Impact of Washing with Antioxidant-Infused Soda–Saline Solution on Gel Functionality of Mackerel (Auxis thazard) Surimi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Raw Material
2.2. Combined Effect of CW, NaCl, and Antioxidant Washing on Myoglobin and Lipid Removal Efficacies, Biochemical Properties, and Gel Functionalities of Mackerel Surimi
2.2.1. Determination of Moisture Content and pH
2.2.2. Determination of Reactive Sulfhydryl (SH) Content and Ca2+-ATPase Activity
2.2.3. Determination of Protein Surface Hydrophobicity
2.2.4. Lipid Extraction and Lipid Oxidation Indices
2.2.5. Determination of Myoglobin Content and Metmyoglobin Content
2.2.6. Determination of Heme Iron and Non-Heme Iron
2.2.7. Determination of Color
2.2.8. Determination of Rheological Properties
2.3. Gel Preparation and Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Yield and Biochemical Properties
3.2. Lipid Content and Lipid Oxidation
3.3. Myoglobin and Its Related Species
3.4. Color
3.5. Rheology
3.6. Textural Properties and Color of Gel
3.7. Lipid Oxidation and Sensorial Property of Gel
3.8. Microstructure of Gel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Wang, D.; Liu, J.; Yu, X. Effects of rice bran feruloyl oligosaccharides on gel properties and microstructure of grass carp surimi. Food Chem. 2023, 407, 135003. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.; Benjakul, S.; Visessanguan, W.; Faustman, C. Characteristics and gel properties of muscles from sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) caught in Thailand. Food Res. Int. 2004, 37, 1021–1030. [Google Scholar] [CrossRef]
- Balange, A.K.; Benjakul, S. Effect of oxidised tannic acid on the gel properties of mackerel (Rastrelliger kanagurta) mince and surimi prepared by different washing processes. Food Hydrocoll. 2009, 23, 1693–1701. [Google Scholar] [CrossRef]
- Somjid, P.; Panpipat, W.; Cheong, L.Z.; Chaijan, M. Reduced washing cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production: Evaluation of bio-physico-chemical, rheological, and gel-forming properties. Foods 2021, 10, 2717. [Google Scholar] [CrossRef] [PubMed]
- Chaijan, M.; Panpipat, W.; Benjakul, S. Physicochemical properties and gel-forming ability of surimi from three species of mackerel caught in Southern Thailand. Food Chem. 2010, 121, 85–92. [Google Scholar] [CrossRef]
- Somjid, P.; Panpipat, W.; Chaijan, M. Carbonated water as a novel washing medium for mackerel (Auxis thazard) surimi production. J. Food Sci. Technol. 2017, 54, 3979–3988. [Google Scholar] [CrossRef]
- Chen, H.H. Decoloration and gel-forming ability of horse mackerel mince by air-flotation washing. J. Food Sci. 2002, 67, 2970–2975. [Google Scholar] [CrossRef]
- Singh, A.; Mittal, A.; Benjakul, S. Undesirable discoloration in edible fish muscle: Impact of indigenous pigments, chemical reactions, processing, and its prevention. Compr. Rev. Food Sci. Food Saf. 2022, 21, 580–603. [Google Scholar] [CrossRef] [PubMed]
- Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019, 50, 1393–1403. [Google Scholar] [CrossRef]
- Kelleher, S.D.; Hultin, H.O.; Wilhelm, K.A. Stability of mackerel surimi prepared under lipid-stabilizing processing conditions. J. Food Sci. 1994, 59, 269–271. [Google Scholar] [CrossRef]
- O’Grady, M.N.; Monahan, F.J.; Brunton, N.P. Oxymyoglobin oxidation in bovine muscle-mechanistic studies. J. Food Sci. 2001, 66, 386–392. [Google Scholar] [CrossRef]
- Sohn, J.H.; Taki, Y.; Ushio, H.; Kohata, T.; Shioya, I.; Ohshima, T. Lipid oxidations in ordinary and dark muscles of fish: Influences on rancid off-odor development and color darkening of yellowtail flesh during ice storage. J. Food Sci. 2005, 70, 490–496. [Google Scholar] [CrossRef]
- Chan, W.K.M.; Faustman, C.; Yin, M.; Decker, E.A. Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of H2O2 and superoxide anion. Meat Sci. 1997, 46, 181–190. [Google Scholar] [CrossRef]
- Yin, M.; Faustman, C. α-Tocopherol and ascorbate delay oxymyoglobin and phospholipid oxidation in vitro. J. Food Sci. 1993, 58, 1273–1276, 1281. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Shi, J.; Zhu, B.; Luo, Y. Changes in chemical interactions and gel properties of heat-induced surimi gels from silver carp (Hypophthalmichthys molitrix) fillets during setting and heating: Effects of different washing solutions. Food Hydrocoll. 2018, 75, 116–124. [Google Scholar] [CrossRef]
- Nurkhoeriyati, T.; Huda, N.; Ahmad, R. Gelation properties of spent duck meat surimi-like material produced using acid–alkaline solubilization methods. J. Food Sci. 2011, 76, S48–S55. [Google Scholar] [CrossRef] [PubMed]
- Ramadhan, K.; Huda, N.; Ahmad, R. Effect of number and washing solutions on functional properties of surimi-like material from duck meat. J. Food Sci. Technol. 2014, 51, 256–266. [Google Scholar] [CrossRef]
- Chaijan, M.; Srirattanachot, K.; Panpipat, W. Biochemical property and gel-forming ability of surimi-like material from goat meat. Int. J. Food Sci. Technol. 2021, 56, 988–998. [Google Scholar] [CrossRef]
- Hennigar, C.J.; Buck, E.M.; Hultin, H.O.; Peleg, M.; Vareltzis, K. Effect of washing and sodium chloride on mechanical properties of fish muscle gels: A research note. J. Food Sci. 1988, 53, 963–964. [Google Scholar] [CrossRef]
- Chaijan, M.; Panpipat, W. Mechanism of oxidation in foods of animal origin. In Natural Antioxidants, 1st ed.; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 1–37. [Google Scholar]
- Allen, K.E.; Cornforth, D.P. Effect of chelating agents and spice-derived antioxidants on myoglobin oxidation in a lipid-free model system. J. Food Sci. 2009, 74, C375–C379. [Google Scholar] [CrossRef]
- Allen, K.E.; Cornforth, D.P. Myoglobin oxidation in a model system as affected by nonheme iron and iron chelating agent. J. Agric. Food Chem. 2006, 54, 10134–10140. [Google Scholar] [CrossRef] [PubMed]
- Sickler, M.L.; Claus, J.R.; Marriott, N.G.; Eigel, W.N.; Wang, H. Antioxidative effects of encapsulated sodium tripolyphosphate and encapsulated sodium acid pyrophosphate in ground beef patties cooked immediately after antioxidant incorporation and stored. Meat Sci. 2013, 94, 285–288. [Google Scholar] [CrossRef]
- Li, R.; Richards, M.P.; Undeland, I. Characterization of aqueous components in chicken breast muscle as inhibitors of hemoglobin-mediated lipid oxidation. J. Agric. Food Chem. 2005, 53, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Vareltzis, P.; Hultin, H.O.; Autio, W.R. Hemoglobin-mediated lipid oxidation of protein isolates obtained from cod and haddock white muscle as affected by citric acid, calcium chloride and pH. Food Chem. 2008, 108, 64–74. [Google Scholar] [CrossRef]
- Chan, W.K.M.; Decker, E.A.; Chow, C.K.; Boissonneault, G.A. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids 1994, 29, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Figueirêdo, B.C.; Trad, I.J.; Mariutti, L.R.B.; Bragagnolo, N. Effect of annatto powder and sodium erythorbate on lipid oxidation in pork loin during frozen storage. Food Res. Int. 2014, 65, 137–143. [Google Scholar] [CrossRef]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Inhibition of β-carotene degradation in oil-in-water nanoemulsions: Influence of oil-soluble and water-soluble antioxidants. Food Chem. 2012, 135, 1036–1043. [Google Scholar] [CrossRef]
- Pazos, M.; Lois, S.; Torres, J.L.; Medina, I. Inhibition of hemoglobin- and iron-promoted oxidation in fish microsomes by natural phenolics. J. Agric. Food Chem. 2006, 54, 4417–4423. [Google Scholar] [CrossRef]
- Tang, S.; Sheehan, D.; Buckley, D.J.; Morrissey, P.A.; Kerry, J.P. Anti-oxidant activity of added tea catechins on lipid oxidation of raw minced red meat, poultry and fish muscle. Int. J. Food Sci. Technol. 2001, 36, 685–692. [Google Scholar] [CrossRef]
- Vareltzis, K.; Koufidis, D.; Gavriilidou, E.; Papavergou, E.; Vasiliadou, S. Effectiveness of a natural rosemary (Rosmarinus officinalis) extract on the stability of filleted and minced fish during frozen storage. Eur. Food Res. Technol. 1997, 205, 93–96. [Google Scholar] [CrossRef]
- Lee, C.H.; Krueger, C.G.; Reed, J.D.; Richards, M.P. Inhibition of hemoglobin-mediated lipid oxidation in washed fish muscle by cranberry components. Food Chem. 2006, 99, 591–599. [Google Scholar] [CrossRef]
- Ebaid, H.; Bashandy, S.A.; Morsy, F.A.; Al-Tamimi, J.; Hassan, I.; Alhazza, I.M. Protective effect of gallic acid against thioacetamide-induced metabolic dysfunction of lipids in hepatic and renal toxicity. J. King Saud Univ.-Sci. 2022, 35, 102531. [Google Scholar] [CrossRef]
- Sharmin, N.; Sone, I.; Walsh, J.L.; Sivertsvik, M.; Fernandez, E.N. Effect of citric acid and plasma activated water on the functional properties of sodium alginate for potential food packaging applications. Food Packag. Shelf Life. 2021, 29, 100733. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Yang, H.; Liu, R.; Rong, J.; Zhao, S.; Xiong, S. Effects of CaCl2 on chemical interactions and gel properties of surimi gels from two species of carps. Eur. Food Res. Technol. 2011, 233, 569–576. [Google Scholar] [CrossRef]
- Ofstad, R.; Grahl-Madsen, E.; Gundersen, B.; Lauritzen, K.; Solberg, T.; Solberg, C. Stability of cod (Gadus morhua L.) surimi processed with CaCl2 and MgCl2 added to the wash water. Int. J. Food Sci. Technol. 1993, 28, 419–427. [Google Scholar] [CrossRef]
- Undeland, I.; Hall, G.; Wendin, K.; Gangby, I.; Rutgersson, A. Preventing lipid oxidation during recovery of functional proteins from herring (Clupea harengus) fillets by an acid solubilization process. J. Agric. Food Chem. 2005, 53, 5625–5634. [Google Scholar] [CrossRef] [PubMed]
- Eymard, S.; Jacobsen, C.; Baron, C.P. Assessment of washing with antioxidant on the oxidative stability of fatty fish mince during processing and storage. J. Agric. Food Chem. 2010, 58, 6182–6189. [Google Scholar] [CrossRef]
- Liang, Y.; Hultin, H.O. Separation of muscle membrane from alkali-solubilized fish muscle proteins. J. Agric. Food Chem. 2005, 53, 10012–10017. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Benjakul, S.; Seymour, T.S.; Morrissey, M.T.; An, H. Physico-chemical changes in Pacific whiting muscle proteins during iced storage. J. Food Sci. 1997, 62, 729–733. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef]
- Martinaud, A.; Mercier, Y.; Marinova, P.; Tassy, C.; Gatellier, P.; Renerre, M. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. J. Agric. Food Chem. 1997, 45, 2481–2487. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Panpipat, W.; Cheong, L.Z.; Chaijan, M. Impact of lecithin incorporation on gel properties of bigeye snapper (Priacanthus tayenus) surimi. Int. J. Food Sci. Technol. 2021, 56, 2481–2491. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Prior, E.; Aeschbach, R. Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions. J. Sci. Food Agric. 1996, 72, 201–208. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymol. 1978, 52, 302–304. [Google Scholar]
- Benjakul, S.; Bauer, F. Biochemical and physicochemical changes in catfish (Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles. Food Chem. 2001, 72, 207–217. [Google Scholar] [CrossRef]
- Gomez-Basauri, J.V.; Regenstein, J.F. Vacuum packaging, ascorbic acid and frozen storage effect on heme and nonheme iron content of mackerel. J. Food Sci. 1992, 57, 1337–1339. [Google Scholar] [CrossRef]
- Tang, J.; Faustman, C.; Hoagland, T.A. Krzywicki revisited: Equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. J. Food Sci. 2004, 69, 717–720. [Google Scholar] [CrossRef]
- Schricker, B.R.; Miller, D.D.; Stouffer, J.R. Measurement and content of nonheme and total iron in muscle. J. Food Sci. 1982, 47, 740–743. [Google Scholar] [CrossRef]
- Panpipat, W.; Chaijan, M. Biochemical and physicochemical characteristics of protein isolates from bigeye snapper (Priacanthus tayenus) head by-product using pH shift method. Turk. J. Fish. Aquat. Sci. 2016, 16, 041–050. [Google Scholar]
- Phetsang, H.; Panpipat, W.; Undeland, I.; Panya, A.; Phonsatta, N.; Chaijan, M. Comparative quality and volatilomic characterisation of unwashed mince, surimi, and pH-shift-processed protein isolates from farm-raised hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem. 2021, 364, 130365. [Google Scholar] [CrossRef] [PubMed]
- Somjid, P.; Panpipat, W.; Petcharat, T.; Chaijan, M. Biochemical property and gel-forming ability of mackerel (Auxis thazard) surimi prepared by ultrasonic assisted washing. RSC Adv. 2021, 11, 36199–36207. [Google Scholar] [CrossRef]
- Das, N.; Khuntia, B.K.; Raychaudhuri, U.; Dora, K.C.; Ganguly, S. Effect of water washing on the functional properties of fish meat. Int. J. Med. Microbiol. Trop. Dis. 2015, 1, 8–12. [Google Scholar]
- Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Yang, W.; Xue, C. Effects of ozone-induced oxidation on the physicochemical properties of myofibrillar proteins recovered from bighead carp (Hypophthalmichthys nobilis). Food Bioproc. Technol. 2015, 8, 181–190. [Google Scholar] [CrossRef]
- Karonen, M. Insights into polyphenol–lipid interactions: Chemical methods, molecular aspects and their effects on membrane structures. Plants 2022, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Neff, W.E.; Selke, E. Analysis of autoxidized fats by gas chromatography-mass spectrometry. IX. Homolytic vs. heterolytic cleavage of primary and secondary oxidation products. Lipids 1984, 19, 790–800. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical methods for lipid oxidation and antioxidant capacity in food systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Liu, H.F.; Booren, A.M.; Gray, J.I.; Crackel, R.L. Antioxidant efficacy of oleoresin rosemary and sodium tripolyphosphate in restructured pork steaks. J. Food Sci. 1992, 57, 803–806. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef]
- Kroll, J.; Rawel, H.M. Reactions of plant phenols with myoglobin: Influence of chemical structure of the phenolic compounds. J. Food Sci. 2001, 66, 48–58. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Celeste, L.R.; Lovelace, L.L.; Sun, S.; Dawson, J.H.; Lebioda, L. Complex of myoglobin with phenol bound in a proximal cavity. Acta Crystallogr. F Struct. Biol. 2012, 68, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Thiansilakul, Y.; Benjakul, S.; Grunwald, E.W.; Richards, M.P. Retardation of myoglobin and haemoglobin-mediated lipid oxidation in washed bighead carp by phenolic compounds. Food Chem. 2012, 134, 789–796. [Google Scholar] [CrossRef]
- Careche, M.; Li-Chan, E.C.Y. Structural changes in cod myosin after modification with formaldehyde or frozen storage. J. Food Sci. 1997, 62, 717–723. [Google Scholar] [CrossRef]
- Huang, J.; Ye, B.; Wang, W.; Li, J.; Yi, S.; Li, X.; Mi, H. Incorporation effect of inulin and microbial transglutaminase on the gel properties of silver carp (Hypophthalmichthys molitrix) surimi. J. Food Meas. Charact. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Egelandsdal, B.; Martinsen, B.; Autio, K. Rheological parameters as predictors of protein functionality: A model study using myofibrils of different fiber-type composition. Meat Sci. 1995, 39, 97–111. [Google Scholar] [CrossRef]
- Buamard, N.; Benjakul, S.; Konno, K. Improvement of gel quality of sardine surimi with low setting phenomenon by ethanolic coconut husk extract. J. Texture Stud. 2017, 48, 47–56. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Benjakul, S.; Visessanguan, W.; Lanier, T.C. Rheological and textural properties of pacific whiting surimi gels as influenced by chicken plasma. Int. J. Food Prop. 2008, 11, 820–832. [Google Scholar] [CrossRef]
- Ghimire, A.; Paudel, N.; Poudel, R. Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis) meat. LWT 2022, 154, 112690. [Google Scholar] [CrossRef]
- Nanditha, B.R.; Jena, B.S.; Prabhasankar, P. Influence of natural antioxidants and their carry-through property in biscuit processing. J. Sci. Food Agric. 2009, 89, 288–298. [Google Scholar] [CrossRef]
- Maestre, R.; Pazos, M.; Iglesias, J.; Medina, I. Capacity of reductants and chelators to prevent lipid oxidation catalyzed by fish hemoglobin. J. Agric. Food Chem. 2009, 57, 9190–9196. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Paciornik, S.; Mauricio, M.H.P. Evaluation of the effect of EDTA, EDTAC and citric acid on the microhardness of root dentine. Int. Endod. J. 2006, 39, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Terpinc, P.; Polak, T.; Šegatin, N.; Hanzlowsky, A.; Ulrih, N.P.; Abramovič, H. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem. 2011, 128, 62–69. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S. Gelling characteristics of surimi from yellow stripe trevally (Selaroides leptolepis). Int. Aquat. Res. 2012, 4, 1–13. [Google Scholar] [CrossRef]
Treatment | 1st Cycle | 2nd Cycle | 3rd Cycle |
---|---|---|---|
T1 (unwashed mince) | - | - | - |
T2 (conventional washing) | water | water | water |
T3 | CW + 0.6% NaCl | water | water |
T4 | CW + 0.6% NaCl + 1.5 mM EDTA + 0.2% sodium erythorbate + 0.2% sodium tripolyphosphate | water | water |
T5 | CW + 0.6% NaCl + 100 mg/L gallic acid | water | water |
T6 | CW + 0.6% NaCl + 5 mM citric acid + 8 mM CaCl2 | water | water |
Treatment | Yield (%) * |
---|---|
T1 (unwashed mince) | 100.00 ± 0.00 a |
T2 | 76.17 ± 1.60 c |
T3 | 82.68 ± 1.10 b |
T4 | 75.88 ± 1.30 c |
T5 | 81.16 ± 1.52 b |
T6 | 75.55 ± 1.20 c |
Treatment | pH | Reactive Sulfhydryl Content (mol/108 g Protein) | Ca2+-ATPase Activity (μmolPi/mg Protein/min) | Surface Hydrophobicity; BPB Bound (μg) |
---|---|---|---|---|
T1 | 5.58 ± 0.01 e | 3.26 ± 0.21 d | 6.45 ± 0.20 a | 27.46 ± 0.55 e |
T2 | 6.16 ± 0.01 c | 4.36 ± 0.07 a | 1.51 ± 0.03 c | 38.76 ± 0.93 b |
T3 | 6.22 ± 0.01 b | 3.88 ± 0.06 b | 1.68 ± 0.06 bc | 36.85 ± 0.82 c |
T4 | 6.46 ± 0.01 a | 4.18 ± 0.18 a | 1.86 ± 0.03 b | 36.35 ± 0.31 cd |
T5 | 5.99 ± 0.02 d | 3.87 ± 0.13 b | 1.67 ± 0.03 bc | 35.53 ± 0.95 d |
T6 | 5.47 ± 0.01 f | 3.55 ± 0.07 c | 1.68 ± 0.03 bc | 44.51 ± 0.43 a |
Treatment | Lipid (g/100 g) | Peroxide Value (meq/kg Lipid) | Conjugated Diene | Thiobarbituric Acid Reactive Substances (mg MDA Equivalent/kg Sample) |
---|---|---|---|---|
T1 | 1.44 ± 0.01 a | 1.45 ± 0.11 c | 34.47 ± 0.26 f | 0.14 ± 0.04 c |
T2 | 0.40 ± 0.04 b | 4.08 ± 0.27 a | 76.86 ± 0.65 c | 0.27 ± 0.05 ab |
T3 | 0.45 ± 0.04 b | 0.42 ± 0.08 d | 58.40 ± 0.66 e | 0.32 ± 0.05 a |
T4 | 0.45 ± 0.05 b | 1.61 ± 0.20 c | 81.66 ± 0.38 b | 0.21 ± 0.05 bc |
T5 | 0.35 ± 0.01 c | 1.55 ± 0.01 c | 92.25 ± 0.20 a | 0.34 ± 0.07 a |
T6 | 0.51 ± 0.05 b | 2.34 ± 0.11 b | 67.23 ± 0.44 d | 0.24 ± 0.05 ab |
Treatment | Myoglobin (mg/100 g Sample) | Heme Iron (mg/100 g Sample) | Non-Heme Iron (mg/g Sample) | Metmyoglobin (%) |
---|---|---|---|---|
T1 | 44.01 ± 0.51 a | 125.75 ± 1.46 a | 13.45 ± 0.00 a | 26.23 ± 1.08 a |
T2 | 4.83 ± 0.77 d | 13.79 ± 2.20 d | 12.88 ± 0.00 a | 6.13 ± 0.12 b |
T3 | 7.98 ± 0.85 c | 22.81 ± 2.41 c | 13.55 ± 0.00 a | 5.60 ± 0.14 b |
T4 | 6.42 ± 1.10 cd | 18.33 ± 3.14 cd | 11.73 ± 0.00 b | 5.71 ± 0.12 b |
T5 | 15.21 ± 1.66 b | 43.14 ± 4.20 b | 10.70 ± 0.00 c | 3.40 ± 2.38 c |
T6 | 14.05 ± 0.52 b | 40.18 ± 1.45 b | 11.73 ± 0.00 b | 5.43 ± 0.31 b |
Treatment | L* | a* | b* |
---|---|---|---|
T1 | 16.73 ± 0.16 b | 2.15 ± 0.33 a | 4.89 ± 0.34 bc |
T2 | 18.03 ± 0.40 a | 0.98 ± 0.10 bc | 5.68 ± 0.27 a |
T3 | 17.91 ± 0.10 a | 0.62 ± 0.38 d | 4.57 ± 0.22 c |
T4 | 18.16 ± 0.36 a | 0.84 ± 0.12 cd | 5.70 ± 0.11 a |
T5 | 17.61 ± 0.12 a | 1.26 ± 0.12 b | 4.65 ± 0.33 c |
T6 | 17.79 ± 0.80 a | 1.32 ± 0.11 b | 5.22 ± 0.34 b |
Treatment | Breaking Force (g) | Deformation (mm) | Gel Strength (g.mm) | Expressible Drip (%) | Whiteness |
---|---|---|---|---|---|
T1 | 107.43 ± 3.34 e | 3.39 ± 0.39 c | 364.27 ± 39.91 d | 31.15 ± 0.54 b | 40.32 ± 0.12 d |
T2 | 183.17 ± 4.33 c | 5.52 ± 0.27 b | 1009.66 ± 32.67 b | 18.67 ± 0.28 e | 42.98 ± 0.47 a |
T3 | 158.07 ± 8.79 d | 5.41 ± 0.02 b | 854.46 ± 43.71 c | 21.13 ± 0.20 d | 42.40 ± 0.72 ab |
T4 | 203.77 ± 2.21 b | 6.92 ± 0.01 a | 1409.35 ± 14.52 a | 17.14 ± 0.31 f | 42.48 ± 0.40 ab |
T5 | 223.89 ± 5.52 a | 6.36 ± 0.27 a | 1422.21 ± 38.12 a | 28.85 ± 0.97 c | 41.74 ± 0.30 bc |
T6 | 218.15 ± 5.70 a | 5.04 ± 0.55 b | 1100.67 ± 144.34 b | 34.74 ± 0.55 a | 41.18 ± 0.62 c |
Treatment | Peroxide Value (meq/kg Lipid) | Thiobarbituric Acid Reactive Substances (mg MDA Equivalent/kg Sample) | Fishy Odor Score * | Rancid Odor Score * |
---|---|---|---|---|
T1 | 8.20 ± 0.50 a | 0.22 ± 0.04 c | 3.00 ± 0.67 a | 1.00 ± 1.15 a |
T2 | 2.70 ± 0.00 c | 0.25 ± 0.03 bc | 2.20 ± 1.14 ab | 0.60 ± 1.07 a |
T3 | 1.45 ± 0.25 d | 0.24 ± 0.02 bc | 2.10 ± 1.37 ab | 0.40 ± 0.97 a |
T4 | 0.45 ± 0.25 e | 0.25 ± 0.06 bc | 1.40 ± 0.84 b | 0.20 ± 0.63 a |
T5 | 2.45 ± 0.35 c | 0.28 ± 0.02 ab | 2.20 ± 1.23 ab | 0.60 ± 1.26 a |
T6 | 5.20 ± 0.87 b | 0.30 ± 0.01 a | 1.70 ± 0.82 b | 0.60 ± 1.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongkam, P.; Chaijan, M.; Cheong, L.-Z.; Panpipat, W. Impact of Washing with Antioxidant-Infused Soda–Saline Solution on Gel Functionality of Mackerel (Auxis thazard) Surimi. Foods 2023, 12, 3178. https://doi.org/10.3390/foods12173178
Thongkam P, Chaijan M, Cheong L-Z, Panpipat W. Impact of Washing with Antioxidant-Infused Soda–Saline Solution on Gel Functionality of Mackerel (Auxis thazard) Surimi. Foods. 2023; 12(17):3178. https://doi.org/10.3390/foods12173178
Chicago/Turabian StyleThongkam, Porntip, Manat Chaijan, Ling-Zhi Cheong, and Worawan Panpipat. 2023. "Impact of Washing with Antioxidant-Infused Soda–Saline Solution on Gel Functionality of Mackerel (Auxis thazard) Surimi" Foods 12, no. 17: 3178. https://doi.org/10.3390/foods12173178
APA StyleThongkam, P., Chaijan, M., Cheong, L. -Z., & Panpipat, W. (2023). Impact of Washing with Antioxidant-Infused Soda–Saline Solution on Gel Functionality of Mackerel (Auxis thazard) Surimi. Foods, 12(17), 3178. https://doi.org/10.3390/foods12173178