Comparative Phytochemical Analyses of Flowers from Primula veris subsp. veris Growing Wild and from Ex Situ Cultivation in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of Infusions (Water Extract)
2.4. UHPLC-HRMS Analysis
2.5. Fractionation, and Purification Procedures
2.6. Nuclear Magnetic Resonance (NMR)
2.7. Total Phenolic Content (TPC)
2.8. DPPH (2,2-DiPhenyl-1-PicrylHydrazyl) Assay
3. Results
3.1. Identification of Secondary Metabolites
3.2. Determination of Total Phenolic Content (TPC) and DPPH Free Radical Inhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yasar, B.; Kutlu, G.; Tornuk, F. Edible flowers as sources of bioactive compounds: Determination of phenolic extraction conditions. Int. J. Gastron. Food Sci. 2022, 30, 100618. [Google Scholar] [CrossRef]
- Strid, A.; Bergmeier, E.; Fotiadis, G. Flora and Vegetation of the Prespa National Park, Greece; Society for the Protection of Prespa: Athens, Greece, 2020; ISBN 978-960-302-285-5. [Google Scholar]
- Davidson, A. The Oxford Companion to Food; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Freeman, M.B. Herbs for the Medieval Household; The Metropolitan Museum of Art: New York, NY, USA, 1997. [Google Scholar]
- Grigson, G. The Englishman’s Flora 1955; J. M. Dent & Sons: London, UK, 1987. [Google Scholar]
- Throop, P. Hildegard von Bingen’s Physica: The Complete English Translation of Her Classic Work on Health and Healing; Healing Arts Press: Rochester, VT, USA, 1998. [Google Scholar]
- European Medicines Agency. 2012. Assessment Report on Primula veris L. and/or Primula elatior (L.) Hill, Flos, EMA/HMPC/104095/2012, 19 September EMA/HMPC/136583/2012, London, UK, 2012. Available online: https://www.pharmacompass.com/pAssets/pdf/pubchem/primula-veris-l.pdf (accessed on 10 May 2023).
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Dinulica, F.; Borz, S.A. Ecological variability of L-ascorbic acid in Primula taxa from Postavaru Mountain. Bull. Transilv. Univ. Brasov 2013, 6, 2. [Google Scholar]
- Kalemba-Drożdż, M.; Cierniak, A. Antioxidant and genoprotective properties of extracts from edible flowers. J. Food Nutr. Res. 2019, 58, 42–50. [Google Scholar]
- Tsioutsiou, E.E.; Amountzias, V.; Vontzalidou, A.; Dina, E.; Stevanović, Z.D.; Cheilari, A.; Aligiannis, N. Medicinal Plants Used Traditionally for Skin Related Problems in the South Balkan and East Mediterranean Region—A Review. Front. Pharmacol. 2022, 13, 936047. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Kapusta, I.; Gumienna, A.; Puchalski, C. Assessment of the Bioactive Compounds in White and Red Wines Enriched with a Primula veris L. Molecules 2019, 24, 4074. [Google Scholar] [CrossRef] [Green Version]
- Karl, C.; Müller, G.; Pedersen, P.A. Die Flavonoide in den Blüten von Primula officinalis. Planta Med. 1981, 41, 96–99. [Google Scholar] [CrossRef]
- Huck, C.W.; Huber, C.G.; Ongania, K.-H.; Bonn, G.K. Isolation and characterization of methoxylated flavones in the flowers of Primula veris by liquid chromatography and mass spectrometry. J. Chromatogr. A 2000, 870, 453–462. [Google Scholar] [CrossRef]
- Budzianowski:, J.; Morozowska, M.; Wesołowska, M. Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures. Phytochemistry 2005, 66, 1033–1039. [Google Scholar] [CrossRef]
- Müller, A.; Ganzera, M.; Stuppner, H. Analysis of phenolic glycosides and saponins in Primula elatior and Primula veris (primula root) by liquid chromatography, evaporative light scattering detection and mass spectrometry. J. Chromatogr. A 2006, 1112, 218–223. [Google Scholar] [CrossRef]
- Valant-Vetschera, K.M.; Bhutia, T.D.; Wollenweber, E. Exudate Flavonoids of Primula spp.: Structural and Biogenetic Chemodiversity. Nat. Prod. Commun. 2009, 4, 365–70. [Google Scholar] [CrossRef] [Green Version]
- Harrowven, D.C.; Kostiuk, S.L. Macrocylic bisbibenzyl natural products and their chemical synthesis. Nat. Prod. Rep. 2012, 29, 223–242. [Google Scholar] [CrossRef]
- Apel, L.; Kammerer, D.R.; Stintzing, F.C.; Spring, O. Comparative Metabolite Profiling of Triterpenoid Saponins and Flavonoids in Flower Color Mutations of Primula veris L. Int. J. Mol. Sci. 2017, 18, 153. [Google Scholar] [CrossRef]
- Colombo, P.S.; Flamini, G.; Christodoulou, M.S.; Rodondi, G.; Vitalini, S.; Passarella, D.; Fico, G. Farinose alpine Primula species: Phytochemical and morphological investigations. Phytochemistry 2014, 98, 151–159. [Google Scholar] [CrossRef]
- Chintiroglou, P.-I.; Krigas, N.; Chatzopoulou, P.; Karioti, A. Development and Validation of an HPLC Method for the Analysis of Flowers of Wild-Growing Primula veris from Epirus, Greece. Planta Medica 2021, 87, 1219–1230. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Gumienna, A.; Sowa, P.; Kapusta, I.; Puchalski, C. Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification. Molecules 2021, 26, 997. [Google Scholar] [CrossRef]
- Latypova, G.M.; Bychenkova, M.A.; Katayev, V.A.; Perfilova, V.N.; Tyurenkov, I.N.; Mokrousov, I.S.; Prokofiev, I.I.; Salikhov, S.h.M.; Iksanova, G.R. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. Phytomedicine 2018, 54, 17–26. [Google Scholar] [CrossRef]
- Prokofiev, I.I.; Kustova, M.V.; Nesterova, A.A.; Perfilova, V.N.; Khusainova, G.H.; Borodkina, L.E.; Tivon, Y.V.; Tyurenkov, I.N.; Kataev, V.A.; Latypova, G.M. Solid herbal extract of Primula veris L. improves morphofunctional condition of rats’ myocardium in chronic alcohol intoxication. J. Tradit. Complement. Med. 2023, 13, 306–314. [Google Scholar] [CrossRef]
- Eliopoulos, A.G.; Angelis, A.; Liakakou, A.; Skaltsounis, L.A. In Vitro Anti-Influenza Virus Activity of Non-Polar Primula veris subsp. veris Extract. Pharmaceuticals 2022, 15, 1513. [Google Scholar] [CrossRef]
- Marchyshyn, S.M.; Shostak, L.H.; Dakhym, I.S.; Voloshchyk, N.I. Evaluation of anti-inflammatory action of Primula veris L. J. Pharm. Innov. 2017, 6, 241. [Google Scholar]
- Marchyshyn, S.M.; Slobodianiuk, L.; Budniak, I.L.; Shostak, L.H.; Gerush, O. Investigation on the Expectorant Effect of Extracts from Primula veris L. Open Access Maced. J. Med Sci. 2022, 10, 1368–1372. [Google Scholar] [CrossRef]
- Grigoriadou, K.; Sarropoulou, V.; Krigas, N.; Maloupa, E. In vitro propagation of Primula veris L. subsp. veris (Primulaceae): A valuable medicinal plant with ornamental potential. Int. J. Bot. Stud. 2020, 5, 532–539. [Google Scholar]
- Yankova-Tsvetkova, E.; Petrova, M.; Grigorova, I.; Traykova, B.; Stanilova, M. The Establishment of an Ex Situ Collection of Primula veris in Bulgaria. Plants 2022, 11, 3018. [Google Scholar] [CrossRef] [PubMed]
- Sarropoulou, V.; Sarrou, E.; Angeli, A.; Martens, S.; Maloupa, E.; Grigoriadou, K. Species-Specific Secondary Metabolites from Primula veris subsp. veris Obtained In Vitro Adventitious Root Cultures: An Alternative for Sustainable Production. Sustainability 2023, 15, 2452. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Sarrou, E.; Angeli, A.; Martens, S.; Maloupa, E.; Grigoriadou, K. Developing an in vitro elicitation strategy for specialized secondary metabolites production in adventitious root cultures of Primula veris subsp. veris. Ind. Crop. Prod. 2023, 197, 116618. [Google Scholar] [CrossRef]
- Pyrgioti, E.; Graikou, K.; Aligiannis, N.; Karabournioti, S.; Chinou, I. Qualitative Analysis Related to Palynological Characterization and Biological Evaluation of Propolis from Prespa National Park (Greece). Molecules 2022, 27, 7018. [Google Scholar] [CrossRef]
- Klontza, V.; Graikou, K.; Cheilari, A.; Kasapis, V.; Ganos, C.; Aligiannis, N.; Chinou, I. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. Int. J. Mol. Sci. 2023, 24, 4935. [Google Scholar] [CrossRef]
- Colombo, P.S.; Flamini, G.; Rodondi, G.; Giuliani, C.; Santagostini, L.; Fico, G. Phytochemistry of European Primula species. Phytochemistry 2017, 143, 132–144. [Google Scholar] [CrossRef]
- Colombo, P.S.; Flamini, G.; Fico, G. Primula latifolia Lapeyr. and Primula vulgaris Hudson flavonoids. Nat. Prod. Res. 2014, 28, 1641–1644. [Google Scholar] [CrossRef]
- Vidal-Ollivier, E.; Elias, R.; Faure, F.; Babadjamian, A.; Crespin, F.; Balansard, G.; Boudon, G. Flavonol Glycosides from Calendula officinalis Flowers. Planta Medica 1989, 55, 73–74. [Google Scholar] [CrossRef]
- Fico, G.; Rodondi, G.; Flamini, G.; Passarella, D.; Tomé, F. Comparative phytochemical and morphological analyses of three Italian Primula species. Phytochemistry 2007, 68, 1683–1691. [Google Scholar] [CrossRef]
- Budzianowski, J.; Wollenweber, E. Rare Flavones from the Glandular Leaf Exudate of the Oxlip, Primula elatior L. Nat. Prod. Commun. 2007, 2, 1934578X0700200308. [Google Scholar] [CrossRef]
- Bhutia, T.D.; Vetschera, K. Diversification of Exudate Flavonoid Profiles in Further Primula spp. Nat. Prod. Commun. 2012, 7, 587–589. [Google Scholar] [CrossRef]
- Elser, D.; Gilli, C.; Brecker, L.; Vetschera, K. Striking Diversification of Exudate Profiles in Selected Primula Lineages. Nat. Prod. Commun. 2016, 11, 1934578X1601100506. [Google Scholar] [CrossRef] [Green Version]
- Huck, C.W.; Huber, C.G.; Lagoja, I.M.; Ongania, K.H.; Scherz, H.; Bonn, G.K.; Popp, M. Isolation and structural elucidation of 3′, 4′, 5′-trimethoxyflavone from the flowers of Primula veris. Planta Med. 1999, 65, 491. [Google Scholar] [CrossRef]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental Factors Regulate Plant Secondary Metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef]
- Ziouzios, D.; Karlopoulos, E.; Fragkos, P.; Vrontisi, Z. Challenges and Opportunities of Coal Phase-Out in Western Macedonia. Climate 2021, 9, 115. [Google Scholar] [CrossRef]
RT (Min) | Compounds | m/z [-] | MS/MS Fragment Mass | Determined by | ||
---|---|---|---|---|---|---|
PVPinf | PVDinf | |||||
1. | 2.56 | Quercetin-3-O-β-glucopyranoside | 463.08 | 300.03/271.02 | [13,34], NMR | |
2. | 2.63 | 2.65 | Quercetin-3-O-β-glucopyranosyl- (1-2)-β-glucopyranosyl- (1-6)-β-glucopyranoside | 787.19 | 300.03/271.02/255.03/243.03 | [21], NMR |
3. | 2.63 | 2.63 | Quercetin-3-O-dirhamnosyl-hexoside | 755.20 | 300.03/271.02/255.03/243.03 | [21] |
4. | 2.72 | 2.73 | Quercetin-3-O-β-glucopyranosyl- (1-6)-β-glucopyranoside | 625.14 | 301.03/300.03/271.02/255.03/243.03 | [21] |
5. | 2.74 | 2.76 | Isorhamnetin-3-O-dirhamnosyl-hexoside | 769.29 | 315.05/300.03/271.02/243.03 | [35,36] |
6. | 2.74 | 2.76 | Clitorin | 739.21 | 285.04/255.03/227.03 | [35] |
7. | 2.80 | 2.86 | Kaempferol-3-O-β-glucopyranosyl- (1-2)-β-glucopyranosyl- (1-6)-β-glucopyranoside | 771.20 | 285.04/255.03/227.03 | [21] |
8. | 2.83 | 2.82 | Isorhamnetin-3-O-β-glucopyranosyl- (1-2)-β-glucopyranosyl- (1-6)-β-glucopyranoside | 801.21 | 315.05/300.03/271.02/243.03 | [21], NMR |
9. | 2.90 | 2.93 | Quercetin-neohesperidoside | 609.14 | 300.03/271.02/255.03/243.03 | [37], NMR |
10. | 2.92 | 2.95 | Isorhamnetin-3-O-β-glucopyranosyl- (1-6)-β-glucopyranoside | 639.16 | 315.05/300.03/271.02/255.03/243.03 | [21,37] |
11. | 3.07 | Kaempferol-neohesperidoside | 593.1 | 285.04/255.03/227.03 | [20,37], NMR | |
12. | 3.13 | 3.10 | Isorhamnetin-neohesperidoside or Isorhamnetin-3-rutinoside | 623.16 | 315.05/299.02/271.02/255.03/243.03 | [13,21,37] |
13. | 5.98 | 5.86 | 3′-hydroxy-4′,5′-dimethoxyflavone | 297.15 | 183.01 | [34,38], NMR |
14. | 6.24 | 6.25 | 3′,4′,5′-trimethoxyflavone | 311.17 | 183.01/174.95 | [14], NMR |
Samples | TPC (mg GAE/g) | % Inhibition of DPPH• | ||
---|---|---|---|---|
200 μg/mL | 100 μg/mL | 50 μg/mL | ||
PVP inf | 103.45 ± 0.54 | 70.79 ± 4.11 | 44.00 ± 1.84 | 27.78 ± 1.80 |
PVD inf | 69.66 ± 0.84 | 44.17 ± 1.53 | 24.78 ± 0.55 | 12.77 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graikou, K.; Mpishinioti, A.; Tsafantakis, N.; Maloupa, E.; Grigoriadou, K.; Chinou, I. Comparative Phytochemical Analyses of Flowers from Primula veris subsp. veris Growing Wild and from Ex Situ Cultivation in Greece. Foods 2023, 12, 2623. https://doi.org/10.3390/foods12132623
Graikou K, Mpishinioti A, Tsafantakis N, Maloupa E, Grigoriadou K, Chinou I. Comparative Phytochemical Analyses of Flowers from Primula veris subsp. veris Growing Wild and from Ex Situ Cultivation in Greece. Foods. 2023; 12(13):2623. https://doi.org/10.3390/foods12132623
Chicago/Turabian StyleGraikou, Konstantia, Anna Mpishinioti, Nikolaos Tsafantakis, Eleni Maloupa, Katerina Grigoriadou, and Ioanna Chinou. 2023. "Comparative Phytochemical Analyses of Flowers from Primula veris subsp. veris Growing Wild and from Ex Situ Cultivation in Greece" Foods 12, no. 13: 2623. https://doi.org/10.3390/foods12132623
APA StyleGraikou, K., Mpishinioti, A., Tsafantakis, N., Maloupa, E., Grigoriadou, K., & Chinou, I. (2023). Comparative Phytochemical Analyses of Flowers from Primula veris subsp. veris Growing Wild and from Ex Situ Cultivation in Greece. Foods, 12(13), 2623. https://doi.org/10.3390/foods12132623