Whey Protein–Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Whey Protein–Tannic Acid Conjugate
2.3. Preparation of Pork Emulsion Sausages
2.4. Physio-Chemical Properties
2.4.1. Thiobarbituric Acid Reactive Substances (TBARS) and Kinetic Study
2.4.2. Texture and Water-Holding Capacity
2.4.3. Microstructure
2.4.4. Color
2.5. Statistical Analysis
3. Results and Discussion
3.1. Lipid Oxidation and Kinetic Study
3.2. Texture and Water-Holding Capacity
3.3. Microstructure
3.4. Color
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, S.K.; Ha, S.R.; Hur, S.J.; Choi, J.S. Effect of the ratio of raw material components on the physico-chemical characteristics of emulsion-type pork sausages. Asian-Australas. J. Anim. Sci. 2015, 29, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, W.; Li, T.; Zheng, H.; Khan, M.A.; Xu, X.; Sun, J.; Zhou, G. Effect of protein structure on water and fat distribution during meat gelling. Food Chem. 2016, 204, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.; Panpipat, W. Pre-neutralized crude palm oil as natural colorant and bioactive ingredient in fish sausage prepared from tilapia (Oreochromis niloticus). LWT 2021, 135, 110289. [Google Scholar] [CrossRef]
- Montowska, M.; Fornal, E.; Piątek, M.; Krzywdzińska-Bartkowiak, M. Mass spectrometry detection of protein allergenic additives in emulsion-type pork sausages. Food Control 2019, 104, 122–131. [Google Scholar] [CrossRef]
- Asaithambi, N.; Singha, P.; Singh, S.K. Recent application of protein hydrolysates in food texture modification. Crit. Rev. Food Sci. Nutr. 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Euston, S.R.; Hirst, R.L. The emulsifying properties of commercial milk protein products in simple oil-in-water emulsions and in a model food system. J. Food Sci. 2000, 65, 934–940. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Z.; Yang, X. Whey protein-tannic acid conjugate stabilized high internal phase Pickering emulsions: Interfacial stability based on covalent crosslinking. Colloids Surf. A Physicochem. Eng. Asp. 2023, 672, 131690. [Google Scholar] [CrossRef]
- Li, R.; Cui, Q.; Wang, G.; Liu, J.; Chen, S.; Wang, X.; Wang, X.; Jiang, L. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocoll. 2019, 95, 349–357. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Li, X.; Chen, Y.; Liu, C.; Zhu, X.; Liu, J.; Granato, D.; Wang, Y.; Huang, J. Effects of different dietary polyphenols on conformational changes and functional properties of protein–polyphenol covalent complexes. Food Chem. 2021, 361, 130071. [Google Scholar] [CrossRef] [PubMed]
- Prodpran, T.; Benjakul, S.; Phatcharat, S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. Int. J. Biol. Macromol. 2012, 51, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhang, A.; Li, R.; Wang, X.; Sun, L.; Jiang, L. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates. Food Biosci. 2020, 38, 100747. [Google Scholar] [CrossRef]
- Feng, J.; Cai, H.; Wang, H.; Li, C.; Liu, S. Improved oxidative stability of fish oil emulsion by grafted ovalbumin-catechin conjugates. Food Chem. 2018, 241, 60–69. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D.J.; Liu, X.; Liu, F. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocoll. 2020, 102, 105569. [Google Scholar] [CrossRef]
- Kim, H.; Panda, P.K.; Sadeghi, K.; Seo, J. Poly (vinyl alcohol)/hydrothermally treated tannic acid composite films as sustainable antioxidant and barrier packaging materials. Prog. Org. Coat. 2023, 174, 107305. [Google Scholar] [CrossRef]
- Kim, H.; Panda, P.K.; Sadeghi, K.; Lee, S.; Chung, C.; Park, Y.; Park, J.; Seo, J. Facile thermal and hydrolytic conversion of tannic acid: Enhancement of antimicrobial activity and biocompatibility for biomedical applications. Mater. Chem. Phys. 2022, 285, 126141. [Google Scholar] [CrossRef]
- Ramanathan, L.; Das, N.P. Studies on the control of lipid oxidation in ground fish by some polyphenolic natural products. J. Agric. Food Chem. 1992, 40, 17–21. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Preventive effect of tannic acid in combination with modified atmospheric packaging on the quality losses of the refrigerated ground beef. Food Control 2010, 21, 1282–1290. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Synergistic effect of tannic acid and modified atmospheric packaging on the prevention of lipid oxidation and quality losses of refrigerated striped catfish slices. Food Chem. 2010, 121, 29–38. [Google Scholar] [CrossRef]
- Guo, Y.; Bao, Y.H.; Sun, K.F.; Chang, C.; Liu, W.F. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocoll. 2021, 112, 106293. [Google Scholar] [CrossRef]
- Thongzai, H.; Matan, N.; Ganesan, P.; Aewsiri, T. Interfacial properties and antioxidant activity of whey protein-phenolic complexes: Effect of phenolic type and concentration. Appl. Sci. 2022, 12, 2916. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Chaijan, M.; Panpipat, W. Mechanism of oxidation in foods of animal origin. In Natural Antioxidants, 1st ed.; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 1–37. [Google Scholar]
- López-Pedrouso, M.; Lorenzo, J.M.; Franco, D. Advances in natural antioxidants for food improvement. Antioxidants 2022, 11, 1825. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sharma, G.K.; Radhakrishna, K.; Bawa, A.S. Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chem. 2007, 105, 908–916. [Google Scholar] [CrossRef]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent trends in the micro-encapsulation of plant-derived compounds and their specific application in meat as antioxidants and antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Munekata, P.E.; McClements, D.J.; Lorenzo, J.M. Encapsulation of bioactive phytochemicals in plant-based matrices and application as additives in meat and meat products. Molecules 2021, 26, 3984. [Google Scholar] [CrossRef] [PubMed]
- Wongnen, C.; Ruzzama, N.; Chaijan, M.; Cheong, L.Z.; Panpipat, W. Glochidion wallichianum leaf extract as a natural antioxidant in sausage model system. Foods 2022, 11, 1547. [Google Scholar] [CrossRef]
- Jin, S.K.; Ha, S.R.; Choi, J.S. Effect of Caesalpinia sappan L. extract on physico-chemical properties of emulsion-type pork sausage during cold storage. Meat Sci. 2015, 110, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Moyo, B.; Oyedemi, S.; Masika, P.J.; Muchenje, V. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. The thiobarbuturic acid assay. Methods Enzymol. 1978, 52, 306–307. [Google Scholar]
- Chaijan, M.; Panpipat, W.; Cheong, L.Z. Chemical indices and kinetic evaluation of β-sitosteryl oleate oxidation in a model system of bulk oil. Molecules 2022, 27, 7833. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Balange, A.K. Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chem. 2012, 130, 408–416. [Google Scholar] [CrossRef]
- Chaijan, S.; Panpipat, W.; Panya, A.; Cheong, L.Z.; Chaijan, M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control 2020, 118, 107400. [Google Scholar] [CrossRef]
- Somjid, P.; Panpipat, W.; Cheong, L.Z.; Chaijan, M. Comparative effect of cricket protein powder and soy protein isolate on gel properties of Indian mackerel surimi. Foods 2022, 11, 3445. [Google Scholar] [CrossRef] [PubMed]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.G., Jr.; Dalvi, L.T.; Silva, J.M.C., Jr.; Lopes, G.K.; Alonso, A.; Hermes-Lima, M. The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Arch. Biochem. Biophys. 2005, 437, 1–9. [Google Scholar] [CrossRef]
- Lopes, G.K.; Schulman, H.M.; Hermes-Lima, M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta-Gen. Subj. 1999, 1472, 142–152. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Zhou, F.; Sun, W.; Zhao, M. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress. J. Agric. Food Chem. 2015, 63, 3766–3777. [Google Scholar] [CrossRef]
- Cao, Y.; Ai, N.; True, A.D.; Xiong, Y.L. Effects of (−)-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein–soybean oil emulsions. Food Chem. 2018, 245, 439–445. [Google Scholar] [CrossRef]
- Balange, A.; Benjakul, S. Enhancement of gel strength of bigeye snapper (Priacanthus tayenus) surimi using oxidised phenolic compounds. Food Chem. 2009, 113, 61–70. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’grady, M.N.; Kerry, J.P. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Chaiyasit, W.; McClements, D.J.; Decker, E.A. The relationship between the physicochemical properties of antioxidants and their ability to inhibit lipid oxidation in bulk oil and oil-in-water emulsions. J. Agric. Food Chem. 2005, 53, 4982–4988. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2022, 376, 131881. [Google Scholar] [CrossRef] [PubMed]
- Mercier, Y.; Gatellier, P.; Renerre, M. Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Sci. 2004, 66, 467–473. [Google Scholar] [CrossRef]
- Rowe, L.J.; Maddock, K.R.; Lonergan, S.M.; Huff-Lonergan, E. Influence of early postmortem protein oxidation on beef quality. J. Anim. Sci. 2004, 82, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Mitsumoto, M.; Arnold, R.N.; Schaefer, D.M.; Cassens, R.G. Dietary vitamin E supplementation shifted weight loss from drip to cooking loss in fresh beef longissimus during display. J. Anim. Sci. 1995, 73, 2289–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karel, M.; Schaich, K.; Roy, R.B. Interaction of peroxidizing methyl linoleate with some proteins and amino acids. J. Agric. Food Chem. 1975, 23, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Modzelewska-Kapituła, M.; Więk, A.; Nogalski, Z. The applicability of total color difference ΔE for determining the blooming time in longissimus lumborum and semimembranosus muscles from Holstein-Friesian bulls at different ageing times. Appl. Sci. 2020, 10, 8215. [Google Scholar] [CrossRef]
- Hes, M. Protein-lipid interactions in different meat systems in the presence of natural antioxidants—A review. Polish J. Food Nutr. Sci. 2017, 67, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.J.; Liu, S.Z.; Li, H.H.; He, J.; Feng, J.T.; Zhang, X.; Yan, H.E. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef] [PubMed]
Samples | Days | Hardness (N) | Springiness (mm) | Cohesiveness | Water-Holding Capacity (%) |
---|---|---|---|---|---|
Control (Whey protein) | 0 | 33.14 ± 1.26 bA | 8.52 ± 0.12 aA | 0.45 ± 0.02 aA | 93.01 ± 1.41 cA |
7 | 24.54 ± 0.62 aA | 8.45 ± 0.17 aA | 0.47 ± 0.03 aA | 87.55 ± 1.90 bA | |
14 | 22.13 ± 2.20 aA | 8.47 ± 0.19 aA | 0.49 ± 0.03 aB | 84.24 ± 2.59 aA | |
21 | 22.55 ± 0.23 aA | 8.47 ± 0.33 aA | 0.43 ± 0.10 aA | 83.13 ± 5.92 aA | |
Whey protein–tannic acid conjugate | 0 | 33.31 ± 2.66 bA | 8.68 ± 0.04 bA | 0.48 ± 0.04 bA | 92.36 ± 1.02 aA |
7 | 32.63 ± 4.84 abB | 8.66 ± 0.11 bA | 0.46 ± 0.03 abA | 92.44 ± 1.01 aB | |
14 | 25.89 ± 1.99 aB | 8.19 ± 0.14 aA | 0.42 ± 0.01 aA | 91.39 ± 1.82 aB | |
21 | 26.79 ± 2.99 aB | 8.20 ± 0.17 aA | 0.42 ± 0.01 aA | 90.84 ± 1.54 aB |
Samples | Days | L* | a* | b* | ΔE |
---|---|---|---|---|---|
Control (Whey protein) | 0 | 71.51 ± 0.14 bA | 2.25 ± 0.42 abA | 15.22 ± 0.32 bA | 0.00 ± 0.00 aA |
7 | 72.28 ± 0.53 bA | 2.46 ± 0.05 bA | 15.39 ± 0.09 bB | 0.83 ± 0.51 bA | |
14 | 71.30 ± 0.53 bB | 2.17 ± 0.15 aA | 15.15 ± 0.11 bB | 0.46 ± 0.18 bA | |
21 | 64.30 ± 0.18 aA | 1.90 ± 0.49 aA | 13.65 ± 0.16 aA | 7.39 ± 0.51 cB | |
Whey protein–tannic acid conjugate | 0 | 72.74 ± 0.24 bA | 2.32 ± 0.08 bA | 15.28 ± 0.14 cA | 1.24 ± 0.25 bB |
7 | 71.72 ± 0.87 bA | 2.41 ± 0.10 bA | 15.02 ± 0.09 bA | 0.79 ± 0.05 aA | |
14 | 67.30 ± 0.28 aA | 2.08 ± 0.10 aA | 14.24 ± 0.13 aA | 4.33 ± 0.25 cB | |
21 | 67.33 ± 1.02 aB | 2.00 ± 0.04 aA | 14.83 ± 0.21 bB | 4.20 ± 1.04 cA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aewsiri, T.; Ganesan, P.; Thongzai, H. Whey Protein–Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods 2023, 12, 2766. https://doi.org/10.3390/foods12142766
Aewsiri T, Ganesan P, Thongzai H. Whey Protein–Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods. 2023; 12(14):2766. https://doi.org/10.3390/foods12142766
Chicago/Turabian StyleAewsiri, Tanong, Palanivel Ganesan, and Hataikan Thongzai. 2023. "Whey Protein–Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features" Foods 12, no. 14: 2766. https://doi.org/10.3390/foods12142766
APA StyleAewsiri, T., Ganesan, P., & Thongzai, H. (2023). Whey Protein–Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods, 12(14), 2766. https://doi.org/10.3390/foods12142766