The Relationship between Microbial Community Succession and Flavor Formation during the Natural Fermentation of Hongqu sufu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Experimental Treatment
2.1.2. High-Throughput Sequencing
Nucleic Acid Extraction, Sample DNA Extraction, and PCR Amplification of Sufu
2.1.3. Volatile Flavor Compounds Analysis
2.2. Statistical Analyses
3. Results and Analysis
3.1. Microbial Species’ Diversity Curves in Sufu
3.2. Distribution of OTUs in Sufu Species and Microbial Species
3.3. Analysis of Microbial Species Differences in Sufu
3.4. Analysis of Flavor Compounds in Sufu
3.5. Correlation of the Flora Structure of Hongqu Sufu with Flavor Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Zhang, C.; Du, H.; Chen, C.; Xue, Q.; Hu, Y. Effect of starter cultures on dynamics succession of microbial communities, physicochemical parameters, enzyme activities, tastes and volatile flavor compounds during sufu fermentation. Food Chem. Adv. 2022, 1, 100057. [Google Scholar] [CrossRef]
- Shang, L.J. Research on the production process of sufu. Chin. Condiments 2012, 37, 75–78. [Google Scholar]
- Sun, J.S.; Lu, F.; Han, B.Z.; Zhai, Y.L. On the enzymatic production of sufu. China Brew. 2002, 7–9+24. [Google Scholar]
- Amann, R.I.; Ludwig, W.; Schleifer, K.-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Ju, F.; Zhang, T. 16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions. Appl. Microbiol. Biotechnol. 2015, 99, 4119–4129. [Google Scholar] [CrossRef]
- Ye, L.; Yan, Y.L.; Chen, Q.S.; Zhao, L.S.; Ling, N.; Pang, G.C. Application of high-throughput sequencing technology in the study of intestinal microbial metagenomics. Chin. J. Food Sci. 2016, 16, 216–223. [Google Scholar]
- Liu, T.; Li, Y.; Sadiq, F.A.; Yang, H.; Gu, J.; Yuan, L.; Lee, Y.K.; He, G. Predominant yeasts in Chinese traditional sourdough and their influence on aroma formation in Chinese steamed bread. Food Chem. 2018, 242, 404–411. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Chen, J.; Sadiq, F.A.; Zhang, G.; Li, Y.; He, G. Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. LWT-Food Sci. Technol. 2016, 68, 91–97. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y.; Qu, Q.F.; Dou, T.H.; Chen, Y.F.; Zhang, N.N.; Zhao, L.; Zhong, J.; Weng, S.Y.; Yang, J.L.; et al. High-throughput sequencing analyzed the diversity of red curd bacteria in different regions. Food Sci. 2020, 41, 110–116. [Google Scholar]
- Yang, L.; Yang, H.L.; Tu, Z.C.; Wang, X.L. High-throughput sequencing of microbial community diversity and dynamics during douchi fermentation. PLoS ONE 2016, 11, e0168166. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yu, Y.; Tian, Y.; Su, Y.; Li, X.; Zhang, Z.; Zhu, H.; Han, J.; Zhang, H.; Liu, L. Analysis of Beijing Douzhir Microbiota by High-Throughput Sequencing and Isolation of Acidogenic, Starch-Flocculating Strains. Front. Microbiol. 2018, 9, 1142. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.R.; Zhang, J.C.; Shi, P.; Wu, R.; Yue, X.Q.; Zhang, H.P. Bacterial community involved in traditional fermented soybean paste dajiang made in northeast China. Ann. Microbiol. 2013, 63, 1417–1421. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, Y.; Yang, M.; Wen, P.; Cao, L.; Ma, J.; Zhang, Z.; Zhang, W. Bacterial diversity and community in Qula from the Qinghai–Tibetan Plateau in China. PeerJ 2018, 6, e6044. [Google Scholar] [CrossRef]
- Ran, C.X.; Kan, J.Q. Analysis of volatile components in whole sufu by headspace solid phase microextraction-gas chromatography-mass chromatography. Chin. Condiments 2014, 39, 105–109. [Google Scholar]
- Sun, N.; Zhang, Y.T.; Yu, H.S.; Zhu, X.M.; Zhu, S.J.; Zhou, S.H.; Ren, D.Y. Structure and flavor compounds of fermented green sufu flora and their correlation analysis. Food Sci. 2020, 41, 7. [Google Scholar]
- Awasthi, M.K.; Chen, H.; Wang, Q.; Liu, T.; Duan, Y.; Awasthi, S.K.; Ren, X.; Tu, Z.; Li, J.; Zhao, J. Succession of bacteria diversity in the poultry manure composted mixed with clay: Studies upon its dynamics and associations with physicochemical and gaseous parameters. Bioresour. Technol. 2018, 267, 618–625. [Google Scholar] [CrossRef]
- He, T.T.; Qi, D.Q.; Song, J. Application of solid phase extraction technology in food testing pretreatment. Modern Food 2022, 28, 41–43. [Google Scholar]
- Dun, Q.; Yao, L.; Deng, Z.; Li, H.; Li, J.; Fan, Y.; Zhang, B. Effects of hot and cold-pressed processes on volatile compounds of peanut oil and corresponding analysis of characteristic flavor components. LWT 2019, 112, 107648. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.J.; Zou, W.; Li, H.; Zhang, J. High-throughput sequencing was used to analyze the microbial diversity of finished beet sprouts. Chin. Condiments 2019, 44, 67–70. [Google Scholar]
- Liu, S.; Qiao, J. Bacterial Diversity of Anshun Sufu, A Traditional Fermented Tofu in Guizhou Province of China. Trans. Tianjin Univ. 2019, 25, 497–503. [Google Scholar] [CrossRef]
- Lu, J.; Liu, P.; Zhang, L.Z.; Che, Z.M. Changes in volatile flavor components during sufu fermentation. Food Sci. 2014, 35, 175–179. [Google Scholar]
- Li, L.; Lv, Y.L.; Guo, W.L.; Pan, Y.Y.; Hong, J.L.; Zhao, L.N.; Ni, L.; Rao, P.F.; Li, Q.Y.; Lv, X.C. Analysis of microbial flora and volatile flavor components in koji for traditional brewing of red yeast rice wine. Food Sci. 2019, 40, 79–84. [Google Scholar]
- Sun, J.W.; Yang, K.Y.; Li, Y.M.; Chen, Y.Y.; Liu, Y.P.; Zhang, Y.Y. SDE combined with GC-MS to analyze the characteristic aroma components in Wang Zhi and stinky tofu. Food Sci. 2015, 36, 127–131. [Google Scholar]
- Chen, X.H.; Zhu, Q.K. Response surface method and linear regression equation were analyzed in the formation process of sufu flavor compounds. Chin. Condiments 2022, 47, 142–145. [Google Scholar]
- Zhang, M.; Wu, Y.L.; Wang, P.J.; Gao, X.L. Study on the change of active ingredients before and after fermentation of light tempeh medicinal materials. Shizhen Chin. Med. Chin. Med. 2015, 26, 363–364. [Google Scholar]
- Xu, X.; Wu, B.; Zhao, W.; Pang, X.; Lao, F.; Liao, X.; Wu, J. Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper (Capsicum annuum L.). Food Microbiol. 2020, 91, 103510. [Google Scholar] [CrossRef]
Serial Number | Category | Compounds | Fermentation Time (d)/Relative Content (%) | ||||
---|---|---|---|---|---|---|---|
1 | 3 | 6 | 12 | 18 | |||
1 | Alcohols | Ethanolamine | 0.47 | 3.41 | 2.31 | 11.65 | 7.49 |
2 | Diethylene glycol | - | - | 0.38 | 2.43 | 1.98 | |
3 | 1-Hexanol | - | - | - | 0.38 | - | |
4 | 2,3-Butanediol | 1.87 | - | - | - | 1.11 | |
5 | 3-Hydroxy-butanol | 1.27 | 2.32 | 1.20 | 0.08 | 0.13 | |
6 | 3-Octanol | - | - | - | - | 0.03 | |
7 | 3-Methyl-1-butanol | 14.63 | - | - | 1.18 | 5.66 | |
8 | Acids | Acetic acid | - | - | - | - | 11.65 |
9 | Pteroxate-6-carboxylic acid | - | - | - | 0.06 | - | |
10 | 2-Hydroxyethyl propionic acid | - | 0.21 | - | - | - | |
11 | 3-Aminobutyric acid | - | - | - | 0.04 | 6.15 | |
12 | Alkanes | Methyl silane | 0.68 | - | - | 0.49 | - |
13 | Silane | 0.32 | - | - | 1.41 | 0.46 | |
14 | 3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris[(trimethylsilyl)oxy]heptanetetrasiloxane | - | 0.76 | 0.65 | 1.07 | 1.38 | |
15 | Pentadecano siloxane | 11.21 | 0.56 | 2.32 | 5.66 | 11.49 | |
16 | Cyclotetrasiloxane octamethyl | 3.32 | 0.02 | 0.04 | 0.05 | 4.11 | |
17 | Decamethyltetra siloxane | - | 0.56 | - | 0.18 | 0.21 | |
18 | Dodecamethyl cyclohexasiloxane | 0.61 | 1.55 | 1.43 | 3.98 | - | |
19 | Dodecamethyl hexasiloxane | - | - | - | - | 7.16 | |
20 | Dodecamethyl pentasiloxane | 0.41 | - | - | 0.4 | 0.69 | |
21 | Tetradecane | 0.32 | - | - | 0.20 | 0.16 | |
22 | Cetyltetramethyl hexasiloxane | 0.55 | 0.25 | - | 0.52 | - | |
23 | Cetylhepta siloxane | 0.25 | - | - | 0.26 | - | |
24 | Hexamethyl oxane | - | 0.73 | - | - | - | |
25 | Heptadecane | 0.10 | - | - | - | - | |
26 | 2-Methyltetradecane | 0.07 | 0.08 | - | - | - | |
27 | 3-Trifluoroacetoxypentadecane | 0.09 | - | - | - | 0.10 | |
28 | Aldehydes | Hyacinthin | 0.31 | - | - | - | - |
29 | Hexanal | 0.24 | - | - | 1.31 | 1.49 | |
30 | Nonanaldehyde | - | - | - | 0.16 | 0.26 | |
31 | 2,4-Decadienal | - | - | - | 0.04 | 0.6 | |
32 | 2-Heptenal | 0.31 | - | - | - | 0.12 | |
33 | 3-Hydroxy-butyraldehyde | 0.23 | - | - | - | 0.06 | |
34 | 4-(1-methyl ethyl)-benzaldehyde | - | - | 1.62 | 2.45 | 2.19 | |
35 | Ketones | L-Fenone | - | 0.09 | - | - | - |
36 | 4-Methyl-1-(1-methylethyl)-3-cyclohexanone | - | 0.06 | - | - | - | |
37 | Alkenes, hydrocarbons | Sesquicyclene | 1.32 | - | 0.12 | - | - |
38 | Humulene | - | - | 0.08 | - | - | |
39 | D-Limonene | - | 0.60 | 0.75 | - | - | |
40 | Cressene | - | - | 1.76 | 1.09 | 2.93 | |
41 | Sulauryl | - | 0.16 | - | - | - | |
42 | Anethene | - | - | 0.02 | 0.12 | 1.21 | |
43 | Copaene | - | 0.24 | 0.07 | - | - | |
44 | Nonadecatriene | 0.08 | - | - | - | 0.06 | |
45 | 1-2-Dimethyl-4-(1-methylethyl)-1,4-Cyclohexadiene | - | 0.05 | - | - | - | |
46 | Vinyl-1-methyl-2,4-cyclohexane-1-methylbisethylene | - | 0.08 | - | - | - | |
47 | 2-Methyl-1-tetradecene | - | 0.09 | 0.06 | - | - | |
48 | 2-Octene | 0.65 | - | - | 0.21 | 0.29 | |
49 | 3.7-Base-1.6-Octadiene | - | - | 1.21 | 1.12 | 0.11 | |
50 | o-Cymene | - | 0.17 | 0.25 | 27.08 | - | |
51 | Esters | Ethyl Oleate | - | - | - | - | 0.17 |
52 | Hexanoic acid, ethyl ester | - | - | 0.08 | 1.76 | 1.31 | |
53 | Ethyl octanoate | 0.16 | - | - | 0.14 | 0.04 | |
54 | Ethyl tetradecanoate | - | - | 0.09 | - | - | |
55 | Ethyl hexadecanoate | - | - | - | 0.02 | - | |
56 | Ethyl octadecanoate | - | - | 0.71 | - | 0.36 | |
57 | [1,1′-Dicyclopropyl]-2-octanoic acid 2′-hexyl methyl ester | 0.23 | - | - | 0.05 | 0.02 | |
58 | Methyl 9,12-octadecenoate | - | - | - | 0.70 | 0.39 | |
59 | Hexanoic acid, ethyl ester | - | 10.70 | - | - | - | |
60 | Methyl 12,15-octadecenoate | 0.15 | 18.38 | - | 0.03 | 0.03 | |
61 | Benzene | Pentylbenzene | 0.18 | - | - | - | - |
62 | Sulfur | Cyclic eight-membered sulfur | 0.12 | - | - | 0.03 | 0.08 |
63 | Phenols | Methylpiperol | - | 0.91 | - | - | - |
64 | Other | 2-Pentyl-furan | 6.14 | - | - | 4.52 | 7.33 |
65 | 2-Butylfuran | - | - | - | - | 0.13 | |
66 | Alanylglycine dipeptide | 3.79 | - | - | 4.24 | 6.13 | |
67 | cis-1,2,3,5,6,8-Hexahydro-4,7-dimethyl-1-(methyl ether)nae | - | - | 1.75 | 3.69 | 2.76 | |
68 | 2-Bromooctadecycarbon A Nayl | - | - | - | - | 0.06 | |
69 | Oxymethoxyphenyl | - | - | - | - | 0.10 | |
70 | Carboxymethylcellulose | 1.23 | 0.21 | 0.20 | 0.17 | 0.24 | |
71 | Trimethylsiloxane borate | - | - | - | 0.02 | - | |
72 | Bis(trimethylsilyl) Thioglycolates | 0.14 | - | - | 0.16 | 0.57 | |
73 | 9,12-Octadecacarbon dienyl chloride | 1.24 | - | - | 1.02 | 0.39 | |
74 | Guanosine | - | - | - | - | 0.03 | |
75 | Topotecan | 0.87 | - | - | 0.30 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, A.; Cheng, Z.; Zhao, J.; Hao, J.; Shi, S.; Hu, B. The Relationship between Microbial Community Succession and Flavor Formation during the Natural Fermentation of Hongqu sufu. Foods 2023, 12, 2800. https://doi.org/10.3390/foods12142800
Luo A, Cheng Z, Zhao J, Hao J, Shi S, Hu B. The Relationship between Microbial Community Succession and Flavor Formation during the Natural Fermentation of Hongqu sufu. Foods. 2023; 12(14):2800. https://doi.org/10.3390/foods12142800
Chicago/Turabian StyleLuo, Aiguo, Zilong Cheng, Jia Zhao, Jianwei Hao, Shengli Shi, and Bianfang Hu. 2023. "The Relationship between Microbial Community Succession and Flavor Formation during the Natural Fermentation of Hongqu sufu" Foods 12, no. 14: 2800. https://doi.org/10.3390/foods12142800
APA StyleLuo, A., Cheng, Z., Zhao, J., Hao, J., Shi, S., & Hu, B. (2023). The Relationship between Microbial Community Succession and Flavor Formation during the Natural Fermentation of Hongqu sufu. Foods, 12(14), 2800. https://doi.org/10.3390/foods12142800