Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Distilled Oregano Waste
2.2. Ultrasound Extraction Optimization
2.3. Determination of the Total Polyphenolic Content (TPC)
2.4. Determination of %Antioxidant Capacity
2.5. Determination of the Ferric Reducing Antioxidant Power (FRAP Assay)
2.6. Spray and Freeze Drying
2.7. Moisture Sorption Isotherm
2.8. Scanning Electron Microscopy of the Powder (SEM)
2.9. Determination of the Oxidation Rate in a Ground-Beef Matrix by Thiobarbituric Acid Reactive Substances (TBARSs)
2.10. Statistical Analysis
3. Results
3.1. Ultrasound Extraction Optimization
3.2. Effect of Drying and Encapsulation on the Extract’s Antioxidant Properties and Stability
3.3. Particle Morphology
3.4. Sorption Isotherms
3.5. Food Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
GAB Equation
StdOrder | RunOrder | PtType | Blocks | Τime (min) | Ratio S/S | Ratio E/W |
---|---|---|---|---|---|---|
6 | 1 | 1 | 1 | 70 | 0.025 | 4 |
13 | 2 | −1 | 1 | 40 | 0.0625 | 1 |
14 | 3 | −1 | 1 | 40 | 0.0625 | 4 |
11 | 4 | −1 | 1 | 40 | 0.025 | 2.5 |
15 | 5 | 1 | 1 | 10 | 0.1 | 1 |
9 | 6 | −1 | 1 | 10 | 0.0625 | 2.5 |
5 | 7 | 1 | 1 | 10 | 0.025 | 4 |
20 | 8 | 0 | 1 | 40 | 0.0625 | 2.5 |
17 | 9 | 0 | 1 | 40 | 0.0625 | 2.5 |
7 | 10 | 1 | 1 | 10 | 0.1 | 4 |
4 | 11 | 1 | 1 | 70 | 0.1 | 1 |
8 | 12 | 1 | 1 | 70 | 0.1 | 4 |
10 | 13 | −1 | 1 | 70 | 0.0625 | 2.5 |
18 | 14 | 0 | 1 | 40 | 0.0625 | 2.5 |
2 | 15 | 1 | 1 | 70 | 0.025 | 1 |
16 | 16 | 0 | 1 | 40 | 0.0625 | 2.5 |
12 | 17 | −1 | 1 | 40 | 0.1 | 2.5 |
19 | 18 | 0 | 1 | 40 | 0.0625 | 2.5 |
3 | 19 | 1 | 1 | 10 | 0.1 | 1 |
1 | 20 | 1 | 1 | 10 | 0.025 | 1 |
Run | g GAE/g Waste | % Scavenging Capacity DPPH | μmol TPTZ/L |
---|---|---|---|
1 | 0.051 | 86.73 | 7.69 |
2 | 0.048 | 83.52 | 11.83 |
3 | 0.025 | 83.30 | 6.88 |
4 | 0.018 | 83.98 | 5.67 |
5 | 0.018 | 82.19 | 4.90 |
6 | 0.038 | 87.64 | 6.75 |
7 | 0.016 | 87.41 | 2.52 |
8 | 0.025 | 81.69 | 6.88 |
9 | 0.048 | 81.46 | 9.49 |
10 | 0.025 | 88.56 | 4.68 |
11 | 0.054 | 81.24 | 9.72 |
12 | 0.046 | 82.15 | 6.84 |
13 | 0.050 | 81.69 | 8.50 |
14 | 0.044 | 80.78 | 8.46 |
15 | 0.058 | 80.32 | 11.92 |
16 | 0.039 | 81.46 | 8.23 |
17 | 0.048 | 81.01 | 9.58 |
18 | 0.042 | 81.01 | 8.32 |
19 | 0.040 | 87.19 | 8.91 |
20 | 0.031 | 87.87 | 5.85 |
References
- Trivellini, A.; Lucchesini, M.; Maggini, R.; Mosadegh, H.; Villamarin, T.S.S.; Vernieri, P.; Mensuali-Sodi, A.; Pardossi, A. Lamiaceae Phenols as Multifaceted Compounds: Bioactivity, Industrial Prospects and Role of “Positive-Stress”. Ind. Crops Prod. 2016, 83, 241–254. [Google Scholar] [CrossRef]
- Kohiyama, C.Y.; Yamamoto Ribeiro, M.M.; Mossini, S.A.G.; Bando, E.; Bomfim, N.D.S.; Nerilo, S.B.; Rocha, G.H.O.; Grespan, R.; Mikcha, J.M.G.; Machinski, M. Antifungal Properties and Inhibitory Effects upon Aflatoxin Production of Thymus Vulgaris L. by Aspergillus Flavus Link. Food Chem. 2015, 173, 1006–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thring, T.S.A.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.J.; Chen, L.G.; Chang, T.L.; Ke, W.M.; Lo, Y.F.; Wang, C.C. The Correlation between Skin-Care Effects and Phytochemical Contents in Lamiaceae Plants. Food Chem. 2011, 124, 833–841. [Google Scholar] [CrossRef]
- De Mastro, G.; Tarraf, W.; Verdini, L.; Brunetti, G.; Ruta, C. Essential Oil Diversity of Origanum vulgare L. Populations from Southern Italy. Food Chem. 2017, 235, 1–6. [Google Scholar] [CrossRef]
- Bozin, B.; Lakic, N.; Misan, A.; Mozina, S.S. Phenolic Profile, Antioxidant and Antimi- Crobial Activity of Oregano (Origanum vulgare L., Lamiaceae) Postdistillation Waste Extracts. In 6th Central European Congress on Food; University of Novi Sad: Novi Sad, Serbia, 2012. [Google Scholar]
- Park, S.; Lee, J.Y.; Lim, W.; You, S.; Song, G. Butylated Hydroxyanisole Exerts Neurotoxic Effects by Promoting Cytosolic Calcium Accumulation and Endoplasmic Reticulum Stress in Astrocytes. J. Agric. Food Chem. 2019, 67, 9618–9629. [Google Scholar] [CrossRef]
- Ham, J.; Lim, W.; Park, S.; Bae, H.; You, S.; Song, G. Synthetic Phenolic Antioxidant Propyl Gallate Induces Male Infertility through Disruption of Calcium Homeostasis and Mitochondrial Function. Environ. Pollut. 2019, 248, 845–856. [Google Scholar] [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.A. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chem. 2021, 353, 129488. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and Herbs: Natural Sources of Antioxidants—A Mini Review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Łysakowska, M.; Kowalczyk, E.; Szymańska, G.; Kochan, E.; Krukowska, J.; Olszewski, J.; Zielińska-Bliźniewska, H. The Ability of Selected Plant Essential Oils to Enhance the Action of Recommended Antibiotics against Pathogenic Wound Bacteria. Burns 2017, 43, 310–317. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid Waste Issue: Sources, Composition, Disposal, Recycling, and Valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H.; et al. Current and Future Trends in Food Waste Valorization for the Production of Chemicals, Materials and Fuels: A Global Perspective. Biofuels Bioprod. Biorefining 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Petrović, M.; Jovanović, M.; Lević, S.; Nedović, V.; Mitić-Ćulafić, D.; Semren, T.Ž.; Veljović, S. Valorization Potential of Plantago Major L. Solid Waste Remaining after Industrial Tincture Production: Insight into the Chemical Composition and Bioactive Properties. Waste Biomass Valorization 2022, 13, 1639–1651. [Google Scholar] [CrossRef]
- Moisa, C.; Copolovici, L.; Bungau, S.; Pop, G.; Imbrea, I.; Lupitu, A.; Nemeth, S.; Copolovici, D. Wastes Resulting from Aromatic Plants Distillation—Bio-Sources of Antioxidants and Phenolic Compounds with Biological Active Principles. Farmacia 2018, 66, 289–295. [Google Scholar]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Liao, M. Optimization of Ultrasonic Extraction of Phenolic Compounds from Euryale Ferox Seed Shells Using Response Surface Methodology. Ind. Crops Prod. 2013, 49, 837–843. [Google Scholar] [CrossRef]
- Kaderides, K.; Mourtzinos, I.; Goula, A.M. Stability of Pomegranate Peel Polyphenols Encapsulated in Orange Juice Industry By-Product and Their Incorporation in Cookies. Food Chem. 2020, 310, 125849. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; A Review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.P.; Kha, T.C.; Parks, S.; Stathopoulos, C.; Roach, P.D. Optimising the Encapsulation of an Aqueous Bitter Melon Extract by Spray-Drying. Foods 2015, 4, 400–419. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaijan, M. Review: Lipid and Myoglobin Oxidations in Muscle Foods. Songklanakarin J. Sci. Technol. 2008, 30, 47–53. [Google Scholar]
- Vareltzis, P.; Adamopoulos, K.G.; Hultin, H.O. Interactions between Hemoglobin and Cod Muscle Constituents Following Treatment at Extreme PH Values. J. Food Sci. 2011, 76, C1003–C1009. [Google Scholar] [CrossRef] [PubMed]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. In Food Chemistry Advances; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Jeliazkova, E.A.; Schlegel, V. Distillation Time Alters Essential Oil Yield, Composition, and Antioxidant Activity of Male Juniperus Scopulorum Trees. J. Oleo. Sci. 2012, 61, 537–546. [Google Scholar] [CrossRef]
- Şahin, S.; Şamli, R. Optimization of Olive Leaf Extract Obtained by Ultrasound-Assisted Extraction with Response Surface Methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bhattacharya, S. Central composite design for response surface methodology and its application in pharmacy. In Response Surface Methodology in Engineering Science; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Filippou, P.; Mitrouli, S.T.; Vareltzis, P. Sequential Membrane Filtration to Recover Polyphenols and Organic Acids from Red Wine Lees: The Antioxidant Properties of the Spray-Dried Concentrate. Membranes 2022, 12, 353. [Google Scholar] [CrossRef]
- Hayes, W.A.; Mills, D.S.; Neville, R.F.; Kiddie, J.; Collins, L.M. Determination of the Molar Extinction Coefficient for the Ferric Reducing/Antioxidant Power Assay. Anal. Biochem. 2011, 416, 202–205. [Google Scholar] [CrossRef]
- Fernandes, R.V.B.; Botrel, D.A.; Monteiro, P.S.; Borges, S.V.; Souza, A.U.; Mendes, L.E.S. Microencapsulated Oregano Essential Oil in Grated Parmesan Cheese Conservation. Int. Food Res. J. 2018, 25, 661–669. [Google Scholar]
- Youssef, M.K.E.; Mostafa, B.M.D.; Seliem, M.A.A.; Hashem, A.M.A. Total Lipid Fractions and Fatty Acids Composition of Low-Fat Beef Burger. Food Public Health 2012, 2, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Goula, A.M.; Karapantsios, T.D.; Achilias, D.S.; Adamopoulos, K.G. Water Sorption Isotherms and Glass Transition Temperature of Spray Dried Tomato Pulp. J. Food Eng. 2008, 85, 73–83. [Google Scholar] [CrossRef]
- Kulisic-Bilusic, T.; Schmöller, I.; Schnäbele, K.; Siracusa, L.; Ruberto, G. The Anticarcinogenic Potential of Essential Oil and Aqueous Infusion from Caper (Capparis spinosa L.). Food Chem. 2012, 132, 261–267. [Google Scholar] [CrossRef]
- Nabet, N.; Gilbert-López, B.; Madani, K.; Herrero, M.; Ibáñez, E.; Mendiola, J.A. Optimization of Microwave-Assisted Extraction Recovery of Bioactive Compounds from Origanum Glandulosum and Thymus Fontanesii. Ind. Crops Prod. 2019, 129, 395–404. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Fernández-López, J.; Angel Pérez-Álvarez, J.; Viuda-Martos, M.; Ruíz-Navajas, Y.; Angel Pérez-Álvarez, J. Chemical Composition of the Essential Oils Obtained from Some Spices Widely Used in Mediterranean Region. Acta Chim. Slov. 2007, 54, 921. Available online: https://www.researchgate.net/publication/237066907 (accessed on 18 June 2023).
- Mediouni, S.; Jablonski, J.A.; Tsuda, S.; Barsamian, A.; Kessing, C.; Richard, A.; Biswas, A.; Toledo, F.; Andrade, V.M.; Even, Y.; et al. Oregano Oil and Its Principal Component, Carvacrol, Inhibit HIV-1 Fusion into Target Cells. J. Virol. 2020, 94, e00147-20. [Google Scholar] [CrossRef]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and Antimicrobial Activity of Mexican Oregano (Poliomintha longiflora) Essential Oil, Hydrosol and Extracts from Waste Solid Residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Galasso, S.; Pacifico, S.; Kretschmer, N.; Pan, S.-P.; Marciano, S.; Piccolella, S.; Monaco, P.; Bauer, R. Influence of Seasonal Variation on Thymus longicaulis C. Presl Chemical Composition and Its Antioxidant and Anti-Inflammatory Properties. Phytochemistry 2014, 107, 80–90. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Goussias, G.; Tsimogiannis, D.; Oreopoulou, V. Hydro-Alcoholic Extraction Kinetics of Phenolics from Oregano: Optimization of the Extraction Parameters. Food Bioprod. Process. 2020, 123, 378–389. [Google Scholar] [CrossRef]
- Chen, X.X.; Wu, X.B.; Chai, W.M.; Feng, H.L.; Shi, Y.; Zhou, H.T.; Chen, Q.X. Optimization of Extraction of Phenolics from Leaves of Ficus Virens. J. Zhejiang Univ. Sci. B 2013, 14, 903–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, P.M.; Sousa, F.; Magalhães, R.; Ruiz-Henestrosa, V.M.P.; Pilosof, A.M.R.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Incorporation of Beads into Oral Films for Buccal and Oral Delivery of Bioactive Molecules. Carbohydr. Polym. 2018, 194, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry—A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of Maltodextrin Concentration and Inlet Temperature during Spray Drying on Physicochemical and Antioxidant Properties of Amla (Emblica officinalis) Juice Powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of Spray Drying Conditions on the Physicochemical and Antioxidant Properties of the Gac (Momordica cochinchinensis) Fruit Aril Powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Nithyanandam, R.; Sarbatly, R. A Critical Review on the Spray Drying of Fruit Extract: Effect of Additives on Physicochemical Properties. Crit. Rev. Food Sci. Nutr. 2014, 54, 449–473. [Google Scholar] [CrossRef]
- Shuen, G.W.; Yi, L.Y.; Ying, T.S.; Von, G.C.Y.; Yusof, Y.A.B.; Phing, P.L. Effects of Drying Methods on the Physicochemical Properties and Antioxidant Capacity of Kuini Powder. Braz. J. Food Technol. 2021, 24, e2020086. [Google Scholar] [CrossRef]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green Ultrasound-Assisted Extraction of Carotenoids from Pomegranate Wastes Using Vegetable Oils. Ultrason. Sonochem. 2017, 34, 821–830. [Google Scholar] [CrossRef]
- Marques, G.R.; Borges, S.V.; de Mendonça, K.S.; de Barros Fernandes, R.V.; Menezes, E.G.T. Application of maltodextrin in green corn extract powder production. In Powder Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 89–95. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Emmambux, M.N. Encapsulation of Bioactive Compounds by “Extrusion” Technologies: A Review. Food Chem. 2020, 61, 3100–3118. [Google Scholar] [CrossRef]
- Avila, E.L.; Cortes Rodríguez, M.; Ciro Velásquez, H.J. Influence of Maltodextrin and Spray Drying Process Conditions on Sugarcane Juice Powder Quality. Rev. Fac. Nal. Agr. Medellín 2015, 68, 7509–7520. [Google Scholar] [CrossRef]
- Yao, J.; Kuang Lim, L.; Xie, J.; Hua, J.; Wang, C.H. Characterization of Electrospraying Process for Polymeric Particle Fabrication. J. Aerosol. Sci. 2008, 39, 987–1002. [Google Scholar] [CrossRef]
- Gamble, J.F.; Tobyn, M.; Zhang, S.; Zhu, A.; Šalplachta, J.; Matula, J.; Zikmund, T.; Kaiser, J.; Oberta, P. Characterization of the Morphological Nature of Hollow Spray Dried Dispersion Particles Using X-Ray Submicron-Computed Tomography. AAPS PharmSciTech 2022, 23, 40. [Google Scholar] [CrossRef]
- Tsali, A.; Goula, A.M. Valorization of Grape Pomace: Encapsulation and Storage Stability of Its Phenolic Extract. Powder Technol. 2018, 340, 194–207. [Google Scholar] [CrossRef]
- Sarabandi, K.; Mahoonak, A.S.; Akbari, M. Physicochemical Properties and Antioxidant Stability of Microencapsulated Marjoram Extract Prepared by Co-Crystallization Method. J. Food Process. Eng. 2019, 42, 12949. [Google Scholar] [CrossRef] [Green Version]
- Chu, K.K.W.; Chow, A.H.L. Impact of Carbohydrate Constituents on Moisture Sorption of Herbal Extracts. Pharm. Res. 2000, 17, 1133–1137. [Google Scholar] [CrossRef]
- Al-muhtaseb, A.H.; Magee, T. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010–2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef]
- Myhara, R.M.; Sablani, S. Unification of Fruit Water Sorption Isotherms Using Artificial Neural Networks. Dry. Technol. 2001, 19, 1543–1554. [Google Scholar] [CrossRef]
- Sardarodiyan, M.; Mohamadi Sani, A. Natural Antioxidants: Sources, Extraction and Application in Food Systems. Nutr. Food Sci. 2016, 46, 363–373. [Google Scholar] [CrossRef]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant Extracts as Natural Antioxidants in Meat and Meat Products. Meat. Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Polysaccharides as Carriers of Polyphenols: Comparison of Freeze-Drying and Spray-Drying as Encapsulation Techniques. Molecules 2022, 27, 5069. [Google Scholar] [CrossRef]
- Sidlagatta, V.; Chilukuri, S.V.V.; Devana, B.R.; Dasi, S.D.; Rangaswamy, L. Effect of Maltodextrin Concentration and Inlet Air Temperature on Properties of Spray Dried Powder from Reverse Osmosis Concentrated Sweet Orange Juice. Braz. Arch. Biol. Technol. 2020, 63, 190538. [Google Scholar] [CrossRef]
- Maroulis, Z.B.; Tsami, E.; Marinos-Kouris, D.; Saravacos, G.D. Application of the GAB Model to the Moisture Sorption Isotherms for Dried Fruits. J. Food Eng. 1988, 7, 63–78. [Google Scholar] [CrossRef]
Model | Mathematical Expression | Constants |
---|---|---|
BET | X = | Xm, C |
GAB | X = | Xm, C, K |
Smith | X = A + Blog (1 − αw)1/B | A, B |
Oswin | X = A [aw/(1 − αw)] B | A, B |
Peleg | X = K1awn1 + K2awn2 | n1, n2, K1, K2 |
Antioxidant Sample | Total Phenolic Content (GAE mg/g Dry Base) | Free Radical Absorption (EC50) μg/mL | FRAP (AAE mg/g Dry Base) | |||
---|---|---|---|---|---|---|
Initial Values | 6-Month Interval | Initial Values | 6-Month Interval | Initial Values | 6-Month Interval | |
Extract | 367.3 ± 11.5 a | 287 ± 1.2 a | 691.5 ± 9.2 a | |||
Non encapsulated powder | 341.4 ± 11.2 ab | 201 ± 15.2 a | 292 ± 0.1 a | 247.3 ± 9.1 a | 625.4 ± 12.3 ab | 244.5 ± 6.1 a |
Encapsulated powder | 312.7 ± 18.2 bc | 256.6 ± 12.2 b | 228 ± 1.2 ab | 231.2 ± 6.0 a | 581.1 ± 18.2 b | 382.6 ± 12.6 b |
Freeze-dried powder | 368.2 ± 19.0 a | 268.5 ± 19.1 b | 296 ± 1.5 a | 241.4 ± 3.3 a | 675.0 ± 19.0 a | 322.6 ± 11.0 c |
Model | Constant | Temperature (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-Encapsulated Powder | Encapsulated Powder | Freeze-Dried Powder | ||||||||
20 | 30 | 40 | 20 | 30 | 40 | 20 | 30 | 40 | ||
GAB | Xm (dry mass) | 8.56 | 7.11 | 5.70 | 6.27 | 5.55 | 4.88 | 5.04 | 4.14 | 3.83 |
C | 36.7 | 27.98 | 21.67 | 39.10 | 28.44 | 21.11 | 22.58 | 16.57 | 12.40 | |
K | 1.04 | 1.039 | 1.039 | 1.112 | 1.108 | 1.105 | 1.155 | 1.150 | 1.144 | |
Mc (%) | 4.59 | 6.89 | 6.08 | 9.80 | 5.38 | 8.56 | 4.71 | 12.97 | 10.36 | |
AverageMc (%) | 5.86 | 7.92 | 9.35 | |||||||
BET | Xm (dry mass) | 9.30 | 7.89 | 6.37 | 7.78 | 6.72 | 5.80 | 4.97 | 6.65 | 3.86 |
C | 32.7 | 24.10 | 18.09 | 27.30 | 20.11 | 15.11 | 34.90 | 25.44 | 18.92 | |
Mc (%) | 5.21 | 10.21 | 4.00 | 12.88 | 5.04 | 8.16 | 7.39 | 2.92 | 2.91 | |
AverageMc (%) | 6.48 | 8.69 | 4.41 | |||||||
Smith | A | −0.14 | −0.164 | −0.194 | −0.120 | −0.139 | −0.163 | −0.185 | −0.173 | −0.153 |
B | −0.97 | −0.954 | −0.997 | −0.998 | −0.714 | −0.999 | −0.999 | −0.854 | −0.734 | |
Mc (%) | 17.5 | 23.21 | 26.66 | 24.46 | 26.81 | 26.12 | 23.11 | 20.50 | 18.59 | |
AverageMc (%) | 22.46 | 25.80 | 20.73 | |||||||
Oswin | A | 0.16 | 0.142 | 0.116 | 0.137 | 0.119 | 0.102 | 0.107 | 0.083 | 0.071 |
B | 0.33 | 0.421 | 0.406 | 0.427 | 0.414 | 0.394 | 0.458 | 0.375 | 0.410 | |
Mc (%) | 2.86 | 7.06 | 2.13 | 4.98 | 3.70 | 3.27 | 7.86 | 1.70 | 0.18 | |
AverageMc (%) | 4.02 | 3.98 | 3.24 | |||||||
Peleg | K1 | 0.20 | 0.198 | 0.148 | 0.193 | 0.164 | 0.133 | 0.149 | 0.106 | 0.091 |
K2 | 1.44 | 1.354 | 1.038 | 2.383 | 2.456 | 2.841 | 3.979 | 3.996 | 4.117 | |
n1 | 0.43 | 0.555 | 0.468 | 0.572 | 0.540 | 0.468 | 0.588 | 0.462 | 0.475 | |
n2 | 6.816 | 7.485 | 6.768 | 8.413 | 8.68 | 8.876 | 9.074 | 8.945 | 9.514 | |
Mc (%) | 1.37 | 2.7 | 0.25 | 1.68 | 0.71 | 0.48 | 5.58 | 1.53 | 1.01 | |
AverageMc (%) | 1.44 | 0.96 | 2.71 |
Sample | Temperature | ||
---|---|---|---|
20 °C | 30 °C | 40 °C | |
Non encapsulated | 0.134 | 0.153 | 0.175 |
Encapsulated | 0.126 | 0.147 | 0.169 |
Freeze-dried | 0.148 | 0.171 | 0.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vareltzis, P.; Stergiou, A.; Kalinderi, K.; Chamilaki, M. Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods 2023, 12, 2628. https://doi.org/10.3390/foods12132628
Vareltzis P, Stergiou A, Kalinderi K, Chamilaki M. Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods. 2023; 12(13):2628. https://doi.org/10.3390/foods12132628
Chicago/Turabian StyleVareltzis, Patroklos, Aggelos Stergiou, Kallirhoe Kalinderi, and Maria Chamilaki. 2023. "Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method" Foods 12, no. 13: 2628. https://doi.org/10.3390/foods12132628
APA StyleVareltzis, P., Stergiou, A., Kalinderi, K., & Chamilaki, M. (2023). Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods, 12(13), 2628. https://doi.org/10.3390/foods12132628