Nutritional Profile Changes in an Insect–Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Preparation
2.2. Polysaccharide Determination
2.3. Crude Protein Determination
2.4. Chitin Content Determination
2.5. Crude Fat Determination
2.6. Fatty Acid Determination
2.7. Amino Acid Determination
2.8. Cordycepin Determination
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Tissue Changes of the Infected Pupa
3.2. Polysaccharide Analysis
3.3. Crude Fat and Fatty Acid Analysis
3.4. Crude Protein and Amino Acid Analysis
3.5. Chitin Analysis
3.6. Cordycepin Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hazarika, A.K.; Kalita, U. Human consumption of insects. Science 2023, 379, 140–141. [Google Scholar] [CrossRef] [PubMed]
- Van, H.A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar]
- Van, H.A.; Halloran, A.; Van, I.J.; Klunder, H.; Vantomme, P. How many people on our planet eat insects: 2 billion? J. Insects Food Feed 2022, 8, 1–4. [Google Scholar]
- Inacio, A.C.; Vagsholm, I.; Jansson, A.; Vaga, M.; Boqvist, S.; Fraqueza, M.J. Impact of starvation on fat content and microbial load in edible crickets (Acheta domesticus). J. Insects Food Feed 2021, 7, 1143–1147. [Google Scholar] [CrossRef]
- Fischer, A.R. Eating insects–from acceptable to desirable consumer products. J. Insects Food Feed 2021, 7, 1061–1063. [Google Scholar] [CrossRef]
- Dagevos, H. A literature review of consumer research on edible insects: Recent evidence and new vistas from 2019 studies. J. Insects Food Feed 2021, 7, 249–259. [Google Scholar] [CrossRef]
- Du, X.F.; Li, Y.J.; Wen, Z.X.; Li, X.J.; Ma, S.H.; Meng, N. Research progress on nutritional value and comprehensive utilization of Tussah pupa. Acta Sericologica Sin. 2021, 47, 81–87. [Google Scholar]
- Feng, Y.; Zhao, M.; Ding, W.F.; Chen, X.M. Overview of edible insect resources and common species utilization in China. J. Insects Food Feed 2020, 6, 13–25. [Google Scholar] [CrossRef]
- Baral, B. Entomopathogenicity and biological attributes of himalayan treasured fungus Ophiocordyceps sinensis (yarsagumba). J. Fungi 2017, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Shan, Y.; Sun, Z.R. The utilization and analysis of present market situation for Cordyceps sinensis. Res. Pract. Chin. Med. 2016, 30, 83–86. [Google Scholar]
- Li, Y.; Wang, X.L.; Jiao, L.; Jiang, Y.; Li, H.; Jiang, S.P. A survey of the geographic distribution of Ophiocordyceps sinensis. J. Microbiol. 2011, 49, 913–919. [Google Scholar] [CrossRef]
- Yang, J.L.; Xiao, W.; He, H.X.; Zhu, H.X.; Wang, S.F.; Cheng, K.D. Molecular phylogenetic analysis of Paecilomyces hepiali and Cordyceps sinensis. Acta Pharm. Sin. 2008, 43, 421–426. [Google Scholar] [CrossRef]
- Dong, C.H.; Guo, S.P.; Wang, W.F.; Liu, X.Z. Cordyceps industry in China. Mycology 2015, 6, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.L. Chemical constituents from fermented mycelium of Paecilomyces hepiali. Chin. Tradit. Herb. Drugs 2013, 2013, 947–950. [Google Scholar]
- Dan, A.; Hu, Y.J.; Chen, R.Y.; Lin, X.G.; Tian, Y.Q.; Wang, S.Y. Advances in research on chemical constituents and pharmacological effects of Paecilomyces hepiali. Food Sci. Hum. Well. 2021, 10, 401–407. [Google Scholar] [CrossRef]
- Wu, Z.W.; Lu, J.W.; Wang, X.Q.; Hu, B.; Ye, H.; Fan, J.L. Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr. Polym. 2014, 99, 226–234. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, H.Y.; Yang, M. Antitumor activity of a petroleum ether extract from Paecilomyces hepiali mycelium. Acta Edulis Fungi 2010, 17, 58–60. [Google Scholar]
- Zeng, Z.T.; Fu, Y.; Xiong, Y.W.; Zi, X.F.; Peng, Z.J.; Huang, L.L. Effects of Paecilomyces hepiali on proliferation, apoptosis and expression of VEGF, MMP-2 of SMMC 7721 cells. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 141–144. [Google Scholar]
- Thakur, A.; Ren, H.; Zhang, H.; Yang, T.; Chen, T.J.; Chen, M.W. Pro-apoptotic effects of Paecilomyces hepiali, a Cordyceps sinensis extract on human lung adenocarcinoma A549 cells in vitro. J. Cancer Res. Ther. 2011, 7, 421–426. [Google Scholar] [PubMed]
- Wu, Z.W.; Zhang, M.X.; Xie, M.H.; Dai, Z.Q.; Wang, X.Q.; Hu, B. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohyd. Polym. 2016, 137, 541–548. [Google Scholar] [CrossRef]
- Yu, S.J.; Song, J.X.; Zhang, Q.; Li, C.R.; Fan, M.Z. Effect of fractional exopolysaccharides from fermented broth of two related Cordyceps fungi on lifespan, SOD and MDA of fruit flies. Chin. J. Microecol. 2010, 22, 993–1000. [Google Scholar]
- Park, S.Y.; Jung, S.J.; Ha, K.C.; Sin, H.S.; Jang, S.; Chae, H.J. Anti-inflammatory effects of Cordyceps mycelium (Paecilomyces hepiali, CBG-CS-2) in Raw264.7 murine macrophages. Oriental. Pharm. Exp. Med. 2015, 15, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Teng, L.; Liu, Y.; Hu, W.; Chen, W.; Hu, X. Studies on the antidiabetic and antinephritic activities of Paecilomyces hepiali water extract in diet-streptozotocin-induced diabetic sprague dawley rats. J. Diabetes Res. 2016, 2016, 4368380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamage, S.; Nakayama, J.; Fuyuno, Y.; Ohga, S. The effect of the hot water extracts of the Paecilomyces hepiali and Cordyceps militaris mycelia on the growth of gastrointestinal bacteria. Adv. Microbiol. 2018, 8, 490. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.S.; Jiang, G.Y. Antibiotic activities and chemical composition of mycelia of a strain Paecilomyces hepiali. J. Kunming Med. Univ. 2012, 33, 32–34. [Google Scholar]
- Chae, S.-C.W.; Mitsunaga, F.; Jung, S.J.; Ha, K.C.; Sin, H.S.; Jang, S.H. Mechanisms underlying the antifatigue effects of the mycelium extract of Cordyceps (Paecilomyces hepiali, CBG-CS-2) in mice in the forced swimming test. Food Nutr. Sci. 2015, 6, 287. [Google Scholar]
- Wang, J.; Li, L.Z.; Liu, Y.G.; Teng, L.R.; Lu, J.H.; Xie, J.; Hu, W.J.; Liu, Y.; Liu, Y.; Wang, D.; et al. Investigations on the antifatigue and antihypoxic effects of Paecilomyces hepiali extract. Mol. Med. Rep. 2016, 13, 1861–1868. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.H.; Liang, H.C.; Wen, Q.; Ye, E.; Yang, Z. Effect of Paecilomyces hepiali mycelium on physical fatigue and hypoxia in mice. Mil. Med. Sci. 2014, 38, 784–790. [Google Scholar]
- Li, Y.J.; Meng, N.; Wen, Z.X.; Du, X.F.; Ma, S.H.; Mi, R.; Sun, Y.X. Analysis of the main components and biological activities of Antheraea pernyi and Cordyceps militaris during different cultivation periods. Acta Sericologica Sin. 2020, 46, 254–260. [Google Scholar]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Guo, M.; Guo, S.; Hua, Y.; Bu, N.; Dong, C. Comparison of major bioactive compounds of the caterpillar medicinal mushroom, Cordyceps militaris (ascomycetes), fruiting bodies cultured on wheat substrate and pupae. Int. J. Med. Mushrooms 2016, 18, 327–336. [Google Scholar] [CrossRef]
- Boulos, S.; Tannler, A.; Nystrom, L. Nitrogen-to-protein conversion factors for edible insects on the swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.J.; Liu, M.T. The research of abstraction chitosan from leaf chafer. J. Northwest Sci. Tech. Univ. Agric. For. 2003, 31, 127–130. [Google Scholar]
- Butte, W. Rapid method for the determination of fatty acid profiles from fats and oils using trimethylsulfonium hydroxide for transesterification. J. Chromatogr. A 1983, 261, 142–145. [Google Scholar] [CrossRef]
- Wang, D.; Bai, Y.Y.; Li, J.H.; Zhang, C.X. Nutritional value of the field cricket (Gryllus Testaceus Walker). Insect Sci. 2004, 11, 275–283. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Xue, X.F.; Zhou, J.H.; Chen, F.; Wu, L.M.; Li, Y. Determination of tryptophan in bee pollen and royal jelly by high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 2009, 23, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. Protein Amino Acid Nutr. 1959, 1, 281. [Google Scholar]
- Millward, D.J. Amino acid scoring patterns for protein quality assessment. Brit. J. Nutr. 2012, 108, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, J.; Jia, D.; Li, L.; Jia, B.; Fan, S. Anti-nociceptive effects of Paecilomyces hepiali via multiple pathways in mouse models. Genet. Mol. Res. 2016, 15, 10–4238. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Li, L.; Qi, Y.; Zhang, Y.; Li, L. Dopamine and serotonin contribute to Paecilomyces hepiali against chronic unpredictable mild stress induced depressive behavior in Sprague Dawley rats. Mol. Med. Rep. 2017, 16, 5675–5682. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.J.; Wang, J.; Guo, W.Y.; Liu, Y.G.; Guo, Z.; Miao, Y.G.; Wang, D. Studies on characteristics and anti-diabetic and-nephritic effects of polysaccharides isolated from Paecilomyces hepiali fermentation mycelium in db/db mice. Carbohyd. Polym. 2020, 232, 115766. [Google Scholar] [CrossRef]
- Yuan, Q.H.; Xie, F.; Tan, J.; Yuan, Y.; Mei, H.; Zheng, Y. Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review. J. Funct. Foods 2022, 89, 104909. [Google Scholar] [CrossRef]
- Zeikus, J.G.; Jain, M.K.; Elankovan, P. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 1999, 51, 545–552. [Google Scholar] [CrossRef]
- Kumar, R.; Basak, B.; Jeon, B.H. Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. J. Clean. Prod. 2020, 277, 123954. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001, 36, 1007–1024. [Google Scholar] [CrossRef]
- Pratt, C.L.; Brown, C.R. The role of eicosanoids in experimental Lyme arthritis. Front. Cell. Infect. Microbiol. 2014, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- Tallima, H.; Ridi, R.E. Arachidonic acid: Physiological roles and potential health benefits-a review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Safety assessment of myristic acid as a food ingredient. Food Chem. Toxicol. 2007, 45, 517–529. [Google Scholar] [CrossRef]
- Babu, S.V.V.; Veeresh, B.; Patil, A.A.; Warke, Y.B. Lauric acid and myristic acid prevent testosterone induced prostatic hyperplasia in rats. Eur. J. Pharmacol. 2010, 626, 262–265. [Google Scholar] [CrossRef]
- Di, R.M.; Distefano, G.; Zorena, K.; Malaguarnera, L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology 2016, 221, 399–411. [Google Scholar]
- Lee, C.G.; Silva, C.A.; Lee, J.Y.; Hartl, D.; Elias, J.A. Chitin regulation of immune responses: An old molecule with new roles. Curr. Opin. Immunol. 2008, 20, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. CMAJ 2005, 173, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Piao, X.S.; Thacker, P.A.; Zeng, Z.K.; Li, P.F.; Wang, D. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J. Anim. Sci. 2010, 88, 3871–3879. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Józefiak, A.; Henry, M. Beyond the protein concept: Health aspects of using edible insects on animals. J. Insects Food Feed 2021, 7, 715–741. [Google Scholar] [CrossRef]
- Apata, D.F. Antibiotic resistance in poultry. J. Poult. Sci. 2009, 8, 404–408. [Google Scholar] [CrossRef] [Green Version]
- King, D.A.; Peckham, C.; Waage, J.K.; Brownlie, J.; Woolhouse, M.E. Infectious diseases: Preparing for the future. Science 2006, 313, 1392–1393. [Google Scholar] [CrossRef]
- Cunningham, K.G.; Manson, W.; Spring, F.S.; Hutchinson, S.A. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 1950, 166, 949. [Google Scholar] [CrossRef]
- Kim, H.G.; Shrestha, B.; Lim, S.Y.; Yoon, D.H.; Chang, W.C.; Shin, D.J. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-κB through akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 2006, 545, 192–199. [Google Scholar] [CrossRef]
- Noh, E.M.; Kim, J.S.; Hur, H.; Park, B.H.; Song, E.K.; Han, M.K. Cordycepin inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 2009, 48, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Li, Y.; Shen, Y.; Li, Q.; Wang, Q.; Feng, L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol. Lett. 2015, 10, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Cai, G.; He, Y.I.; Tong, G. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor. Exp. Ther. Med. 2016, 12, 1812–1816. [Google Scholar] [CrossRef]
- Mao, X.L.; Zhen, G.D.; Zhang, C.; Guo, X.L. Determination of adenosine, cordycepin, and inosine in Cordyceps sinensis by RP-HPLC. Cntrl. S. Pharm. 2009, 7, 895–897. [Google Scholar]
- Ge, M.; Guo, R.; Lou, H.X.; Zhang, W. Extract of Paecilomyces hepiali mycelia induces lipolysis through PKA-mediated phosphorylation of hormone-sensitive lipase and ERK-mediated downregulation of perilipin in 3T3-L1 adipocytes. BMC Complement. Altern. Med. 2018, 18, 326. [Google Scholar] [CrossRef]
- Kaushik, V.; Singh, A.; Arya, A.; Sindhu, S.C.; Sindhu, A.; Singh, A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. Biotechnol. Rep. 2020, 28, e00557. [Google Scholar] [CrossRef]
Item | Time(d) | ||||
---|---|---|---|---|---|
0 d | 10 d | 20 d | 30 d | ||
SFA (%) | Palmitic acid | 6.22 ± 0.08 a | 4.58 ± 0.09 b | 2.44 ± 0.06 c | 1.45 ± 0.03 d |
Stearic acid | 0.62 ± 0.04 a | 0.69 ± 0.03 a | 0.49 ± 0.04 b | 0.37 ± 0.05 c | |
Heptadecanoic acid | 0.19 ± 0.03 a | 0.12 ± 0.01 b | 0.05 ± 0.01 c | 0.03 ± 0.00 c | |
14-methyl-pentadecanoic acid | 0.00 ± 0.00 a | 0.03 ± 0.00 b | 0.05 ± 0.00 c | 0.08 ± 0.01 d | |
docosanoic acid | 0.00 ± 0.00 a | 0.04 ± 0.01 b | 0.03 ± 0.01 b | 0.02 ± 0.00 b | |
succinic acid | 0.00 ± 0.00 a | 0.07 ± 0.02 b | 0.08 ± 0.01 b | 0.08 ± 0.01 b | |
Subtotal | 7.04 ± 0.11 a | 5.53 ± 0.14 b | 3.13 ± 0.12 c | 2.03 ± 0.06 d | |
UFA (%) | Palmitoleic acid | 1.48 ± 0.04 a | 1.03 ± 0.03 b | 0.49 ± 0.01 c | 0.28 ± 0.02 d |
Oleic acid | 9.64 ± 0.15 a | 6.98 ± 0.11 b | 3.59 ± 0.04 c | 1.75 ± 0.03 d | |
Linoleic acid | 2.17 ± 0.05 a | 2.43 ± 0.04 b | 1.89 ± 0.05 c | 1.75 ± 0.05 d | |
α-linolenic acid | 10.63 ± 0.03 a | 6.75 ± 0.07 b | 2.82 ± 0.03 c | 1.18 ± 0.04 d | |
Arachidonic acid | 0.00 ± 0.00 a | 0.03 ± 0.01 b | 0.04 ± 0.00 b | 0.06 ± 0.01 c | |
Myristic acid | 0.00 ± 0.00 a | 0.09 ± 0.02 b | 0.07 ± 0.01 bc | 0.05 ± 0.01 c | |
Subtotal | 23.92 ± 0.21 a | 17.33 ± 0.14 b | 8.90 ± 0.12 c | 5.04 ± 0.08 d | |
Total (%) | 30.96 ± 0.31 a | 22.84 ± 0.24 b | 12.04 ± 0.15 c | 7.09 ± 0.14 d | |
UFA/Total | 0.77 | 0.76 | 0.74 | 0.72 |
Item | Time (d) | ||||
---|---|---|---|---|---|
0 d | 10 d | 20 d | 30 d | ||
NEEA (%) | Aspartic | 5.53 ± 0.06 a | 5.43 ± 0.06 a | 6.13 ± 0.09 b | 7.51 ± 0.13 c |
Serine | 1.50 ± 0.07 a | 1.48 ± 0.03 ab | 1.69 ± 0.04 c | 1.46 ± 0.06 ab | |
Glutamate | 6.37 ± 0.13 a | 6.40 ± 0.04 a | 7.48 ± 0.11 b | 9.19 ± 0.11 c | |
Proline | 2.17 ± 0.10 a | 2.31 ± 0.02 b | 2.85 ± 0.02 c | 3.66 ± 0.05 d | |
Glycine | 3.10 ± 0.11 bc | 2.80 ± 0.01 a | 2.98 ± 0.03 b | 3.24 ± 0.02 c | |
Alanine | 2.44 ± 0.05 a | 2.41 ± 0.05 a | 2.71 ± 0.09 b | 3.70 ± 0.05 c | |
Cysteine | 0.51 ± 0.05 a | 0.45 ± 0.06 ab | 0.39 ± 0.02 b | 0.35 ± 0.02 b | |
Tyrosine | 2.60 ± 0.07 a | 2.29 ± 0.07 b | 2.35 ± 0.03 b | 2.54 ± 0.04 a | |
Histidine | 1.80 ± 0.09 a | 1.55 ± 0.02 b | 1.62 ± 0.04 b | 1.66 ± 0.07 ab | |
Arginine | 2.49 ± 0.11 a | 2.29 ± 0.03 b | 2.51 ± 0.06 a | 2.74 ± 0.04 c | |
Subtotal | 28.53 ± 0.44 a | 27.42 ± 0.21 b | 30.74 ± 0.17 c | 36.05 ± 0.29 d | |
EEA (%) | Threonine | 2.18 ± 0.06 a | 2.03 ± 0.02 b | 2.13 ± 0.05 ab | 2.41 ± 0.03 c |
Valine | 3.43 ± 0.07 ab | 3.22 ± 0.05 a | 3.35 ± 0.06 ab | 3.65 ± 0.04 c | |
Methionine | 1.51 ± 0.11 b | 1.32 ± 0.03 a | 1.23 ± 0.02 a | 1.21 ± 0.04 a | |
Isoleucine | 2.35 ± 0.07 a | 2.22 ± 0.03 b | 2.41 ± 0.01 a | 2.63 ± 0.02 c | |
Leucine | 2.42 ± 0.08 a | 2.32 ± 0.05 a | 2.63 ± 0.07 b | 3.24 ± 0.05 c | |
Phenylalanine | 2.99 ± 0.12 a | 2.67 ± 0.04 b | 2.51 ± 0.02 b | 2.69 ± 0.07 b | |
Lysine | 3.91 ± 0.08 b | 3.34 ± 0.07 a | 3.27 ± 0.03 a | 3.37 ± 0.09 a | |
Tryptophan | 0.56 ± 0.05 a | 0.45 ± 0.02 b | 0.42 ± 0.03 b | 0.31 ± 0.01 c | |
Subtotal | 20.35 ± 0.17 a | 17.55 ± 0.12 b | 17.79 ± 0.14 b | 19.51 ± 0.21 c | |
Total (%) | 48.88 ± 0.49 a | 44.97 ± 0.41 b | 48.53 ± 0.36 a | 55.71 ± 0.51 c | |
EAA/Total | 0.41 | 0.39 | 0.37 | 0.35 | |
EAAI | 0.98 | 0.97 | 0.96 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Meng, Y.; Wang, D. Nutritional Profile Changes in an Insect–Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali. Foods 2023, 12, 2796. https://doi.org/10.3390/foods12142796
Wang S, Meng Y, Wang D. Nutritional Profile Changes in an Insect–Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali. Foods. 2023; 12(14):2796. https://doi.org/10.3390/foods12142796
Chicago/Turabian StyleWang, Shengchao, Yun Meng, and Dun Wang. 2023. "Nutritional Profile Changes in an Insect–Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali" Foods 12, no. 14: 2796. https://doi.org/10.3390/foods12142796
APA StyleWang, S., Meng, Y., & Wang, D. (2023). Nutritional Profile Changes in an Insect–Fungus Complex of Antheraea pernyi Pupa Infected by Samsoniella hepiali. Foods, 12(14), 2796. https://doi.org/10.3390/foods12142796