Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges
Abstract
:1. Introduction
2. Principle of Electrochemical Biosensors
3. Foodborne Pathogens: Hazards, Risk Analysis and Control
3.1. Salmonella spp.
3.2. Escherichia coli
3.3. Staphylococcus aureus
3.4. Shigella spp.
3.5. Campylobacter spp.
3.6. Listeria monocytogenes
4. Electrochemical Biosensors for the Detection of Foodborne Pathogens in Food and the Environment
4.1. DNA-Based Electrochemical Biosensors
4.2. Electrochemical Immunosensors
4.3. Electrochemical Aptasensors
4.4. CRISPR/Cas-Based Electrochemical Biosensor
5. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Gousia, P.; Economou, V.; Sakkas, H.; Leveidiotou, S.; Papadopoulou, C. Antimicrobial resistance of major foodborne pathogens from major meat products. Foodborne Pathog. Dis. 2011, 8, 27–38. [Google Scholar] [CrossRef]
- Mayrhofer, S.; Paulsen, P.; Smulders, F.J.; Hilbert, F. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry. Int. J. Food Microbiol. 2004, 97, 23–29. [Google Scholar] [CrossRef]
- Bhunia, A.K. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv. Food Nutr. Res. 2008, 54, 1–44. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef] [Green Version]
- Pietzka, A.; Allerberger, F.; Murer, A.; Lennkh, A.; Stöger, A.; Rosel, A.C.; Huhulescu, S.; Maritschnik, S.; Springer, B.; Lepuschitz, S. Whole genome sequencing based surveillance of L. monocytogenes for early detection and investigations of listeriosis outbreaks. Front. Public Health 2019, 7, 139. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. Multi-country outbreak of Salmonella Agona infections possibly linked to ready-to-eat food. EFSA Support. Publ. 2018, 15, 1465E. [Google Scholar] [CrossRef] [Green Version]
- Strawn, L.K.; Fortes, E.D.; Bihn, E.A.; Nightingale, K.K.; Gröhn, Y.T.; Worobo, R.W.; Wiedmann, M.; Bergholz, P.W. Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms. Appl. Environ. Microbiol. 2013, 79, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Paudyal, N.; Pan, H.; Liao, X.; Zhang, X.; Li, X.; Fang, W.; Yue, M. A meta-analysis of major foodborne pathogens in Chinese food commodities between 2006 and 2016. Foodborne Pathog. Dis. 2018, 15, 187–197. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Aijuka, M.; Buys, E.M. Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health. Food Microbiol. 2019, 82, 363–370. [Google Scholar] [CrossRef]
- Bai, Y.; Song, M.; Cui, Y.; Shi, C.; Wang, D.; Paoli, G.C.; Shi, X. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction. Anal. Chim. Acta 2013, 787, 93–101. [Google Scholar] [CrossRef]
- Cremonesi, P.; Cortimiglia, C.; Picozzi, C.; Minozzi, G.; Malvisi, M.; Luini, M.; Castiglioni, B. Development of a droplet digital polymerase chain reaction for rapid and simultaneous identification of common foodborne pathogens in soft cheese. Front. Microbiol. 2016, 7, 1725. [Google Scholar] [CrossRef]
- Bonilauri, P.; Bardasi, L.; Leonelli, R.; Ramini, M.; Luppi, A.; Giacometti, F.; Merialdi, G. Detection of food hazards in foods: Comparison of real time polymerase chain reaction and cultural methods. Ital. J. Food Saf. 2016, 5, 5641. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Yang, X.; Fang, Y.; Tong, Z.; Lin, H.; Fan, H. Detection of Salmonella infection in chickens by an indirect enzyme-linked immunosorbent assay based on presence of PagC antibodies in sera. Foodborne Pathog. Dis. 2018, 15, 109–113. [Google Scholar] [CrossRef]
- Lv, X.; Huang, Y.; Liu, D.; Liu, C.; Shan, S.; Li, G.; Duan, M.; Lai, W. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. J. Agric. Food Chem. 2019, 67, 9390–9398. [Google Scholar] [CrossRef]
- Wangman, P.; Surasilp, T.; Pengsuk, C.; Sithigorngul, P.; Longyant, S. Development of a species-specific monoclonal antibody for rapid detection and identification of foodborne pathogen Vibrio vulnificus. J. Food Saf. 2021, 41, e12939. [Google Scholar] [CrossRef]
- Ayala, D.I.; Cook, P.W.; Franco, J.G.; Bugarel, M.; Kottapalli, K.R.; Loneragan, G.H.; Brashears, M.M.; Nightingale, K.K. A systematic approach to identify and characterize the effectiveness and safety of novel probiotic strains to control foodborne pathogens. Front. Microbiol. 2019, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Liu, J.; Zhang, Z.; Li, J.; Yuan, L.; Zhang, Z.; Chen, L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC Trends Anal. Chem. 2021, 143, 116371. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar, S.; Yashini, M.; Rajeshwari, S.; Mamathi, C.A.; Thirunavookarasu, S.N.; Sunil, C.K. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1055–1077. [Google Scholar] [CrossRef]
- Dong, X.; Qi, S.; Khan, I.M.; Sun, Y.; Zhang, Y.; Wang, Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr. Rev. Food Sci. Food Saf. 2023, 22, 451–472. [Google Scholar] [CrossRef]
- Lu, L.; Chee, G.; Yamada, K.; Jun, S. Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens. Bioelectron. 2013, 42, 492–495. [Google Scholar] [CrossRef]
- Han, E.; Li, X.; Zhang, Y.; Zhang, M.N.; Cai, J.R.; Zhang, X.N. Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus. Anal. Biochem. 2020, 611, 113982. [Google Scholar] [CrossRef]
- Feng, K.W.; Li, T.; Ye, C.Z.; Gao, X.Y.; Yue, X.L.; Ding, S.Y.; Dong, Q.L.; Yang, M.Q.; Huang, G.H.; Zhang, J.S. A novel electrochemical immunosensor based on Fe3O4@graphene nanocomposite modified glassy carbon electrode for rapid detection of Salmonella in milk. J. Dairy Sci. 2022, 105, 2108–2118. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit. Rev. Food Sci. Nutr. 2018, 58, 84–104. [Google Scholar] [CrossRef]
- Mahari, S.; Gandhi, S. Recent advances in electrochemical biosensors for the detection of Salmonellosis: Current prospective and challenges. Biosensors 2022, 12, 365. [Google Scholar] [CrossRef]
- Melo, A.M.A.; Alexandre, D.L.; Furtado, R.F.; Borges, M.F.; Figueiredo, E.A.T.; Biswas, A.; Cheng, H.N.; Alves, C.R. Electrochemical immunosensors for Salmonella detection in food. Appl. Microbiol. Biotechnol. 2016, 100, 5301–5312. [Google Scholar] [CrossRef]
- Long, W.; Patra, I.; Alhachami, F.R.; Sherbekov, U.A.; Majdi, A.; Abed, S.A. Aptamer based nanoprobes for detection of foodborne virus in food and environment samples: Recent progress and challenges. Crit. Rev. Anal. Chem. 2022. [Google Scholar] [CrossRef]
- Kurmendra. Nanomaterial gas sensors for biosensing applications: A review. Recent Pat. Nanotechnol. 2023, 17, 104–118. [Google Scholar] [CrossRef]
- Hussain, B.; Yüce, M.; Ullah, N.; Budak, H. Bioconjugated nanomaterials for monitoring food contamination. In Nanobiosensors; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 93–127. [Google Scholar]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Awang, M.S.; Bustami, Y.; Hamzah, H.H.; Zambry, N.S.; Najib, M.A.; Khalid, M.F.; Aziah, I.; Manaf, A.A. Advancement in Salmonella detection methods: From conventional to electrochemical-based sensing detection. Biosensors 2021, 11, 346. [Google Scholar] [CrossRef]
- Gu, N.; Liu, S. Introduction to biosensors. J. Mater. Chem. B 2020, 8, 3168–3170. [Google Scholar] [CrossRef]
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhou, J.; Du, X. Electrochemical biosensors for detection of foodborne pathogens. Micromachines 2019, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [Green Version]
- Kozitsina, A.N.; Svalova, T.S.; Malysheva, N.N.; Okhokhonin, A.V.; Vidrevich, M.B.; Brainina, K.Z. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Eng, S.K.; Pusparajah, P.; Mutalib, N.S.A.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Labbé, R.G.; García, S. Guide to Foodborne Pathogens; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Baron, S. Medical Microbiology; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Neto, W.S.; Leotti, V.B.; Pires, S.M.; Hald, T.; Corbellini, L.G. Non-typhoidal human Salmonellosis in Rio Grande do Sul, Brazil: A combined source attribution study of microbial subtyping and outbreak data. Int. J. Food Microbiol. 2021, 338, 108992. [Google Scholar] [CrossRef]
- Harris, A.M. Travel-related infectious diseases. In CDC Yellow Book; Centers for Disease Control and Prevention, Ed.; Oxford University Press: New York, NY, USA, 2020; pp. 169–394. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Peng, K.; Huang, W.; Sun, X.; Huang, Y.; Lei, G.; Lv, H.; Wang, Z.; Yang, X. The genomic epidemiology of mcr-positive Salmonella enterica in clinical patients from 2014 to 2017 in Sichuan, China and global epidemiological features. J. Infect. 2022, 85, 702–769. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Bedford, S.; Davies, R.H. Organic acid and formaldehyde treatment of animal feeds to control Salmonella: Efficacy and masking during culture. J. Appl. Microbiol. 2007, 103, 88–96. [Google Scholar] [CrossRef]
- Jing, W.; Liu, J.; Wu, S.; Li, X.; Liu, Y. Role of cpxA mutations in the resistance to aminoglycosides and β-lactams in Salmonella enterica serovar Typhimurium. Front. Microbiol. 2021, 12, 604079. [Google Scholar] [CrossRef]
- Hu, J.; Che, C.; Zuo, J.; Niu, X.; Wang, Z.; Lian, L.; Jia, Y.; Zhang, H.; Zhang, T.; Yu, F. Effect of antibiotics on the colonization of live attenuated Salmonella enteritidis vaccine in chickens. Front. Vet. Sci. 2021, 8, 784160. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Lee, M.S.; Kim, J.H. Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front. Cell Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.G.; Naas, T.; Carattoli, A.; Martínez-Medina, M. Escherichia coli: An old friend with new tidings. FEMS Microbiol. Rev. 2016, 40, 437–463. [Google Scholar] [CrossRef] [Green Version]
- Gourama, H. Foodborne pathogens. In Food Safety Engineering; Demirci, A., Feng, H., Krishnamurthy, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 25–49. [Google Scholar]
- Yang, S.C.; Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef]
- Saeedi, P.; Yazdanparast, M.; Behzadi, E.; Salmanian, A.H.; Mousavi, S.L.; Nazarian, S.; Amani, J. A review on strategies for decreasing E. coli O157: H7 risk in animals. Microb. Pathog. 2017, 103, 186–195. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, ARBA-0026-2017. [Google Scholar] [CrossRef] [Green Version]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Staphylococcal enterotoxins. Toxins 2010, 2, 2177–2197. [Google Scholar] [CrossRef] [Green Version]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Argudín, M.Á.; Mendoza, M.C.; Rodicio, M.R. Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2010, 2, 1751–1773. [Google Scholar] [CrossRef]
- Bhunia, A.K. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis; Springer: New York, NY, USA, 2018. [Google Scholar]
- Tarisse, C.F.; Goulard-Huet, C.; Nia, Y.; Devilliers, K.; Marcé, D.; Dambrune, C.; Lefebvre, D.; Hennekinne, J.A.; Simon, S. Highly sensitive and specific detection of staphylococcal enterotoxins SEA, SEG, SEH, and SEI by immunoassay. Toxins 2021, 13, 130. [Google Scholar] [CrossRef]
- Assis, L.M.; Nedeljković, M.; Dessen, A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist. Updates 2017, 31, 1–14. [Google Scholar] [CrossRef]
- Liu, C.; Shen, Y.; Yang, M.; Chi, K.; Guo, N. Hazard of staphylococcal enterotoxins in food and promising strategies for natural products against virulence. J. Agric. Food Chem. 2022, 70, 2450–2465. [Google Scholar] [CrossRef]
- Seferbekova, Z.; Zabelkin, A.; Yakovleva, Y.; Afasizhev, R.; Dranenko, N.O.; Alexeev, N.; Gelfand, M.S.; Bochkareva, O.O. High rates of genome rearrangements and pathogenicity of Shigella spp. Front. Microbiol. 2021, 12, 628622. [Google Scholar] [CrossRef]
- Nosrati, M.; Hajizade, A.; Nazarian, S.; Amani, J.; Vansofla, A.N.; Tarverdizadeh, Y. Designing a multi-epitope vaccine for cross-protection against Shigella spp: An immunoinformatics and structural vaccinology study. Mol. Immunol. 2019, 116, 106–116. [Google Scholar] [CrossRef]
- Zaidi, M.B.; Estrada-García, T. Shigella: A highly virulent and elusive pathogen. Curr. Trop. Med. Rep. 2014, 1, 81–87. [Google Scholar] [CrossRef]
- Dudley, E.G. Food microbiology: Fundamentals and frontiers. Emerg. Infect. Dis. 2022, 28, 267. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef]
- Van Den Beld, M.J.C.; Warmelink, E.; Friedrich, A.W.; Reubsaet, F.A.G.; Schipper, M.; De Boer, R.F.; Notermans, D.W.; Petrignani, M.W.F.; Van Zanten, E.; Rossen, J.W.A. Incidence, clinical implications and impact on public health of infections with Shigella spp. and entero-invasive Escherichia coli (EIEC): Results of a multicenter cross-sectional study in the Netherlands during 2016–2017. BMC Infect. Dis. 2019, 19, 1037. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Yazdi, M.; Ghalavand, Z.; Shabani, M.; Houri, H.; Sadredinamin, M.; Taheri, M.; Eslami, G. High rates of antimicrobial resistance and virulence gene distribution among Shigella spp. isolated from pediatric patients in Tehran, Iran. Infect. Drug Resist. 2020, 13, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Guglielmino, C.J.D.; Kakkanat, A.; Forde, B.M.; Rubenach, S.; Merone, L.; Stafford, R.; Graham, R.; Beatson, S.A.; Jennison, A.V. Outbreak of multi-drug-resistant (MDR) Shigella flexneri in Northern Australia due to an endemic regional clone acquiring an IncFII plasmid. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 279–286. [Google Scholar] [CrossRef]
- Charles, H.; Prochazka, M.; Thorley, K.; Crewdson, A.; Greig, D.R.; Jenkins, C.; Painset, A.; Fifer, H.; Browning, L.; Cabrey, P. Outbreak of sexually transmitted, extensively drug-resistant Shigella sonnei in the UK, 2021–22: A descriptive epidemiological study. Lancet Infect. Dis. 2022, 22, 1503–1510. [Google Scholar] [CrossRef]
- Ranjbar, R.; Farahani, A. Shigella: Antibiotic-resistance mechanisms and new horizons for treatment. Infect. Drug Resist. 2019, 12, 3137–3167. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for the Control of Shigellosis, Including Epidemics Due to Shigella dysenteriae Type 1; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Puzari, M.; Sharma, M.; Chetia, P. Emergence of antibiotic resistant Shigella species: A matter of concern. J. Infect. Public Health 2018, 11, 451–454. [Google Scholar] [CrossRef]
- Shahin, K.; Bouzari, M.; Wang, R.; Yazdi, M. Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Int. J. Food Microbiol. 2019, 305, 108252. [Google Scholar] [CrossRef]
- Tang, S.S.; Biswas, S.K.; Tan, W.S.; Saha, A.K.; Leo, B.F. Efficacy and potential of phage therapy against multidrug resistant Shigella spp. PeerJ 2019, 7, e6225. [Google Scholar] [CrossRef] [Green Version]
- Bardsley, M.; Jenkins, C.; Mitchell, H.D.; Mikhail, A.F.W.; Baker, K.S.; Foster, K.; Hughes, G.; Dallman, T.J. Persistent transmission of shigellosis in England is associated with a recently emerged multidrug-resistant strain of Shigella sonnei. J. Clin. Microbiol. 2020, 58, e01692-19. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Amani, Z.; Allahyari, S.; Mousavi, S.; Mahmoudi, R.; Brück, W.M.; Peymani, A. Genetic diversity and antibiotic resistance of Shigella spp. isolates from food products. Food Sci. Nutr. 2021, 9, 6362–6371. [Google Scholar] [CrossRef] [PubMed]
- Phiri, A.F.N.D.; Abia, A.L.K.; Amoako, D.G.; Mkakosya, R.; Sundsfjord, A.; Essack, S.Y.; Simonsen, G.S. Burden, antibiotic resistance, and clonality of Shigella spp. implicated in community-acquired acute diarrhoea in Lilongwe, Malawi. Trop. Med. Infect. Dis. 2021, 6, 63. [Google Scholar] [CrossRef]
- Elkenany, R.; Eltaysh, R.; Elsayed, M.; Abdel-Daim, M.; Shata, R. Characterization of multi-resistant Shigella species isolated from raw cow milk and milk products. J. Vet. Med. Sci. 2022, 84, 890–897. [Google Scholar] [CrossRef]
- Farhani, I.; Nezafat, N.; Mahmoodi, S. Designing a novel multi-epitope peptide vaccine against pathogenic Shigella spp. based immunoinformatics approaches. Int. J. Pept. Res. Ther. 2019, 25, 541–553. [Google Scholar] [CrossRef]
- Śmiałek, M.; Kowalczyk, J.; Koncicki, A. The use of probiotics in the reduction of Campylobacter spp. prevalence in poultry. Animals 2021, 11, 1355. [Google Scholar] [CrossRef]
- Morales-Partera, A.M.; Cardoso-Toset, F.; Luque, I.; Astorga, R.J.; Maldonado, A.; Herrera-León, S.; Hernández, M.; Gómez-Laguna, J.; Tarradas, C. Prevalence and diversity of Salmonella spp., Campylobacter spp., and Listeria monocytogenes in two free-range pig slaughterhouses. Food Control 2018, 92, 208–215. [Google Scholar] [CrossRef]
- Facciolà, A.; Riso, R.; Avventuroso, E.; Visalli, G.; Delia, S.A.; Laganà, P. Campylobacter: From microbiology to prevention. J. Prev. Med. Hyg. 2017, 58, E79–E92. [Google Scholar] [PubMed]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, H.; Berizi, E.; Hosseinzadeh, S.; Majlesi, M.; Zare, M. The prevalence of Campylobacter spp. in vegetables, fruits, and fresh produce: A systematic review and meta-analysis. Gut Pathog. 2018, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- El-Hack, A.; Mohamed, E.; El-Saadony, M.T.; Shehata, A.M.; Arif, M.; Paswan, V.K.; Batiha, G.E.S.; Khafaga, A.F.; Elbestawy, A.R. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: A review. Environ. Sci. Pollut. Res. 2021, 28, 4989–5004. [Google Scholar] [CrossRef]
- Syarifah, I.K.; Latif, H.; Basri, C.; Rahayu, P. Identification and differentiation of Campylobacter isolated from chicken meat using real-time polymerase chain reaction and high resolution melting analysis of hipO and glyA genes. Vet. World 2020, 13, 1875–1883. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2019 zoonoses report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Lin, J. Novel approaches for Campylobacter control in poultry. Foodborne Pathog. Dis. 2009, 6, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Nastasijevic, I.; Proscia, F.; Boskovic, M.; Glisic, M.; Blagojevic, B.; Sorgentone, S.; Kirbis, A.; Ferri, M. The European Union control strategy for Campylobacter spp. in the broiler meat chain. J. Food Saf. 2020, 40, e12819. [Google Scholar] [CrossRef]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic resistance profiles and molecular mechanisms of Campylobacter from chicken and pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef]
- Asare, P.T.; Zurfluh, K.; Greppi, A.; Lynch, D.; Schwab, C.; Stephan, R.; Lacroix, C. Reuterin demonstrates potent antimicrobial activity against a broad panel of human and poultry meat Campylobacter spp. isolates. Microorganisms 2020, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Balta, I.; Linton, M.; Pinkerton, L.; Kelly, C.; Stef, L.; Pet, I.; Stef, D.; Criste, A.; Gundogdu, O.; Corcionivoschi, N. The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021, 121, 107745. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, H.; Ma, T.; Han, X.; Yang, Y.; Sun, J.; Chen, Z.; Yu, H.; Hang, Y.; Liu, F. Flagellar basal body structural proteins FlhB, FliM, and FliY are required for flagellar-associated protein expression in Listeria monocytogenes. Front. Microbiol. 2018, 9, 208. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Schlech, W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019, 7, 601–608. [Google Scholar] [CrossRef]
- Baquero, F.; Lanza, V.F.; Duval, M.; Coque, T.M. Ecogenetics of antibiotic resistance in Listeria monocytogenes. Mol. Microbiol. 2020, 113, 570–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafner, L.; Pichon, M.; Burucoa, C.; Nusser, S.H.; Moura, A.; Garcia-Garcera, M.; Lecuit, M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 2021, 12, 6826. [Google Scholar] [CrossRef] [PubMed]
- Oloketuyi, S.F.; Khan, F. Inhibition strategies of Listeria monocytogenes biofilms—Current knowledge and future outlooks. J. Basic Microbiol. 2017, 57, 728–743. [Google Scholar] [CrossRef]
- Darvish, H.B.; Bahrami, A.; Jafari, S.M.; Williams, L. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products. Crit. Rev. Food Sci. Nutr. 2021, 61, 1241–1259. [Google Scholar] [CrossRef]
- Riu, J.; Giussani, B. Electrochemical biosensors for the detection of pathogenic bacteria in food. TrAC Trends Anal. Chem. 2020, 126, 115863. [Google Scholar] [CrossRef]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1465–1487. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, N.; Zhang, Y.; Guo, W.; Liu, J.; Yang, Q.; Zhang, W. Electrochemical biosensor based on single primer isothermal amplification (SPIA) for sensitive detection of Salmonella in food. Food Anal. Methods 2022, 15, 3270–3282. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Q.; Yang, H.; Zhang, Y.; Guo, W.; Zhang, W. An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food. Food Control 2023, 146, 109528. [Google Scholar] [CrossRef]
- Li, X.; Fu, H.; He, Y.; Zhai, Q.; Guo, J.; Qing, K.; Yi, G. Electrochemical aptasensor for rapid and sensitive determination of Salmonella based on target-induced strand displacement and gold nanoparticle amplification. Anal. Lett. 2016, 49, 2405–2417. [Google Scholar] [CrossRef]
- Chai, M. Aptamer based rGO-AuNPs electrochemical sensors and its application for detection of Salmonella anatum in food. Int. J. Electrochem. Sci. 2022, 17, 220117. [Google Scholar] [CrossRef]
- Soares, R.R.A.; Hjort, R.G.; Pola, C.C.; Parate, K.; Reis, E.L.; Soares, N.F.F.; McLamore, E.S.; Claussen, J.C.; Gomes, C.L. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens. 2020, 5, 1900–1911. [Google Scholar] [CrossRef]
- Feng, K.; Li, T.; Ye, C.; Gao, X.; Yang, T.; Liang, X.; Yue, X.; Ding, S.; Dong, Q.; Yang, M. A label-free electrochemical immunosensor for rapid detection of Salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 2021, 130, 108357. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Li, C.; Ding, Y.; Wang, Y.; Zhu, W.; Wang, J.; Shao, Y.; Pan, H.; Wang, X. EIS biosensor based on a novel Myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes. Food Res. Int. 2022, 158, 111479. [Google Scholar] [CrossRef]
- Wang, D.; Dou, W.; Chen, Y.; Zhao, G. Enzyme-functionalized electrochemical immunosensor based on electrochemically reduced graphene oxide and polyvinyl alcohol-polydimethylsiloxane for the detection of Salmonella pullorum & Salmonella gallinarum. RSC Adv. 2014, 4, 57733–57742. [Google Scholar] [CrossRef]
- Bacchu, M.S.; Ali, M.R.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.I.; Rahman, M.M.; Campbell, K.; Khan, M.Z.H. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta 2022, 1192, 339332. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Arumugasamy, S.K.; Mathiyarasu, J.; Suthindhiran, K. Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. Mater. Sci. Eng. C 2020, 114, 111071. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, H.; Xu, M.; Ma, Q.; Ai, S. A label-free electrochemical impedance immunosensor based on AuNPs/PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem. 2013, 141, 1980–1986. [Google Scholar] [CrossRef]
- Muniandy, S.; Teh, S.J.; Appaturi, J.N.; Thong, K.L.; Lai, C.W.; Ibrahim, F.; Leo, B.F. A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry 2019, 127, 136–144. [Google Scholar] [CrossRef]
- Yu, H.; Yuan, N.; Zhang, Y.; Guo, W.; Lu, X.; Yang, Q.; Zhang, W. Saltatory rolling circle amplification-based ratiometric electrochemical biosensor for rapid detection of Salmonella enterica serovar Typhimurium in food. Food Anal. Methods 2022, 15, 820–832. [Google Scholar] [CrossRef]
- Murasova, P.; Kovarova, A.; Kasparova, J.; Brozkova, I.; Hamiot, A.; Pekarkova, J.; Dupuy, B.; Drbohlavova, J.; Bilkova, Z.; Korecka, L. Direct culture-free electrochemical detection of Salmonella cells in milk based on quantum dots-modified nanostructured dendrons. J. Electroanal. Chem. 2020, 863, 114051. [Google Scholar] [CrossRef]
- Ranjbar, S.; Shahrokhian, S.; Nurmohammadi, F. Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium. Sens. Actuators B Chem. 2018, 255, 1536–1544. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Wisuthiphaet, N.; Yang, X.; Sun, G.; Nitin, N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022, 135, 108811. [Google Scholar] [CrossRef]
- Panhwar, S.; Hassan, S.S.; Mahar, R.B.; Carlson, K.; Talpur, M.Y. Highly sensitive and selective electrochemical sensor for detection of Escherichia coli by using L-cysteine functionalized iron nanoparticles. J. Electrochem. Soc. 2019, 166, B227. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, X.; He, F. Rapid detection of Escherichia coli based on 16S rDNA nanogap network electrochemical biosensor. Biosens. Bioelectron. 2018, 118, 9–15. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Liu, S.; Yu, J.; Wang, H.; Wang, Y.; Huang, J. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Biosens. Bioelectron. 2016, 75, 315–319. [Google Scholar] [CrossRef]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Censi, S.B.; Borriello, G.; Velotta, R.; Ventura, B.D. Screen printed based impedimetric immunosensor for rapid detection of Escherichia coli in drinking water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Bie, S.; Suo, T.; Jia, G.; Liu, B.; Ye, R.; Li, Z. Development of an electrochemical biosensor for rapid and effective detection of pathogenic Escherichia coli in licorice extract. Appl. Sci. 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Bhardwaj, S.K.; Sharma, A.L.; Kim, K.H.; Deep, A. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environ. Res. 2019, 171, 395–402. [Google Scholar] [CrossRef]
- Das, R.; Chaterjee, B.; Kapil, A.; Sharma, T.K. Aptamer-NanoZyme mediated sensing platform for the rapid detection of Escherichia coli in fruit juice. Sens. Bio Sens. Res. 2020, 27, 100313. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, L.; Bu, S.; Zhang, W.; Chen, J.; Li, Z.; Hao, Z.; Wan, J. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. J. Electroanal. Chem. 2021, 901, 115755. [Google Scholar] [CrossRef]
- Bai, H.; Bu, S.; Liu, W.; Wang, C.; Li, Z.; Hao, Z.; Wan, J.; Han, Y. An electrochemical aptasensor based on cocoon-like DNA nanostructure signal amplification for the detection of Escherichia coli O157: H7. Analyst 2020, 145, 7340–7348. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Yang, Y.; Wen, Y.; Wang, S.; Xu, L.P. Superwettable electrochemical biosensor based on a dual-DNA walker strategy for sensitive E. coli O157: H7 DNA detection. Sens. Actuators B Chem. 2020, 321, 128472. [Google Scholar] [CrossRef]
- Park, Y.M.; Lim, S.Y.; Jeong, S.W.; Song, Y.; Bae, N.H.; Hong, S.B.; Choi, B.G.; Lee, S.J.; Lee, K.G. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Converg. 2018, 5, 15. [Google Scholar] [CrossRef]
- Wang, L.; Huang, F.; Cai, G.; Yao, L.; Zhang, H.; Lin, J. An electrochemical aptasensor using coaxial capillary with magnetic nanoparticle, urease catalysis and PCB electrode for rapid and sensitive detection of Escherichia coli O157: H7. Nanotheranostics 2017, 1, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pangajam, A.; Theyagarajan, K.; Dinakaran, K. Highly sensitive electrochemical detection of E. coli O157: H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sens. Bio Sens. Res. 2020, 29, 100317. [Google Scholar] [CrossRef]
- Brosel-Oliu, S.; Ferreira, R.; Uria, N.; Abramova, N.; Gargallo, R.; Munoz-Pascual, F.X.; Bratov, A. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157: H7. Sens. Actuators B Chem. 2018, 255, 2988–2995. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.; Wu, Z.; Huang, J.; Zhao, G.; Dou, W. A sensitive and regenerative electrochemical immunosensor for quantitative detection of Escherichia coli O157: H7 based on stable polyaniline coated screen-printed carbon electrode and rGO-NR-Au@ Pt. Anal. Methods 2019, 11, 1475–1482. [Google Scholar] [CrossRef]
- Huang, L.; Yuan, N.; Guo, W.; Zhang, Y.; Zhang, W. An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a. Talanta 2023, 252, 123821. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z.; Wei, X. Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim. Acta 2014, 181, 967–974. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, Z.; Chen, H.; Tian, Y.; Zhou, N. A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch. Sens. Actuators B Chem. 2021, 326, 128842. [Google Scholar] [CrossRef]
- Yue, H.; Zhou, Y.; Wang, P.; Wang, X.; Wang, Z.; Wang, L.; Fu, Z. A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta 2016, 153, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Shahrokhian, S. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 2018, 123, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Abdalhai, M.H.; Fernandes, A.M.; Bashari, M.; Ji, J.; He, Q.; Sun, X. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef. J. Agric. Food Chem. 2014, 62, 12659–12667. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Devarakonda, S.; Kumar, S.; Jang, J. Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sens. Actuators B Chem. 2017, 253, 115–123. [Google Scholar] [CrossRef]
- Abbaspour, A.; Norouz-Sarvestani, F.; Noori, A.; Soltani, N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens. Bioelectron. 2015, 68, 149–155. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, S.; Chen, L.; Li, M.; Zhang, Y.; Zhou, N. Self-assembled DNA nanoflowers triggered by a DNA walker for highly sensitive electrochemical detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces 2021, 13, 4905–4914. [Google Scholar] [CrossRef]
- Ali, M.R.; Bacchu, M.S.; Das, S.; Akter, S.; Rahman, M.M.; Aly, M.A.S.; Khan, M.Z.H. Label free flexible electrochemical DNA biosensor for selective detection of Shigella flexneri in real food samples. Talanta 2023, 253, 123909. [Google Scholar] [CrossRef]
- Zarei, S.S.; Soleimanian-Zad, S.; Ensafi, A.A. An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Microchim. Acta 2018, 185, 538. [Google Scholar] [CrossRef]
- Morant-Miñana, M.C.; Elizalde, J. Microscale electrodes integrated on COP for real sample Campylobacter spp. detection. Biosens. Bioelectron. 2015, 70, 491–497. [Google Scholar] [CrossRef]
- Cheng, C.; Peng, Y.; Bai, J.; Zhang, X.; Liu, Y.; Fan, X.; Ning, B.; Gao, Z. Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sens. Actuators B Chem. 2014, 190, 900–906. [Google Scholar] [CrossRef]
- Saini, K.; Kaushal, A.; Gupta, S.; Kumar, D. PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3 Biotech 2020, 10, 327. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Zhao, Y.; Li, W.; Qiu, L.; Li, L. A novel and disposable enzyme-labeled amperometric immunosensor based on MWCNT fibers for Listeria monocytogenes detection. J. Nanomater. 2016, 2016, 3895920. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Lin, J.; Gan, C.; Wang, Y.; Wang, D.; Xiong, Y.; Lai, W.; Li, Y.; Wang, M. A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens. Bioelectron. 2015, 74, 504–511. [Google Scholar] [CrossRef]
- Li, Y.; Wu, L.; Wang, Z.; Tu, K.; Pan, L.; Chen, Y. A magnetic relaxation DNA biosensor for rapid detection of Listeria monocytogenes using phosphatase-mediated Mn (VII)/Mn (II) conversion. Food Control 2021, 125, 107959. [Google Scholar] [CrossRef]
- Li, F.; Ye, Q.; Chen, M.; Zhou, B.; Zhang, J.; Pang, R.; Xue, L.; Wang, J.; Zeng, H.; Wu, S. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens. Bioelectron. 2021, 179, 113073. [Google Scholar] [CrossRef]
- Huang, Y.M.; Hsu, H.Y.; Hsu, C.L. Development of electrochemical method to detect bacterial count, Listeria monocytogenes, and somatic cell count in raw milk. J. Taiwan Inst. Chem. Eng. 2016, 62, 39–44. [Google Scholar] [CrossRef]
- Chiriacò, M.S.; Parlangeli, I.; Sirsi, F.; Poltronieri, P.; Primiceri, E. Impedance sensing platform for detection of the food pathogen Listeria monocytogenes. Electronics 2018, 7, 347. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Zheng, W.; Yin, C.; Weng, W.; Li, G.; Sun, W.; Men, Y. Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of Listeria monocytogenes hly gene sequence. J. Electroanal. Chem. 2017, 806, 116–122. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Q.; Huo, H.; Bai, S.; Cai, G.; Lai, W.; Lin, J. Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control 2017, 73, 555–561. [Google Scholar] [CrossRef]
- Paniel, N.; Baudart, J.; Hayat, A.; Barthelmebs, L. Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 2013, 64, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Tessaro, L.; Aquino, A.; De Almeida Rodrigues, P.; Joshi, N.; Ferrari, R.G.; Conte-Junior, C.A. Nucleic acid-based nanobiosensor (NAB) used for Salmonella detection in Foods: A systematic review. Nanomaterials 2022, 12, 821. [Google Scholar] [CrossRef]
- Zhu, D.; Yan, Y.; Lei, P.; Shen, B.; Cheng, W.; Ju, H.; Ding, S. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal. Chim. Acta 2014, 846, 44–50. [Google Scholar] [CrossRef]
- Zhu, F.; Zhao, G.; Dou, W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157: H7 using Au@ Pt and graphene. Anal. Biochem. 2018, 559, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Gizeli, E.; Lowe, C.R. Immunosensors. Curr. Opin. Biotechnol. 1996, 7, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Paniel, N.; Noguer, T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods 2019, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Bonini, A.; Poma, N.; Vivaldi, F.; Kirchhain, A.; Salvo, P.; Bottai, D.; Tavanti, A.; Di Francesco, F. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J. Pharm. Biomed. Anal. 2021, 192, 113645. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.; Mahas, A.; Mahfouz, M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth. Biol. 2020, 9, 1226–1233. [Google Scholar] [CrossRef]
- Xu, W.; Jin, T.; Dai, Y.; Liu, C.C. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens. Bioelectron. 2020, 155, 112100. [Google Scholar] [CrossRef]
Target Pathogen | Bioreceptor | Detection Method | Assay Strategy | Material Type | LOD | Linear Range | Matrix | Ref. |
---|---|---|---|---|---|---|---|---|
Salmonella spp. | DNA probe | SWV–CV–EIS | SPIA-based biosensors | AuNPs/GCE | 68 CFU/mL | 6.8 × 101–6.8 × 108 CFU/mL | Animal meat | [106] |
Salmonella spp. | DNA probe | SWV | SRCA-CRISPR/Cas12a signal amplification strategy | AuNPs/GCE | 2.08 fg/μL | 5.8 fg/μL–5.8 ng/μL | Chicken and pork | [107] |
Salmonella spp. | Aptamer | DPV | Aptasensor | Gold nanoparticles | 200 CFU/mL | 2 × 102–2 × 106 CFU/mL | Milk | [108] |
Salmonella spp. | Aptamer | CV–EIS–DPV | Aptasensor | rGO-AuNPs | 200 CFU/mL | 6 × 102–6 × 107 CFU/mL | Pork and beef | [109] |
Salmonella spp. | Antibody | EIS | Immunosensors | Multilayer graphene | 13 CFU/mL | 101–105 CFU/mL | Chicken broth | [110] |
Salmonella spp. | Antibody | DPV | Immunosensor | CoFe-MOFs-graphene | 1.2 × 102 CFU/mL | 2.4 × 102–2.4 × 108 CFU/mL | Milk | [111] |
S. enteritidis | Bacteriophages as new molecular probes | EIS | Phage-based biosensor | GDE-AuNPs-Cys-Phage SEP37 | 1 CFU/mL | 2 × 102–2 × 105 CFU/mL | Chicken breast meat | [112] |
S. pullorum and S. gallinarum | Antibody | CV | Immunosensor | SPCE | 16.1 CFU/mL | 101–109 CFU/mL | Chicken and eggs | [113] |
S. typhi | DNA probe | DPV | DNA biosensor | SPE/P-Cys@AuNPs | 1 CFU/mL | 1.8–1.8 × 105 CFU/mL | Blood, poultry faeces, eggs and milk | [114] |
S. typhimurium | Magnetosome-anti-Salmonella antibody complex | EIS | Magnetosome-based biosensors | SPCE | 101 CFU/mL | 101–107 CFU/mL | Water and milk | [115] |
S. typhimurium | Antibody | CV–EIS | Immunosensor | AuNPs/PAMAM-MWCNT-Chi/GCE | 5.0 × 102 CFU/mL | 1.0 × 103–1.0 × 107 CFU/mL | Milk | [116] |
S. typhimurium | Aptamer | DPV | Aptasensor | rGO-TiO2 nanocomposite | 101 CFU/mL | 101–108 CFU/mL | Chicken meat | [117] |
S. typhimurium | DNA probe | SWV–CV–EIS | SRCA-based ratiometric electrochemical biosensor | SH-β-CD/AuNPs/GCE | 15.8 fg/μL | 30 fg/μL–30 ng/μL | Animal meat, eggs and dairy products | [118] |
S. typhimurium | Antibody | SWV | Immunosensor | SPCE | 4 CFU/mL | 4–36 CFU/mL | Milk | [119] |
S. typhimurium | Aptamer | CV–EIS | Aptasensor | AuNPs/GCE | 1 CFU/mL | 6.5 × 102–6.5 × 108 CFU/mL | Eggs | [120] |
E. coli | Engineered phage | DPV | Bacteriophage-based biosensors | SWCNT-SPE | 1 CFU/mL | 1–104 CFU/mL | Spinach leaves | [121] |
E. coli | L-cysteine | CV | Amino functionalized iron nanoparticles-based biosensors | L-Cyst-Fe3O4 NPs | 10 CFU/mL | 101–105 CFU/mL | Tap water | [122] |
E. coli | PNA probe | Conductometry | DNA biosensor | AuNPs | 102 CFU/mL | 103–108 CFU/mL | Water | [123] |
E. coli | Aptamer-primer probe | CV–DPV | RCA coupled DNAzyme amplification-based biosensor | Au | 8 CFU/mL | 9.4–9.4 × 105 CFU/mL | Milk | [124] |
E. coli | Antibody | CV–EIS | Immunosensor | AuSPEs | 30 CFU/mL | 101–108 CFU/mL | Drinking water | [125] |
E. coli | Aptamer | DPV | Aptasensor | Au | 80 CFU/mL | 5.0 × 102–5.0 × 107 CFU/mL | Licorice extract | [126] |
E. coli | Antibody | EIS | MOF based biosensor | Ab/Cu3(BTC)2-PANI/ITO | 2 CFU/mL | 2.0–2 × 108 CFU/mL | Lake water | [127] |
E. coli | Aptamer-NanoZyme | CV | Aptamer-NanoZyme based biosensor | AuNPs | 10 CFU/mL | 101–109 CFU/mL | Apple juice | [128] |
E. coli O157:H7 | DNA probe | DPV | CRISPR/Cas12a- and immuno-RCA-based biosensors | Au | 10 CFU/mL | 101–107 CFU/mL | Milk | [129] |
E. coli O157:H7 | Aptamer | CV–EIS–DPV | Aptasensor | Au | 10 CFU/mL | 101–106 CFU/mL | Milk | [130] |
E. coli O157:H7 | Dual-DNA probe | CV–EIS–DPV | Dual-DW biosensor | Au | 30 aM | 10−7–10−1 nM | Peach juice and milk | [131] |
E. coli O157:H7 | Dual-DNA probe | SWV | Dual-DW biosensor | Polyaniline nanopillar array | 10 CFU/mL | 101–105 CFU/mL | Milk | [132] |
E. coli O157:H7 | Aptamer | Impedimetry | Aptasensor | MNPs-AuNPs | 10 CFU/mL | 101–105 CFU/mL | Milk | [133] |
E. coli O157:H7 | DNA probe | DPV | DNA hybridization biosensors | CD/ZnO/PANI | 1.3 × 10−18 M | 1.3 × 10−18–5.2 × 10−12 M | Water | [134] |
E. coli O157:H7 | Aptamer | EIS | Aptasensor | 3D-IDEA | 2.9 × 102 CFU/mL | 101–105 CFU/mL | Drinking water | [135] |
E. coli O157:H7 | Antibody | CV | Immunosensor | SPCE-PANI-AuNPs | 2.84 × 103 CFU/mL | 8.9 × 103–8.9 × 109 CFU/mL | Milk and pork | [136] |
S. aureus | DNA probe | SWV | SRCA-CRISPR/Cas12a -based E-DNA biosensor | AuNPs/GCE | 3 CFU/mL | 3.9 × 101–3.9 × 107 CFU/mL | Milk | [137] |
S. aureus | DNA probe | EIS | Aptasensor | rGO-AuNPs | 10 CFU/mL | 10–106 CFU/mL | Fish and water | [138] |
S. aureus | DNA probe | DPV | SDA reaction and triple-helix molecular switch based biosensor | Au | 8 CFU/mL | 30–3 × 108 CFU/mL | Lake water, tap water and honey | [139] |
S. aureus | IgG | EIS | Label-free ECL biosensor | Carboxyl graphene/porcin IgG/GCE | 3.1 × 102 CFU/mL | 103–109 CFU/mL | Milk, lake water, human saliva and human urine | [140] |
S. aureus | Aptamer | CV–EIS | Aptasensor | AuNPs/CNPs/CNFs | 1 CFU/mL | 1.2 × 101–1.2 × 108 CFU/mL | Human serum | [141] |
S. aureus | DNA probe | DPV | DNA biosensor | MWCNT-Chi-Bi | 3.17×10−14 M | 3.87 × 10−14–1.22 × 10−15 M | Beef | [142] |
S. aureus | Antibody | CV–DPV | Paper-based immunosensor | SWCNT | 13 CFU/mL | 10–107 CFU/mL | Milk | [143] |
S. aureus | Aptamer | DPV | Aptasensor | AgNPs | 1 CFU/mL | 10–106 CFU/mL | Tap and river water | [144] |
S. aureus | Dual-DNA probe | DPV | DNA walker and DNA nanoflowers based biosensor | Au | 9 CFU/mL | 60–6 × 107 CFU/mL | Lake water, tap water and honey | [145] |
Shigella flexneri | DNA probe | CV–EIS–DPV | DNA biosensor | ITO/P-Mel/PGA/DSS | 10 cells/mL | 80–8 × 1010 Cells/mL | Meat, milk, bread, tape water and salad | [146] |
Shigella dysenteriae | Aptamer | EIS | Aptasensor | GCE/AuNPs | 1 CFU/mL | 101–106 CFU/mL | Water and milk | [147] |
Campylobacter spp. | DNA probe | CV–SWV | Genosensor | COP/Au | 90 pM | 1–25 nM | Raw poultry meat | [148] |
L. monocytogenes | Antibody | CV–EIS | Immunosensor | SAM/Au | 102 CFU/mL | 103–106 CFU/mL | Milk | [149] |
L. monocytogenes | DNA probe | CV | DNA biosensor | CNF/AuNPs | 82 fg/6 µL | 0–0.234 ng/6 μL | Milk | [150] |
L. monocytogenes | Antibody | CV | Immunosensor | MWCNT fibres | 1.07 × 102 CFU/mL | 102–105 CFU/mL | Milk | [151] |
L. monocytogenes | Antibody | EIS | Immunosensor | IDE/MBs-AuNPs | 30 CFU/mL | 3.0 × 101–3.0 × 104 CFU/mL | Lettuce | [152] |
L. monocytogenes | DNA probe | CV | DNA biosensor | MNPs | 102 CFU/mL | 2 × 102–2 × 107 CFU/mL | Ham | [153] |
L. monocytogenes | DNA probe | SWV | CRISPR/Cas12a-based biosensor | Au | 9.4 × 102 CFU/g | 9.4 × 100–9.4 × 107 CFU/mL | Flammulina velutipes | [154] |
L. monocytogenes | Ferric ammonium citrate and esculin | Amperometry | SCC based biosensor | Pt | - | 102–108 CFU/mL | Milk | [155] |
L. monocytogenes | Antibody | EIS | Immunosensor | IDE Au | 5.5 CFU/mL | 1 × 102–2.2 × 103 CFU/mL | Milk | [156] |
L. monocytogenes | DNA probe | DPV | DNA biosensor | ssDNA/RGO/AuNPs/CILE | 3.17 × 10–14 M | 10–13–10–6 M | Fish meat | [157] |
L. monocytogenes | Polyclonal antibody | EIS | Impedance biosensor | MNP(MAb)-Lm-AuNPs (urease-PAb)/SPIE | 1.6 × 103 CFU/mL | 1.9 × 103–1.9 × 106 CFU/mL | Lettuce | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, H.; Lu, X.; Zheng, X.; Yang, Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023, 12, 2795. https://doi.org/10.3390/foods12142795
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods. 2023; 12(14):2795. https://doi.org/10.3390/foods12142795
Chicago/Turabian StyleWang, Bo, Hang Wang, Xubin Lu, Xiangfeng Zheng, and Zhenquan Yang. 2023. "Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges" Foods 12, no. 14: 2795. https://doi.org/10.3390/foods12142795
APA StyleWang, B., Wang, H., Lu, X., Zheng, X., & Yang, Z. (2023). Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods, 12(14), 2795. https://doi.org/10.3390/foods12142795