříková L. The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics. Foods. 2023; 12(13):2604. https://doi.org/10.3390/foods12132604
Chicago/Turabian StyleBurešová, Iva, Valérie Lullien-Pellerin, Libor Červenka, Jiří Mlček, Romana Šebestíková, and Lucie Masaříková. 2023. "The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics" Foods 12, no. 13: 2604. https://doi.org/10.3390/foods12132604
APA StyleBurešová, I., Lullien-Pellerin, V., Červenka, L., Mlček, J., Šebestíková, R., & Masaříková, L. (2023). The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics. Foods, 12(13), 2604. https://doi.org/10.3390/foods12132604