Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Media
2.2. Preparation of Supernatants for Test Strains
2.3. Preparation of Co-Culture Supernatant of LAB and P. aeruginosa
2.4. Assay to Measure LAB Strains’ Inhibitory Ability
2.5. Biofilm Inhibition Assay
2.6. Determination of Pyocyanin
2.7. Determination of Co-Aggregation of LAB and P. aeruginosa
2.8. Biological Properties of LAB
2.8.1. Detection of AI-2 Signaling Molecules in LAB Supernatants
2.8.2. Determination of Biofilm Formation of LAB Strains
2.8.3. Determination of the Auto-Aggregation of LAB Strains
2.9. Molecular Identification of LAB
2.10. Metabolomic Analysis of P. aeruginosa Antagonized by LPyang
2.11. Data Processing
3. Results
3.1. Effect of Antibacterial Activity of LAB on P. aeruginosa
3.2. Effect of LAB on the Biofilm Formation of P. aeruginosa
3.3. Effect of LAB on Pyocyanin Expression of P. aeruginosa
3.4. Analysis of Co-Aggregation Capacity of LAB and P. aeruginosa
3.5. Biological Properties of LAB
3.6. Principal Component Analysis
3.7. Effects of LPyang on P. aeruginosa Growth by Metabolome Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djuikoue, C.I.; Djouela Djoulako, P.D.; Same Njanjo, H.V.; Kiyang, C.P.; Djantou Biankeu, F.L.; Guegang, C.; Tchouotou, A.S.D.; Wouambo, R.K.; Thumamo Pokam, B.D.; Apalata, T.; et al. Phenotypic characterization and prevalence of carbapenemase-producing Pseudomonas aeruginosa isolates in six health facilities in cameroon. BioMed 2023, 3, 77–88. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S.; Wang, H. Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in hawthorn pomace: A comparison of different extraction methods. Food Chem. 2022, 393, 133344. [Google Scholar] [CrossRef]
- Cui, T.; Bai, F.; Sun, M.; Lv, X.; Li, X.; Zhang, D.; Du, H. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. LWT-Food Sci. Technol. 2020, 117, 108696. [Google Scholar] [CrossRef]
- Wang, P.; Xia, F.; Li, X.; Hu, M.; Zhang, N. Effects of aqueous extracts of phellodendri chinensis cortex on virulence factors and its mechanisms in Pseudomonas aeruginosa. Pharm. Clin. Chin. Mater. Med. 2015, 31, 118–121. [Google Scholar]
- Burnett, S.L.; Chen, J.; Beuchat, L.R. Attachment of Escherichia coli O157:H7 to the surfaces and internal structures of apples as detected by confocal scanning laser microscopy. Appl. Environ. Microbiol. 2000, 66, 4679–4687. [Google Scholar] [CrossRef] [Green Version]
- Al-Momani, H.; Al Balawi, D.A.; Hamed, S.; Albiss, B.A.; Almasri, M.; AlGhawrie, H.; Ibrahim, L.; Al Balawi, H.; Mahmoud, S.A.H.; Pearson, J.; et al. The impact of biosynthesized ZnO nanoparticles from Olea europaea (common olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci. Rep. 2023, 13, 5096. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Bai, Y.; Zhou, X.; Chen, L.; Qiu, C.; Lu, C.; Jin, Z.; Long, J.; Xie, Z. Natural antimicrobial oligosaccharides in the food industry. Int. J. Food Microbiol. 2023, 386, 110021. [Google Scholar] [CrossRef]
- Rana, S.; Bhawal, S.; Kumari, A.; Kapila, S.; Kapila, R. pH-dependent inhibition of AHL-mediated Quorum Sensing by cell-free supernatant of lactic acid bacteria in Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 142, 104105. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, L.; Ji, Z.; Dao, Y.; Pan, M.; Luo, Y. Screening of lactic acid bacteria with antibacterial activity and analysis of antibacterial substances. Jiangsu Agric. Sci. 2019, 47, 170–173. [Google Scholar]
- Peng, S.; Li, J.; Liu, S.; Zhang, Y.; Wang, H.; Zhao, X.; Suo, H. Research progress on biosynthesis, antibacterial mechanism and application of lactic acid bacteria bacteriocin. Food Ferment. Ind. 2019, 45, 236–242. [Google Scholar]
- Liu, J.; Lin, J.; Guo, L.; Ye, Z.; Fang, Z.; Guo, X.; Li, Z. Diversity and antimicrobial activity of lactic acid bacteria isolated from aquaculture. Fish. Sci. 2015, 34, 351–357. [Google Scholar]
- Ma, H.; Lv, X.; Lin, Y.; Sun, M.; Bai, F.; Li, J. Inhibitory activity of Lactobacillus sakei LY1-6 from perch intestine against Pseudomonas fluorescens. Sci. Technol. Food Ind. 2016, 37, 150–155. [Google Scholar]
- Klayraung, S.; Okonogi, S. Antibacterial and antioxidant activities of acid and bile resistant strains of Lactobacillus fermentum isolated from Miang. Braz. J. Microbiol. 2009, 40, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Nami, Y.; Haghshenas, B.; Yari Khosroushahi, A. Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from human vaginal microbiota. Adv. Pharm. Bull. 2018, 8, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, H.; Tang, Y.; Chen, X. the Effect of burdock leaf fraction on adhesion, biofilm formation, quorum sensing and virulence factors of Pseudomonas aeruginosa. J. Appl. Microbiol. 2017, 122, 615–624. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Cui, H.; Li, Y.; Sun, Y.; Qiu, H.J. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Cheng, N.; Jia, Z.; Jiang, X. Screening and characterization research of quorum sensing signaling molecule AI-2 high-yield Lactobacillus Strains. Food Ferment. Ind. 2018, 44, 66–71. [Google Scholar]
- Gu, Y.; Tian, J.; Zhang, Y.; Wu, R.; Li, L.; Zhang, B.; He, Y. Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum. J. Biosci. Bioeng. 2021, 131, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Azami, S.; Arefian, E.; Kashef, N. Postbiotics of Lactobacillus casei target virulence and biofilm formation of Pseudomonas aeruginosa by modulating quorum sensing. Arch. Microbiol. 2022, 204, 157. [Google Scholar] [CrossRef]
- Zhang, L.; Dang, F.; Zhao, S.; Fan, Y.; Wang, Z.; Man, C.; Guo, L.; Jiang, Y. Review of the formation of lactic acid bacteria biofilm and its influencing factors. Dairy Ind. 2016, 44, 4–6. [Google Scholar]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Hill, P.J.; Snarr, B.D.; Alnabelseya, N.; Pestrak, M.J.; Lee, M.J.; Jennings, L.K.; Tam, J.; Melnyk, R.A.; Parsek, M.R. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci. Adv. 2016, 2, e1501632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Kamesh, A.C.; Xiao, Y.; Sun, V.; Hayes, M.; Daniell, H.; Koo, H. topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials 2016, 105, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maura, D.; Rahme, L.G. Pharmacological Inhibition of the Pseudomonas aeruginosa MvfR quorum-sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrob. Agents Chemother. 2017, 61, e01362-17. [Google Scholar] [CrossRef] [Green Version]
- Ohradanova-Repic, A.; Praženicová, R.; Gebetsberger, L.; Moskalets, T.; Skrabana, R.; Cehlar, O.; Tajti, G.; Stockinger, H.; Leksa, V. time to kill and time to heal: The multifaceted role of lactoferrin and lactoferricin in host defense. Pharmaceutics 2023, 15, 1056. [Google Scholar] [CrossRef] [PubMed]
- Chappell, T.C.; Nair, N.U. Engineered Lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. NPJ Biofilms Microbiomes 2020, 6, 48. [Google Scholar] [CrossRef]
- Patel, M.; Siddiqui, A.J.; Ashraf, S.A.; Surti, M.; Awadelkareem, A.M.; Snoussi, M.; Hamadou, W.S.; Bardakci, F.; Jamal, A.; Jahan, S.; et al. Lactiplantibacillus plantarum-derived biosurfactant attenuates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa and Chromobacterium violaceum. Microorganisms 2022, 10, 1026. [Google Scholar] [CrossRef]
- Varma, P.; Nisha, N.; Dinesh, K.R.; Kumar, A.V.; Biswas, R. Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. Microb. Physiol. 2011, 20, 137–143. [Google Scholar] [CrossRef]
- Shokri, D.; Khorasgani, M.R.; Mohkam, M.; Fatemi, S.M.; Ghasemi, Y.; Taheri-Kafrani, A. The inhibition effect of Lactobacilli against growth and biofilm formation of Pseudomonas aeruginosa. Probiotics Antimicrob. Proteins 2018, 10, 34–42. [Google Scholar] [CrossRef]
- McSorley, J.C.; MacFadyen, A.C.; Kerr, L.; Tucker, N.P. Host lysolipid differentially modulates virulence factor expression and antimicrobial susceptibility in Pseudomonas aeruginosa. Microbiology 2022, 168, 001179. [Google Scholar] [CrossRef]
- Rada, B.; Leto, T.L. Pyocyanin effects on respiratory epithelium: Eelevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 2013, 21, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Marzhoseyni, Z.; Mousavi, M.J.; Saffari, M.; Ghotloo, S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023, 163, 156135. [Google Scholar] [CrossRef]
- Scardaci, R.; Bietto, F.; Racine, P.-J.; Boukerb, A.M.; Lesouhaitier, O.; Feuilloley, M.G.J.; Scutera, S.; Musso, T.; Connil, N.; Pessione, E. Norepinephrine and serotonin can modulate the behavior of the probiotic Enterococcus faecium NCIMB10415 towards the host: Is a Putative Surface Sensor Involved? Microorganisms 2022, 10, 487. [Google Scholar] [CrossRef]
- Mgomi, F.C.; Yang, Y.; Cheng, G.; Yang, Z. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 100118. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wu, J.; Tian, J.; Li, L.; Zhang, B.; Zhang, Y.; He, Y. Effects of exogenous synthetic autoinducer-2 on physiological behaviors and proteome of lactic acid bacteria. ACS Omega 2020, 5, 1326–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Yao, L.; Li, F.; Qu, M.; Xu, J.; Jiang, Y.; Wang, L. LuxS/AI-2 quorum sensing of bacteria and its regulation on pathogenicity and antimicrobial resistance. J. Food Saf. Qual. 2019, 10, 5983–5991. [Google Scholar]
- Christiaen, S.E.; O’Connell Motherway, M.; Bottacini, F.; Lanigan, N.; Casey, P.G.; Huys, G.; Nelis, H.J.; Van Sinderen, D.; Coenye, T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium Breve UCC2003. PLoS ONE 2014, 9, e98111. [Google Scholar] [CrossRef]
- Sun, Z.; He, X.; Brancaccio, V.F.; Yuan, J.; Riedel, C.U. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PLoS ONE 2014, 9, e88260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Luo, Y.; Cao, X.; Liu, W.; Song, G.; Zhang, Z. LuxS quorum sensing system mediating Lactobacillus plantarum probiotic characteristics. Arch. Microbiol. 2021, 203, 4141–4148. [Google Scholar] [CrossRef]
- Han, M.-L.; Zhu, Y.; Creek, D.J.; Lin, Y.-W.; Gutu, A.D.; Hertzog, P.; Purcell, T.; Shen, H.-H.; Moskowitz, S.M.; Velkov, T.; et al. Comparative metabolomics and transcriptomics reveal multiple pathways associated with polymyxin killing in Pseudomonas aeruginosa. mSystems 2019, 4, e00149-18. [Google Scholar] [CrossRef] [Green Version]
- Oestvang, J.; Anthonsen, M.W.; Johansen, B. LysoPC and PAF trigger arachidonic acid release by divergent signaling mechanisms in monocytes. J. Lipids 2011, 2011, 532145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righi, V.; Constantinou, C.; Kesarwani, M.; Rahme, L.G.; Tzika, A.A. Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for in vivo analysis of Pseudomonas aeruginosa metabolomics. Biomed. Rep. 2013, 1, 707–712. [Google Scholar] [CrossRef] [PubMed]
Strain | Species | Origin | Strain | Species | Origin |
---|---|---|---|---|---|
H1 | Lactiplantibacillus plantarum (Lp. plantarum) | Traditional koumiss | H10 | Ligilactobacillus salivarius | Traditional koumiss |
H2 | Lp. plantarum | Traditional koumiss | H11 | Pediococcus pentosaceus | Fermented bean curd |
H3 | Lp. plantarum | Traditional pickles | H12 | Ligilactobacillus salivarius | Traditional pickles |
H4 | Lactobacillus acidophilus | ATCC4356 | H13 | Pediococcus pentosaceus | Fermented bean curd |
H5 | Lactobacillus gallinarum | Healthy poultry feces | H14 | Limosilactobacillus fermentum | Healthy adult feces |
H6 | Lp. plantarum | Traditional pickles | H15 | Lp. plantarum | Tibetan kefir |
H7 | Lp. plantarum | Traditional pickles | H16 | Lp. plantarum | Fermented rice |
H8 | Lactobacillus gasseri | Traditional pickles | H17 | Lp. plantarum | Traditional pickles |
H9 | Ligilactobacillus salivarius | Traditional koumiss | Traditional koumiss |
Strains | Inhibition Zone (mm) | Strains | Inhibition Zone (mm) |
---|---|---|---|
H1 | 17.27 ± 0.40 cde | H10 | 18.13 ± 0.61 de |
H2 | 16.47 ± 0.83 de | H11 | 20.13 ± 0.90 abc |
H3 | 15.47 ± 1.10 e | H12 | 21.20 ± 2.92 ab |
H4 | 21.73 ± 0.11 a | H13 | 18.00 ± 6.17 cde |
H5 | 20.13 ± 1.30 abc | H14 | 19.53 ± 1.32 abc |
H6 | 18.27 ± 1.90 bcde | H15 | 10.27 ± 3.57 f |
H7 | 12.33 ± 0.58 f | H16 | 13.33 ± 0.64 e |
H8 | 22.27 ± 0.90 a | H17 | 19.33 ± 0.39 abcd |
H9 | 19.27 ± 0.94 abcd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, X.; Xie, Z.; Liang, L.; Li, A.; Zhao, C.; Wen, Y.; Lou, Z. Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa. Foods 2023, 12, 2799. https://doi.org/10.3390/foods12142799
Li J, Chen X, Xie Z, Liang L, Li A, Zhao C, Wen Y, Lou Z. Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa. Foods. 2023; 12(14):2799. https://doi.org/10.3390/foods12142799
Chicago/Turabian StyleLi, Jianzhou, Xiaohua Chen, Ziyan Xie, Lin Liang, Anping Li, Chao Zhao, Yuxi Wen, and Zaixiang Lou. 2023. "Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa" Foods 12, no. 14: 2799. https://doi.org/10.3390/foods12142799
APA StyleLi, J., Chen, X., Xie, Z., Liang, L., Li, A., Zhao, C., Wen, Y., & Lou, Z. (2023). Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa. Foods, 12(14), 2799. https://doi.org/10.3390/foods12142799