The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experimental Design
2.2. Measurement of Anti-Inflammatory Biomarkers in Serum
2.3. Assessment of the Anti-Inflammatory and Antioxidant System in Hepatic Tissues
2.4. Liver Histopathology
2.5. Intestinal Microbiota Analysis
2.6. Quantitative RT-PCR
2.7. Immunohistochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of Broccoli Seed Extract on Body Weight and Food and Water Intakes of Mice
3.2. Pretreatment with Broccoli Seed Extract Improved Liver Function of Liver Injury Mice
3.3. Pretreatment with Broccoli Seed Extract Prevented the Inflammatory Response and Increased Antioxidant Ability in Liver Injury Mice
3.4. Pretreatment with Broccoli Seed Extract Regulated the Mice Intestinal Microbiota Structure
3.5. Relationships between Intestinal Microbiota and Biochemical Indicators in Serum and Liver and Inflammatory Factors in Liver and Urine Nutrients
3.6. Influence of Broccoli Seed Extract on Hepatic mRNA Levels Associated with Inflammation and Antioxidation in Liver Injury Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.L.; Nakib, D.; Perciani, C.T.; MacParland, S.A. The immune niche of the liver. Clin. Sci. 2021, 135, 2445–2466. [Google Scholar] [CrossRef] [PubMed]
- Mega, A.; Marzi, L.; Kob, M.; Piccin, A.; Floreani, A. Food and Nutrition in the Pathogenesis of Liver Damage. Nutrients 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Bao, J.; Song, C.; Xie, L.; Tan, X.; Li, J.; Jia, H.; Tian, M.; Qi, J.; Qin, C.; et al. Functional role of miR-155 in physiological and pathological processes of liver injury (Review). Mol. Med. Rep. 2021, 24, 714. [Google Scholar] [CrossRef]
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Xu, W.; Gong, X.; Yuan, L.; Zhang, X.-B. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging. Acc. Chem. Res. 2020, 54, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, W.; Zhang, W.; Yuan, Y.; Zhu, X.; Wang, Q.; Wei, Y.; Yang, D.; Yang, C.; Chen, Y.; et al. Histone methyltransferase G9a protects against acute liver injury through GSTP1. Cell Death Differ. 2020, 27, 1243–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, T.; Huang, H.-C.; Hsia, C.-W.; Fong, T.-H.; Khamrang, T.; Velusamy, M.; Manubolu, M.; Sheu, J.-R.; Hsia, C.-H. Ruthenium derivatives attenuate LPS-induced inflammatory responses and liver injury via suppressing NF-κB signaling and free radical product ion. Bioorg. Chem. 2020, 96, 103639. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, Q.; Dong, Z.; Yan, Y.; Fu, Y.; Liu, X.; Zhao, B.; Duan, X. Phosphatidylcholine ameliorates lps-induced systemic inflammation and cognitive impairments via mediating the gut–brain axis balance. J. Agric. Food Chem. 2020, 68, 14884–14895. [Google Scholar] [CrossRef]
- Jaeschke, H.; Akakpo, J.Y.; Umbaugh, D.S.; Ramachandran, A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol. Sci. 2020, 174, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Raeeszadeh, M.; Karimi, P.; Khademi, N.; Mortazavi, P. The effect of broccoli extract in arsenic-induced experimental poisoning on the hematological, biochemical, and electrophoretic parameters of the liver and kidney of rats. Evid.-Based Complement. Altern. Med. 2022, 2022, 3509706. [Google Scholar] [CrossRef]
- Li, H.; Xia, Y.; Liu, H.-Y.; Guo, H.; He, X.-Q.; Liu, Y.; Wu, D.-T.; Mai, Y.-H.; Li, H.-B.; Zou, L. Nutritional values, beneficial effects, and food applications of broccoli (Brassica oleracea var. italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- West, L.G.; Meyer, K.A.; Balch, B.A.; Rossi, F.J.; Schultz, M.R.; Haas, G.W. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J. Agric. Food Chem. 2004, 52, 916–926. [Google Scholar] [CrossRef]
- López-Cervantes, J.; Tirado-Noriega, L.G.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Cantú-Soto, E.U.; Núñez-Gastélum, J.A. Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. Int. J. Food Sci. Technol. 2013, 48, 2267–2275. [Google Scholar] [CrossRef]
- Matusheski, N.V.; Jeffery, E.H. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 2001, 49, 5743–5749. [Google Scholar] [CrossRef] [PubMed]
- Srovnalova, A.; Vanduchova, A.; Svecarova, M.; Anzenbacherova, E.; Tomankova, V.; Anzenbacher, P.; Dvorak, Z. Effects of sulforaphane and its S- and R-enantiomers on the expression and activities of human drug-metabolizing cytochromes P450. J. Funct. Foods 2015, 14, 487–501. [Google Scholar] [CrossRef]
- Shah, R.; Reyes-Gordillo, K.; Cheng, Y.; Varatharajalu, R.; Ibrahim, J.; Lakshman, M.R. Thymosin β4 prevents oxidative stress, inflammation, and fibrosis in ethanol- and LPS-induced liver injury in mice. Oxidative Med. Cell. Longev. 2018, 2018, 9630175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markiewicz-Kijewska, M.; Szymanska, S.; Pyzlak, M.; Kalicinski, P.; Teisseyre, J.; Kowalski, A.; Jankowska, I.; Czubkowski, P.; Ismail, H. Liver Histopathology in Late Protocol Biopsies after Pediatric Liver Transplantation. Children 2021, 8, 671. [Google Scholar] [CrossRef]
- West, N.R.; Hegazy, A.N.; Owens, B.M.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Görtz, D.; This, S.; Stockenhuber, K. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017, 23, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Fan, J.-G. Characteristics and mechanism of liver injury in 2019 coronavirus disease. J. Clin. Transl. Hepatol. 2020, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, R.; Tao, X.; Liang, S.; Pan, Y.; He, L.; Sun, J.; Wenbo, J.; Li, X.; Chen, J.; Wang, C. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol-induced liver injury through reducing CYP2E1-dependent oxidative stress. Biomed. Pharmacother. 2018, 99, 537–542. [Google Scholar] [CrossRef]
- Fang, S.; Wang, T.; Li, Y.; Xue, H.; Zou, J.; Cai, J.; Shi, R.; Wu, J.; Ma, Y. Gardenia jasminoides Ellis polysaccharide ameliorates cholestatic liver injury by alleviating gut microbiota dysbiosis and inhibiting the TLR4/NF-κB signaling pathway. Int. J. Biol. Macromol. 2022, 205, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Zhao, W.; Pang, B.; Yang, X.; Li, B.-L.; Ren, M.; Shan, Y.-J. Broccoli sprout extract alleviates alcohol-induced oxidative stress and endoplasmic reticulum stress in C57BL/6 mice. J. Agric. Food Chem. 2018, 66, 5574–5580. [Google Scholar] [CrossRef] [PubMed]
- López-Chillón, M.T.; Carazo-Díaz, C.; Prieto-Merino, D.; Zafrilla, P.; Moreno, D.A.; Villaño, D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin. Nutr. 2019, 38, 745–752. [Google Scholar] [CrossRef]
- Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 2016, 7, 11624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Jiang, X.; Luo, Y.; Zhou, B.; Shi, M.; Liu, F.; Sha, A. Sodium/calcium overload and Sirt1/Nrf2/OH-1 pathway are critical events in mercuric chloride-induced nephrotoxicity. Chemosphere 2019, 234, 579–588. [Google Scholar] [CrossRef]
- Santín-Márquez, R.; Alarcón-Aguilar, A.; López-Diazguerrero, N.E.; Chondrogianni, N.; Königsberg, M. Sulforaphane-role in aging and neurodegeneration. Geroscience 2019, 41, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, L.; Li, C.; Wu, H.; Ran, D.; Zhang, Z. Sulforaphane alter the microbiota and mitigate colitis severity on mice ulcerative colitis induced by DSS. Amb Express 2020, 10, 119. [Google Scholar] [CrossRef]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef]
- Wu, J.; Cui, S.; Liu, J.; Tang, X.; Zhao, J.; Zhang, H.; Mao, B.; Chen, W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit. Rev. Food Sci. Nutr. 2022, 63, 4217–4234. [Google Scholar] [CrossRef]
- Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 2019, 24, 3593. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
Iκ-Bα | 5′-ACCAACCAGCCAGAAATCG-3′ | 5′-TCACAGGCAAGGTGTAGAGGG-3′ |
NF-κB | 5′-CGCCCCTTATCGACCACC-3′ | 5′-CCTTCTCCCAAGAGTCGTCCA-3′ |
Nrf2 | 5′-CCTCCGCTGCCATCAGTCAGT-3′ | 5′-TCGGCTGGGACTCGTGTTCA-3′ |
HO-1 | 5′-ACAGAAGAGGCTAAGACCG-3′ | 5′-CAGCCCTACTTGGTTAGAAT-3′ |
GADPH | 5′-AGGTCGGTGTGAACGGATTTG-3′ | 5′-GGGGTCGTTGATGGCAACA-3′ |
Name | Molecular Formula | Retention Time (min) | Mass | MS Spectral Data m/z |
---|---|---|---|---|
SFN | C6H11NOS2 | 9.59 | 177.28 | 159, 155, 142, 114, 110 |
SFN-CYS | C9H18N2O3S5 | 3.15 | 298.45 | 299, 183, 159, 142, 130, 114 |
SFN-NAC | C11H20N2O4S3 | 7.93 | 340.48 | 341, 183, 155, 142, 118, 114 |
ERN | C6H11NS2 | 14.00 | 161.29 | 155, 142, 118, 114, 110 |
Group | SFN (μM) | SFN-CYS (μM) | SFN-NAC (μM) | ERN (μM) |
---|---|---|---|---|
Control | - | - | - | - |
Model | - | - | - | - |
BSE | 55.77 ± 5.22 | 3.01 ± 0.44 | 53.75 ± 5.46 | 1.39 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, B.; Ren, B.; Wu, J.; Tang, X.; Zhang, Q.; Zhao, J.; Zhang, L.; Chen, W.; Cui, S. The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice. Foods 2023, 12, 2786. https://doi.org/10.3390/foods12142786
Mao B, Ren B, Wu J, Tang X, Zhang Q, Zhao J, Zhang L, Chen W, Cui S. The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice. Foods. 2023; 12(14):2786. https://doi.org/10.3390/foods12142786
Chicago/Turabian StyleMao, Bingyong, Baojing Ren, Jiaying Wu, Xin Tang, Qiuxiang Zhang, Jianxin Zhao, Le Zhang, Wei Chen, and Shumao Cui. 2023. "The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice" Foods 12, no. 14: 2786. https://doi.org/10.3390/foods12142786
APA StyleMao, B., Ren, B., Wu, J., Tang, X., Zhang, Q., Zhao, J., Zhang, L., Chen, W., & Cui, S. (2023). The Protective Effect of Broccoli Seed Extract against Lipopolysaccharide-Induced Acute Liver Injury via Gut Microbiota Modulation and Sulforaphane Production in Mice. Foods, 12(14), 2786. https://doi.org/10.3390/foods12142786