Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preliminary Recipe Development
- Snack-bar 1: rice and Coprinus comatus powder protein plant-based snack-bar;
- Snack-bar 2: pea and Coprinus comatus powder protein plant-based snack-bar;
- Snack-bar 3: commercial diabetic snack bar;
- Snack-bar 4: commercial snack-bar with reduced sugar and high fiber content, as well as cranberries (Control sample/Euphoria meals);
- Snack-bar 5: commercial snack-bar with reduced sugar and high fiber content, as well as coconut chocolate (Euphoria meals);
- Snack-bar 6: commercial snack bar with reduced sugar and high fiber content, as well as peanut butter (Euphoria meals).
- Growing consumer awareness;
- Rise in preventive measures taken by consumers;
- Increasing use of artificial sweeteners.
2.3. Identification of Attributes Important for Snack Bar Acceptability
2.3.1. Texture Profile Analysis
2.3.2. Sensory Analysis
2.4. Static In Vitro Simulation of Gastrointestinal (GI) Digestion
2.4.1. Enzyme Activity Assays
2.4.2. Stock Solution Preparation
2.4.3. Oral Digestion Phase
2.4.4. Gastric Digestion Phase
2.4.5. Intestinal Digestion Phase
2.5. Determination of Lipid Oxidation
2.5.1. Peroxide Value (PV)
2.5.2. Thiobarbituric Acid (TBARS) Method
2.6. Statistical Analysis
3. Results
3.1. Selection and Quality of Six Bar Samples
Nutritional Value
3.2. Acceptability, Purchase Intent and ‘Just Right’ Responses by Consumer Panel
3.3. Sensory Attribute Intensities via Texture Profile Analysis
3.4. Comparative Evaluation Regarding Bioavailability (In Vitro Digestion) and Nutritional Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramao, I.; Jiang, J.; Wagner, A.; Johansson, M. Neural pattern classification reveals the temporal dynamics of competitive memory retrieval. In Proceedings of the Cognitive Neuroscience Society Annual Meeting, San Francisco, 25–28 March 2019. [Google Scholar]
- Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes 2014, 5, 267. [Google Scholar] [CrossRef] [PubMed]
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockefeller, J. Diabetes: Symptoms, Causes, Treatment and Prevention; JD Rockefeller: New York, NY, USA, 2015. [Google Scholar]
- Alkhatib, A.; Tsang, C.; Tuomilehto, J. Olive oil nutraceuticals in the prevention and management of diabetes: From molecules to lifestyle. Int. J. Mol. Sci. 2018, 19, 2024. [Google Scholar] [CrossRef] [Green Version]
- Iacobini, C.; Vitale, M.; Pesce, C.; Pugliese, G.; Menini, S. Diabetic complications and oxidative stress: A 20-year voyage back in time and back to the future. Antioxidants 2021, 10, 727. [Google Scholar] [CrossRef]
- Pickering, R.J.; Rosado, C.J.; Sharma, A.; Buksh, S.; Tate, M.; de Haan, J.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunol. 2018, 7, e1016. [Google Scholar] [CrossRef]
- Grundy, S.; Cleeman, J.; Daniels, S.; Donato, K.; Eckel, R.; Franklin, B.; Gordon, D.; Krauss, R.; Savage, P.; Smith, S., Jr.; et al. American Heart Association, National Heart, Lung, and Blood Institute: Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.R.; Arigela, C.S.; Gan, S.H.; Salam, S.K.N.; Krishnan, K.T.; Rahman, N.A.; Jeffree, M.S. A Review on Oxidative Stress, Diabetic Complications, and the Roles of Honey Polyphenols. Oxidative Med. Cell. Longev. 2020, 2020, 8878172. [Google Scholar] [CrossRef]
- Balducci, S.; D’Errico, V.; Haxhi, J.; Sacchetti, M.; Orlando, G.; Cardelli, P.; Vitale, M.; Bollanti, L.; Conti, F.; Zanuso, S. Effect of a behavioral intervention strategy on sustained change in physical activity and sedentary behavior in patients with type 2 diabetes: The IDES_2 randomized clinical trial. JAMA 2019, 321, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Carbone, S.; Del Buono, M.G.; Ozemek, C.; Lavie, C.J. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2019, 62, 327–333. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Feng, C.; Zheng, Y.; Dhana, K.; Zhu, S.; Shang, C.; Yuan, C.; Zong, G. Association of a Healthy Lifestyle With All-Cause and Cause-Specific Mortality Among Individuals With Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care 2022, 45, 319–329. [Google Scholar] [CrossRef]
- Reynolds, A. Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar]
- Malik, V.S. Non-sugar sweeteners and health. BMJ 2019, 364, k5005. [Google Scholar] [CrossRef]
- Rios-Leyvraz, M.; Montez, J.; World Health Organization. Health Effects of the Use of Non-Sugar Sweeteners: A Systematic Review and Meta-Analysis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Stilinović, N.; Čapo, I.; Vukmirović, S.; Rašković, A.; Tomas, A.; Popović, M.; Sabo, A. Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. R. Soc. Open Sci. 2020, 7, 200900. [Google Scholar] [CrossRef]
- Bae, J.H.; Kim, L.K.; Min, S.H.; Ahn, C.H.; Cho, Y.M. Postprandial glucose-lowering effect of premeal consumption of protein-enriched, dietary fiber-fortified bar in individuals with type 2 diabetes mellitus or normal glucose tolerance. J. Diabetes Investig. 2018, 9, 1110–1118. [Google Scholar] [CrossRef]
- de Carvalho, C.M.; de Paula, T.P.; Viana, L.V.; Machado, V.M.; de Almeida, J.C.; Azevedo, M.J. Plasma glucose and insulin responses after consumption of breakfasts with different sources of soluble fiber in type 2 diabetes patients: A randomized crossover clinical trial. Am. J. Clin. Nutr. 2017, 106, 1238–1245. [Google Scholar] [CrossRef] [Green Version]
- Roach, L.A.; Woolfe, W.; Bastian, B.; Neale, E.P.; Francois, M.E. Systematic literature review: Should a bedtime snack be used to treat hyperglycemia in type 2 diabetes? Am. J. Clin. Nutr. 2022, 116, 1251–1264. [Google Scholar] [CrossRef]
- Rafkin-Mervis, L.E.; Marks, J.B. The science of diabetic snack bars: A review. Clin. Diabetes 2001, 19, 4. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.R. Nothing Else: A Healthier Snack Bar; Auckland University of Technology: Auckland, New Zealand, 2016. [Google Scholar]
- Yan, M.; Rush, E.; Jackson, R.; Shaikh, S. Snack (re)formulation in the improvement of health effects on glycaemia and satiety responses: Preliminary results. Food Nutr. Sci. 2020, 11, 649–658. [Google Scholar] [CrossRef]
- Constantin, O.E.; Istrati, D.I. Functional properties of snack bars. In Functional Foods; IntechOpen: Rijeka, Croatia, 2018; pp. 1–14. [Google Scholar]
- Pereira, C.; Lourenço, V.M.; Menezes, R.; Brites, C. Rice compounds with impact on diabetes control. Foods 2021, 10, 1992. [Google Scholar] [CrossRef]
- Ozuna, C.; Franco-Robles, E. Agave syrup: An alternative to conventional sweeteners? A review of its current technological applications and health effects. LWT 2022, 162, 113434. [Google Scholar] [CrossRef]
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A sustainable opportunity for metabolic health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef] [PubMed]
- Wehrli, F.; Taneri, P.E.; Bano, A.; Bally, L.; Blekkenhorst, L.C.; Bussler, W.; Metzger, B.; Minder, B.; Glisic, M.; Muka, T. Oat intake and risk of type 2 diabetes, cardiovascular disease and all-cause mortality: A systematic review and meta-analysis. Nutrients 2021, 13, 2560. [Google Scholar] [CrossRef] [PubMed]
- Santosh, H.; David, C.M. Role of ascorbic acid in diabetes mellitus: A comprehensive review. J. Med. Radiol. Pathol. Surg. 2017, 4, 1–3. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, H.; Qi, J.; Hu, A.; Jiang, Q.; Hou, Y.; Feng, Q.; Ojo, O.; Wang, X. An almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: A randomized controlled trial. Nutrients 2020, 12, 3036. [Google Scholar] [CrossRef]
- Suter, D. Health and nutrition: Opportunities for linseed in Australian food products. Food Aust. 2022, 74, 20–23. [Google Scholar]
- Franco, R.; Iseppi, L.; Taverna, M. Sunflower oil functional properties for specialty food. Nutr. Food Sci. Int. J. 2018, 5, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Rocha, D.M.U.P.; Caldas, A.P.S.; da Silva, B.P.; Hermsdorff, H.H.M.; Alfenas, R.d.C.G. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1816–1828. [Google Scholar] [CrossRef]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyons, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef]
- Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017, 69, 243–256. [Google Scholar] [CrossRef]
- Derks, A.; Turner, S.; Hạnh, N.T.; Rousseau, J.F. The Taste of Cinnamon: Making a Specialty Product in Northern Vietnam; NIAS Press: Copenhagen, Denmark, 2022; pp. 94–121. [Google Scholar]
- Mellor, D.D.; Georgousopoulou, E.N.; Naumovski, N. Cocoa and chocolate, their clinical benefits: Insights in study design. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2017, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, S.J.; Ranjbar, S.; Keshavarz, V. The effectiveness of stevia in diabetes mellitus: A review. Int. J. Nutr. Sci. 2020, 5, 45–49. [Google Scholar]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.; Freitas, A.C.; Barros, L.; Ferreira, I.C.; Pintado, M. Impact of postharvest preservation methods on nutritional value and bioactive properties of mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Slowly digestible starch—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1642–1657. [Google Scholar] [CrossRef]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Nurdin, N.M.; Navratilova, H.F.; Rahmadia, K.; Kurniawan, M.Y. Soy flour snack bars lower glycaemic response in type 2 diabetes mellitus subjects: A randomised cross-over design. Malays. J. Nutr. 2022, 28, 163–175. [Google Scholar] [CrossRef]
- Rush, E.C.; Yan, M.R. Evolution not revolution: Nutrition and obesity. Nutrients 2017, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-Q.; Zhang, Y.-F.; Zhou, D.-J.; Liu, Z.-M.; Hong, X.; Qiu, M.-C.; Shi, Y.-Q.; Xia, P.-J.; Lu, J.; Xu, M.-J. Open-label, randomized, multiple-center, parallel study comparing glycemic responses and safety profiles of Glucerna versus Fresubin in subjects of type 2 diabetes mellitus. Endocrine 2008, 33, 45–52. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.; Glasgow, S. On the texture profile analysis test. In Proceedings of the Chemeca, Wellington, New Zealand, 2012; pp. 23–26. Available online: https://ibf.iuh.edu.vn/wp-content/uploads/2019/09/tpatest.pdf (accessed on 16 April 2023).
- Nishinari, K.; Kohyama, K.; Kumagai, H.; Funami, T.; Bourne, M.C. Parameters of texture profile analysis. Food Sci. Technol. Res. 2013, 19, 519–521. [Google Scholar] [CrossRef] [Green Version]
- Singh-Ackbarali, D.; Maharaj, R. Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the University of Trinidad and Tobago. J. Curric. Teach. 2014, 3, 10–27. [Google Scholar] [CrossRef]
- Richards, M.P.; Hultin, H.O. Effect of pH on lipid oxidation using trout hemolysate as a catalyst: A possible role for deoxyhemoglobin. J. Agric. Food Chem. 2000, 48, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W.; Han, X. Chapter 1—Lipids: Their structures and occurrence. In Lipid Analysis; Elsevier: Amsterdam, The Netherlands, 2012; pp. 3–19. [Google Scholar] [CrossRef]
- Lemon, D. An Improved TBA Test for Rancidity New Series Circular No: 51 Halifax-Laboratory; Fisheries and Marine Service: Halifax, NS, Canada, 1975. [Google Scholar]
- Govers, E. Low Carb High Protein Diets as Management Tool o f Insulin Resistance in Patients with Obesity and/or Type 2 Diabete s Mellitus. Obes Open Access 2017, 3, 3–7. [Google Scholar]
- Bhakha, T.; Ramasawmy, B.; Toorabally, Z.; Neetoo, H. Development, characterization and shelf-life testing of a novel pulse-based snack bar. AIMS Agric. Food 2019, 4, 756–777. [Google Scholar] [CrossRef]
- Murdiani, M.; Kalsum, N.; Sarono, S. Formulation of Onggok Composite Flour Snack Bar (Manihot Esculenta) as Emergency Food Source of Protein. J. Community Dev. Asia JCDA 2022, 5, 90–101. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Belwal, T.; Kaul, T. Sustaining Protein Nutrition Through Plant-Based Foods: A Paradigm Shift. Front. Sustain. Food Syst. 2022, 6, 1037086. [Google Scholar] [CrossRef]
- Association, A.D. Standards of Care in Diabetes—2023 Abridged for Primary Care Providers. Clin. Diabetes 2023, 41, 4–31. [Google Scholar] [CrossRef]
- Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 2014, 3, 1. [Google Scholar] [CrossRef]
- Lew, L.C.; Mat Ludin, A.F.; Shahar, S.; Abdul Manaf, Z.; Mohd Tohit, N. Efficacy and Sustainability of Diabetes-Specific Meal Replacement on Obese and Overweight Type-2 Diabetes Mellitus Patients: Study Approaches for a Randomised Controlled Trial and Impact of COVID-19 on Trial Progress. Int. J. Environ. Res. Public Health 2022, 19, 4188. [Google Scholar] [CrossRef]
- Jáquez, A.; Sánchez, J.; Acevedo, N.; Guzmán, E. Efficacy of Diabetes-Specific Formulas as Meal Replacements in Diabetic Pa-tients: An Overview. Int. J. Endocrinol. Metab. Disord 2020, 6, 1–10. [Google Scholar]
- Cao, H.; Qin, D.; Guo, H.; Cui, X.; Wang, S.; Wu, Y.; Zheng, W.; Zhong, X.; Wang, H.; Yu, J. The shaggy ink cap medicinal mushroom, Coprinus comatus (Agaricomycetes), a versatile functional species: A review. Int. J. Med. Mushrooms 2020, 22, 245–255. [Google Scholar] [CrossRef]
- Ratnaningtyas, N.; Ekowati, N.; Husen, F. Nephroprotective and antioxidant effects of ethanol extract of Coprinus comatus mushroom fruit-bodies on streptozotocin-induced diabetic rat models. IOP Conf. Ser. Earth Environ. Sci. 2021, 948, 012078. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; De Souza, R.J.; Hanley, A.J.; Bazinet, R.P.; Blanco Mejia, S.; Leiter, L.A. Effect of replacing animal protein with plant protein on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Mariscal, F.M.; Alcalá-Diaz, J.F.; Quintana-Navarro, G.M.; de la Cruz-Ares, S.; Torres-Peña, J.D.; Cardelo, M.P.; Arenas-Larriva, A.P.; Malagón, M.M.; Romero-Cabrera, J.L.; Ordovás, J.M. Changes in quantity plant-based protein intake on type 2 diabetes remission in coronary heart disease patients: From the CORDIOPREV study. Eur. J. Nutr. 2023, 62, 1903–1913. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, C.; Wu, Z.; Zhang, Z.; Xu, C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J. Food Biochem. 2020, 44, e13157. [Google Scholar] [CrossRef]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.-L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol.-Endocrinol. Metab. 2001, 280, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Crystal, N. Managing Blood Glucose with Local Nutrition Bars: A Collaborative Exploration. Inq. J. 2009. Available online: https://scholars.unh.edu/inquiry_2009 (accessed on 16 April 2023).
- Smith, T.J.; Karl, J.P.; Wilson, M.A.; Whitney, C.C.; Barrett, A.; Farhadi, N.F.; Chen, C.-Y.O.; Montain, S.J. Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br. J. Nutr. 2019, 121, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Ilany, J.; Konvalina, N.; Bordo, N.; Shlomai, G.; Cohen, O. The Effect of a Bedtime Meal on Fasting Hyperglyce-mia Assessed by Continuous Glucose Monitoring System in Type 2 Diabetes Mellitus Patients. J. Diabetes Treat 2018, 10, 2574–7568. [Google Scholar]
- Dufresne, C.J.; Farnworth, E.R. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Mazza, G. Health benefits of phytochemicals from selected Canadian crops. Trends Food Sci. Technol. 1999, 10, 193–198. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; Srv, A.; Chiang, J.H.; Henry, C.J. Plant proteins for future foods: A roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef]
- Feskens, E.J.; Sluik, D.; van Woudenbergh, G.J. Meat consumption, diabetes, and its complications. Curr. Diabetes Rep. 2013, 13, 298–306. [Google Scholar] [CrossRef]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G. Impact of a Mediterranean dietary pattern and its components on cardiovascular risk factors, glucose control, and body weight in people with type 2 diabetes: A real-life study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, F.; Firouzabadi, F.D.; Moosaie, F.; Shadnoush, M.; Poopak, A.; Kermanchi, J.; Abhari, S.M.F.; Forouzanfar, R.; Mansournia, M.A.; Khosravi, A. Effects of a Mediterranean diet on the development of diabetic complications: A longitudinal study from the nationwide diabetes report of the National Program for Prevention and Control of Diabetes (NPPCD 2016–2020). Maturitas 2021, 153, 61–67. [Google Scholar] [CrossRef]
- Westerink, J.; Matthiessen, K.S.; Nuhoho, S.; Fainberg, U.; Lyng Wolden, M.; Østergaard, H.B.; Visseren, F.; Sattar, N. Estimated Life-Years Gained Free of New or Recurrent Major Cardiovascular Events With the Addition of Semaglutide to Standard of Care in People With Type 2 Diabetes and High Cardiovascular Risk. Diabetes Care 2022, 45, 1211–1218. [Google Scholar] [CrossRef]
- Gropper, S.S.; Smith, J.L.; Groff, J.L.; Συντώσης, Λ. Διατροφή & μεταβολισμός. Ιατρικές Εκδόσεις ΠΧ Πασχαλίδης 2008, 2, 421–430. [Google Scholar]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Manson, J.E.; Stampfer, M.J.; Liu, S.; Willett, W.C.; Hu, F.B. Nut and peanut butter consumption and risk of type 2 diabetes in women. Obstet. Gynecol. Surv. 2003, 58, 258–259. [Google Scholar] [CrossRef]
- Lee, Y.; Park, K. Adherence to a vegetarian diet and diabetes risk: A systematic review and meta-analysis of observational studies. Nutrients 2017, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Masson, M.L.; Ribeiro, J.C.B. Sensory acceptability and physical stability evaluation of a prebiotic soy-based dessert developed with passion fruit juice. Food Sci. Technol. 2012, 32, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Zulaikha, Y.; Yao, S.-H.; Chang, Y.-W. Physicochemical and functional properties of snack bars enriched with Tilapia (Oreochromis niloticus) by-product powders. Foods 2021, 10, 1908. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, A.; Chauhan, A.K. Formulation and evaluation of novel functional snack bar with amaranth, rolled oat, and unripened banana peel powder. J. Food Sci. Technol. 2022, 59, 3511–3521. [Google Scholar] [CrossRef]
- Ying, W.S.; Dian, N.; Wasoh, H.; Ming, L.O. Formulation of a low glycemic binder fortified with palm vitamin e (tocotrienol-rich fraction) for functional granola bars. J. Oil Palm Res. 2018, 30, 591–601. [Google Scholar]
- Zhang, K.; Dong, R.; Hu, X.; Ren, C.; Li, Y. Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods 2021, 10, 1304. [Google Scholar] [CrossRef]
- Zurbau, A.; Noronha, J.C.; Khan, T.A.; Sievenpiper, J.L.; Wolever, T.M. The effect of oat β-glucan on postprandial blood glucose and insulin responses: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2021, 75, 1540–1554. [Google Scholar] [CrossRef]
- Hou, Q.; Li, Y.; Li, L.; Cheng, G.; Sun, X.; Li, S.; Tian, H. The metabolic effects of oats intake in patients with type 2 diabetes: A systematic review and meta-analysis. Nutrients 2015, 7, 10369–10387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samborska, K.; Kamińska, P.; Jedlińska, A.; Matwijczuk, A.; Kamińska-Dwórznicka, A. Membrane processing in the sustainable production of low-sugar apple-cranberry cloudy juice. Appl. Sci. 2018, 8, 1082. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Li, L.; Bennett, D.; Guo, Y.; Turnbull, I.; Yang, L.; Bragg, F.; Bian, Z.; Chen, Y.; Chen, J. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults. PLoS Med. 2017, 14, e1002279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Griel, A.E.; Kris-Etherton, P.M. Tree nuts and the lipid profile: A review of clinical studies. Br. J. Nutr. 2007, 96, S68–S78. [Google Scholar] [CrossRef] [Green Version]
- Roussel, A.-M.; Hininger, I.; Benaraba, R.; Ziegenfuss, T.N.; Anderson, R.A. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. J. Am. Coll. Nutr. 2009, 28, 16–21. [Google Scholar] [CrossRef]
- Hajimonfarednejad, M.; Ostovar, M.; Raee, M.J.; Hashempur, M.H.; Mayer, J.G.; Heydari, M. Cinnamon: A systematic review of adverse events. Clin. Nutr. 2019, 38, 594–602. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Azadi-Yazdi, M.; Hooshmandi, H.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. Effects of cinnamon supplementation on body weight and composition in adults: A systematic review and meta-analysis of controlled clinical trials. Phytother. Res. 2020, 34, 448–463. [Google Scholar] [CrossRef]
- Namazi, N.; Khodamoradi, K.; Khamechi, S.P.; Heshmati, J.; Ayati, M.H.; Larijani, B. The impact of cinnamon on anthropometric indices and glycemic status in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2019, 43, 92–101. [Google Scholar] [CrossRef]
- Sousa, R.; Portmann, R.; Dubois, S.; Recio, I.; Egger, L. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Res. Int. 2020, 130, 108996. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, Y.; Lu, Z.; Lv, F.; Wang, Y.; Bie, X.; Wang, F.; Zhang, K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010, 121, 39–43. [Google Scholar] [CrossRef]
- Yu, J.; Cui, P.-J.; Zeng, W.-L.; Xie, X.-L.; Liang, W.-J.; Lin, G.-B.; Zeng, L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem. 2009, 117, 42–47. [Google Scholar] [CrossRef]
- Zhou, G.; Han, C. The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol. Trace Elem. Res. 2008, 124, 20–27. [Google Scholar] [CrossRef]
- Cao, H.; Ma, S.; Guo, H.; Cui, X.; Wang, S.; Zhong, X.; Wu, Y.; Zheng, W.; Wang, H.; Yu, J.; et al. Comparative study on the monosaccharide compositions, antioxidant and hypoglycemic activities in vitro of intracellular and extracellular polysaccharides of liquid fermented Coprinus comatus. Int. J. Biol. Macromol. 2019, 139, 543–549. [Google Scholar] [CrossRef]
- Martirosyan, D.; Kanya, H.; Nadalet, C. Can functional foods reduce the risk of disease? Advancement of functional food definition and steps to create functional food products. Funct. Foods Health Dis. 2021, 11, 213–221. [Google Scholar] [CrossRef]
- Stilinović, N.; Škrbić, B.; Živančev, J.; Mrmoš, N.; Pavlović, N.; Vukmirović, S. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms. Food Funct. 2014, 5, 3170–3178. [Google Scholar] [CrossRef]
- Molitorisová, A.; Monaco, A.; Purnhagen, K.P. An analysis of the regulatory framework applicable to products obtained from mushroom and mycelium. SSRN Electron. J. 2021, 1–84. Available online: https://www.lmr.uni-bayreuth.de/pool/dokumente/Report_Mushroom_Mycelium.pdf (accessed on 16 April 2023). [CrossRef]
- Food, A.; Research Council (AFRC). Energy and protein requirements of ruminants. In An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993. [Google Scholar]
- on Additives, E.P.; Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; Puente, S.L. Safety and efficacy of ltryptophan produced by fermentation with Escherichia coli CGMCC 7.248 for all animal species. EFSA J. 2019, 17, e05601. [Google Scholar]
- de Oliveira, W.Q.; Neri-Numa, I.A.; Arruda, H.S.; McClements, D.J.; Pastore, G.M. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends Food Sci. Technol. 2022, 127, 198–206. [Google Scholar] [CrossRef]
- Mustad, V.A.; Hegazi, R.A.; Hustead, D.S.; Budiman, E.S.; Rueda, R.; Maki, K.; Powers, M.; Mechanick, J.I.; Bergenstal, R.M.; Hamdy, O. Use of a diabetes-specific nutritional shake to replace a daily breakfast and afternoon snack improves glycemic responses assessed by conti3nuous glucose monitoring in people with type 2 diabetes: A randomized clinical pilot study. BMJ Open Diabetes Res. Care 2020, 8, e001258. [Google Scholar] [CrossRef] [PubMed]
Snack Bar to Prevent Hypoglycemia or Reduce Post-Prandial Hyperglycemia | Energy (kcal) | Protein (g) | Carbohydrates (g) | Fibers (g) | Fat (g) |
---|---|---|---|---|---|
Extend Bar * (Clinical Products, Ltd.) [21] | 160 | 2.5 | 30 | 0 | 2.5 |
Nite Bite Timed-Release Glucose Bar (ICN Pharmaceuticals, Inc., Orangeburg, NY, USA) [21] | 100 | 3 | 15 | 0 | 3.5 |
Gluc-O-Bar (Clinical Products, Ltd.) (APIC, Inc., Arlington, VA, USA) [21] | 130 | 7 | 21 | 0 | 2.5 |
Ensure Glucerna [21] | 140 | 6 | 24 | 4 | 4 |
Choice DM (Peanut flavor) Mead Johnson Nutritionals [21] | 140 | 6 | 19 | 3 | 4.5 |
Choice DM Crispy Bars (Ross Products Division) [21] | 120 | 4 | 21 | 1 | 2.5 |
Nothing-Else [22] | 143.3 | 4.5 | 17.9 | 3.3 | 6.8 |
Nothing Else-Snack (Re)formulation [23] | 131.6 | 6 | 23.3 | 4.3 | 8.9 |
Nothing Else-Snack (Re)formulation (ΝΕ) [20] | 253.2 | 11.6 | 44.9 | 8.2 | 17.1 |
Ingredients | Rice-Protein Snack Bar | Pea-Protein Snack Bar |
---|---|---|
Plant-based protein (rice or pea protein respectively) (g) | 31.08 | 31.08 |
Agave syrup (g) | 21.32 | 21.32 |
Carbon honey (g) | 9 | 9 |
Oat bran (g) | 46.79 | 46.79 |
Oat flakes (g) | 43.87 | 43.87 |
Lemon juice (g) | 2.5 | 2.5 |
Lemon zest (g) | 1.22 | 1.22 |
Orange Juice (g) | 10.05 | 10.05 |
Orange zest (g) | 1.22 | 1.22 |
Comprinus comatus powder (g) | 1 | 1 |
Almonds (g) | 26.04 | 26.04 |
Flaxseed (g) | 3.54 | 3.54 |
Sunflower oil (g) | 30 | 30 |
Cranberries (g) | 21.23 | 21.23 |
Apples (g) | 10.7 | 10.7 |
Cinnamon (g) | 0.4 | 0.4 |
Chocolate with stevia (g) | 40 | 40 |
Snack Bar 1 | Energy (kcal) | Protein (g) | Carbohydrates (g) | Fibres (g) | Fat (g) | Saturated (g) |
---|---|---|---|---|---|---|
1 | 424 | 18.8 | 39.6 | 4 | 20.3 | 16.2 |
2 | 435 | 19.5 | 38.4 | 3.5 | 22.2 | 18.3 |
3 | 347 | 4.3 | 74 | 4.5 | 6.8 | 2.1 |
4 | 415 | 9.6 | 57.8 | 8.6 | 16.2 | 3.8 |
5 | 447 | 8.6 | 60.6 | 11.1 | 18.4 | 10.3 |
6 | 438 | 10 | 59.5 | 9.7 | 18.4 | 4.7 |
Snack Bar | Hardness 1 (g) | Hardness 2 (g) | Springiness (mm) | Cohesiveness (g) | Adhesiveness (g) | Chewiness | Gumminess |
---|---|---|---|---|---|---|---|
1 | 4287.3 ± 122.8 a | 2384.9 ± 594.2 a | 4.5 ± 1.09 a | 0.27 ± 0.07 b | 0.8 ± 0.35 a | 5075.98 ± 1582.06 a | 1128.89 ± 261.03 a |
2 | 3035.6 ± 680 a | 576 ± 121.6 a | 4.18 ± 0.54 a | 0.1 ± 0.02 b | 0.41 ± 0.09 a | 1173.22 ± 108.42 a | 282.71 ± 18.18 a |
3 1 | - | - | - | - | - | - | - |
4 | 1317.5 ± 111.5 a | 798.9 ± 65.4 a | 1.88 ± 0.44 a | 0.11 ± 0.03 b | 0.1 ± 0.04 a | 254.95 ± 71.69 a | 136.78 ± 30.51 a |
5 | 992.8 ± 23.0 a | 679.6 ± 9.5 a | 3.30 ± 0.60 a | 0.1 ± 0.0 b | 0.7 ± 0.4 a | 491.1 ± 92.6 a | 149.1 ± 13.3 a |
6 | 495.3 ± 24.0 a | 371.5 ± 17.8 a | 3.07 ± 0.31 a | 0.24 ± 0.03 b | 1.2 ± 0.3 a | 360.93 ± 70.15 a | 116.9 ± 12.03 a |
Snack Bar | BOD t = 0 min | AOD t = 15 min | GP t = 75 min | AGP t = 135 min | IP t = 195 min | AID t = 255 min |
---|---|---|---|---|---|---|
1 | 0.166 a | 0.115 a | 0.033 a | 0.064 a | 0.056 a | 0.037 a |
2 | 0.143 a | 0.112 a | 0.133 b | 0.086 a | 0.165 b | 0.204 b |
3 | 0.123 a | 0.296 b | 0.089 c | 0.237 b | 0.601 c | 0.489 c |
4 | 0.156 a | 0.292 b | 0.111 b | 0.213 b | 0.205 b | 0.358 c |
5 | 0.358 b | 0.243 b | 0.356 d | 0.350 c | 0.378 d | 0.451 c |
6 | 0.440 b | 0.230 b | 0.340 d | 0.320 c | 0.500 c | 0.510 d |
Snack Bar | BOD t = 0 min | AOD t = 15 min | GP t = 75 min | AGD t = 135 min | IP t = 195 min | AID t = 255 min |
---|---|---|---|---|---|---|
1 | 0.190 a | 0.100 | 0.128 | 0.108 a | 0.0280 a | 0.033 |
2 | 0.149 a | 0.065 | 0.084 | 0.083 a | 0.0663 b | 0.077 |
3 | 0.031 b | 0.026 | 0.0354 | 0.033 b | 0.0112 c | 0.009 |
4 | 0.078 c | 0.029 | 0.0271 | 0.039 b | 0.0328 a | 0.032 |
5 | 0.027 b | 0.022 | 0.015 | 0.011 c | 0.0280 a | 0.004 |
6 | 0.031 b | 0.026 | 0.014 | 0.096 a | 0.075 b | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimopoulou, M.; Vareltzis, P.; Floros, S.; Androutsos, O.; Bargiota, A.; Gortzi, O. Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods 2023, 12, 2702. https://doi.org/10.3390/foods12142702
Dimopoulou M, Vareltzis P, Floros S, Androutsos O, Bargiota A, Gortzi O. Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods. 2023; 12(14):2702. https://doi.org/10.3390/foods12142702
Chicago/Turabian StyleDimopoulou, Maria, Patroklos Vareltzis, Stylianos Floros, Odysseas Androutsos, Alexandra Bargiota, and Olga Gortzi. 2023. "Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder" Foods 12, no. 14: 2702. https://doi.org/10.3390/foods12142702
APA StyleDimopoulou, M., Vareltzis, P., Floros, S., Androutsos, O., Bargiota, A., & Gortzi, O. (2023). Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods, 12(14), 2702. https://doi.org/10.3390/foods12142702