Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Melissopalynological Analysis
2.4. Diastase Analysis
2.5. Hydroxymethylfurfural Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Cichello, S. Manuka Honey: An Emerging Natural Food with Medicinal Use. Nat. Prod. Bioprospect. 2013, 3, 121–128. [Google Scholar] [CrossRef] [Green Version]
- El-Senduny, F.F.; Hegazi, N.M.; Abd Elghani, G.E.; Farag, M.A. Manuka Honey, a Unique Mono-Floral Honey. A Comprehensive Review of Its Bioactives, Metabolism, Action Mechanisms, and Therapeutic Merits. Food Biosci. 2021, 42, 101038. [Google Scholar] [CrossRef]
- Kilty, S.J.; Duval, M.; Chan, F.T.; Ferris, W.; Slinger, R. Methylglyoxal: (Active Agent of Manuka Honey) in Vitro Activity against Bacterial Biofilms. Int. Forum Allergy Rhinol. 2011, 1, 348–350. [Google Scholar] [CrossRef]
- Shahzad, A.; Cohrs, R.J. In Vitro Antiviral Activity of Honey against Varicella Zoster Virus (VZV): A Translational Medicine Study for Potential Remedy for Shingles. Transl. Biomed. 2012, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.; Cooper, R. Improving Antibiotic Activity against Wound Pathogens with Manuka Honey In Vitro. PLoS ONE 2012, 7, e45600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosendale, D.I.; Maddox, I.S.; Miles, M.C.; Rodier, M.; Skinner, M.; Sutherland, J. High-Throughput Microbial Bioassays to Screen Potential New Zealand Functional Food Ingredients Intended to Manage the Growth of Probiotic and Pathogenic Gut Bacteria. Int. J. Food Sci. Technol. 2008, 43, 2257–2267. [Google Scholar] [CrossRef]
- Almasaudi, S.B.; Abbas, A.T.; Al-Hindi, R.R.; El-Shitany, N.A.; Abdel-Dayem, U.A.; Ali, S.S.; Saleh, R.M.; Al Jaouni, S.K.; Kamal, M.A.; Harakeh, S.M. Manuka Honey Exerts Antioxidant and Anti-Inflammatory Activities That Promote Healing of Acetic Acid-Induced Gastric Ulcer in Rats. Evid.-Based Complement. Altern. Med. 2017, 2017, 5413917. [Google Scholar] [CrossRef] [Green Version]
- Leong, A.G.; Herst, P.M.; Harper, J.L. Indigenous New Zealand Honeys Exhibit Multiple Anti-Inflammatory Activities. Innate Immun. 2012, 18, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Martinotti, S.; Pellavio, G.; Patrone, M.; Laforenza, U.; Ranzato, E. Manuka Honey Induces Apoptosis of Epithelial Cancer Cells through Aquaporin-3 and Calcium Signaling. Life 2020, 10, 256. [Google Scholar] [CrossRef]
- Al Refaey, H.R.; Newairy, A.-S.A.; Wahby, M.M.; Albanese, C.; Elkewedi, M.; Choudhry, M.U.; Sultan, A.S. Manuka Honey Enhanced Sensitivity of HepG2, Hepatocellular Carcinoma Cells, for Doxorubicin and Induced Apoptosis through Inhibition of Wnt/β-Catenin and ERK1/2. Biol. Res. 2021, 54, 16. [Google Scholar] [CrossRef]
- Halawani, E.M. Potential Effects of Saudi Shaoka (Fagonia bruguieri) Honey against Multi-Drug-Resistant Bacteria and Cancer Cells in Comparison to Manuka Honey. Saudi J. Biol. Sci. 2021, 28, 7379–7389. [Google Scholar] [CrossRef]
- Aryappalli, P.; Shabbiri, K.; Masad, R.J.; Al-Marri, R.H.; Haneefa, S.M.; Mohamed, Y.A.; Arafat, K.; Attoub, S.; Cabral-Marques, O.; Ramadi, K.B.; et al. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey Is Mediated by Selective Antagonism of the IL-6 Receptor. Int. J. Mol. Sci. 2019, 20, 4340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Bompadre, S.; Quiles, J.L.; Sanna, G.; Spano, N.; Giampieri, F.; Battino, M. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey. Int. J. Mol. Sci. 2017, 18, 613. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S.; Lullmann, C.; Mossel, B.; D’Arcy, B.; Russmann, H.; Vorwohl, G.; Oddo, L.; Sabatini, A.; Marcazzan, G.; Piro, R.; et al. Honey Quality, Methods of Analysis and International Regulatory Standards: Review of the Work of the International Honey Commission. Mitt. Lebensm. Hyg. 1999, 90, 108–125. [Google Scholar]
- Pasias, I.N.; Kiriakou, I.K.; Proestos, C. HMF and Diastase Activity in Honeys: A Fully Validated Approach and a Chemometric Analysis for Identification of Honey Freshness and Adulteration. Food Chem. 2017, 229, 425–431. [Google Scholar] [CrossRef]
- Fauzi, N.A.; Farid, M.M. High-Pressure Processing of Manuka Honey: Brown Pigment Formation, Improvement of Antibacterial Activity and Hydroxymethylfurfural Content. Int. J. Food Sci. Technol. 2015, 50, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic Compounds and Methylglyoxal in Some New Zealand Manuka and Kanuka Honey. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Al-Habsi, N.A.; Niranjan, K. Effect of High Hydrostatic Pressure on Antimicrobial Activity and Quality of Manuka Honey. Food Chem. 2012, 135, 1448–1454. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of Physicochemical and Antioxidant Properties of Sourwood and Other Malaysian Honeys: A Comparison with Manuka Honey. Chem. Central J. 2013, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A. Physicochemical Characteristics, Total Phenols and Pigments of National and International Honeys in Saudi Arabia. Arab. J. Chem. 2016, 9, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Grainger, M.N.C.; Owens, A.; Manley-Harris, M.; Lane, J.R.; Field, R.J. Kinetics of Conversion of Dihydroxyacetone to Methylglyoxal in New Zealand Mānuka Honey: Part IV—Formation of HMF. Food Chem. 2017, 232, 648–655. [Google Scholar] [CrossRef]
- Chernyshev, A.; Braggins, T. Investigation of Temporal Apparent C4 Sugar Change in Manuka Honey. J. Agric. Food Chem. 2020, 68, 4261–4267. [Google Scholar] [CrossRef]
- Septiani, A.; Suryati, T.; Apriantini, A.; Endrawati, Y.C. Characteristics of Forest and Manuka Honey As Well As Their Application as Herbal Honey Drinks with The Addition of Qusthul Hindi and Turmeric. J. Ilmu Dan Teknol. Has. Ternak (JITEK) 2022, 17, 183–196. [Google Scholar] [CrossRef]
- Gkoutzouvelidou, M.; Panos, G.; Xanthou, M.N.; Papachristoforou, A.; Giaouris, E. Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods 2021, 10, 1402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Si, J.-J.; Li, S.-S.; Zhang, G.-Z.; Wang, S.; Zheng, H.-Q.; Hu, F.-L. Chemical Analyses and Antimicrobial Activity of Nine Kinds of Unifloral Chinese Honeys Compared to Manuka Honey (12+ and 20+). Molecules 2021, 26, 2778. [Google Scholar] [CrossRef] [PubMed]
- Pasias, I.N.; Kiriakou, I.K.; Kaitatzis, A.; Koutelidakis, A.E.; Proestos, C. Effect of Late Harvest and Floral Origin on Honey Antibacterial Properties and Quality Parameters. Food Chem. 2018, 242, 513–518. [Google Scholar] [CrossRef]
- Moar, N.T. Pollen Analysis of New Zealand Honey. N. Z. J. Agric. Res. 1985, 28, 39–70. [Google Scholar] [CrossRef]
- Ministry for Primary Industries. Determination of Four Chemical Characterisation Compounds in Honey by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS); MPI Technical Paper No: 2017/30; New Zealand Government: Wellington, New Zealand, 2017.
- Ministry for Primary Industries. Multiplex QPCR for Detection of Leptospermum Scoparium DNA from Pollen in Honey; MPI Technical Paper No 2017/31; New Zealand Government: Wellington, New Zealand, 2017.
- Loh, L.X.; Lee, H.H.; Stead, S.; Ng, D.H.J. Manuka Honey Authentication by a Compact Atmospheric Solids Analysis Probe Mass Spectrometer. J. Food Compos. Anal. 2022, 105, 104254. [Google Scholar] [CrossRef]
- Yan, L.; Xu, D.; Xue, X.; Lin, L.; Lai, K.; Wang, J.; Zhang, Z. Authenticity identification of manuka honey using liquid chromatography-high resolution mass spectrometry based metabolomic technique. Chin. J. Chromatogr. 2019, 37, 589–596. [Google Scholar] [CrossRef]
- Bong, J.; Prijic, G.; Braggins, T.J.; Schlothauer, R.C.; Stephens, J.M.; Loomes, K.M. Leptosperin Is a Distinct and Detectable Fluorophore in Leptospermum Honeys. Food Chem. 2017, 214, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, M.; Rogers, K.M.; Jamin, E.; Thomas, F.; Guyader, S.; Lees, M.; Rutledge, D.N. Combination of 1H NMR and Chemometrics to Discriminate Manuka Honey from Other Floral Honey Types from Oceania. Food Chem. 2017, 217, 766–772. [Google Scholar] [CrossRef]
- Majtan, J. Methylglyoxal-a Potential Risk Factor of Manuka Honey in Healing of Diabetic Ulcers. Evid.-Based Complement. Altern. Med. 2011, 2011, 295494. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Guo, H.; Ou, J.; Liu, P.; Huang, C.; Wang, M.; Simal-Gandara, J.; Battino, M.; Jafari, S.M.; Zou, L.; et al. Benefits, Deleterious Effects and Mitigation of Methylglyoxal in Foods: A Critical Review. Trends Food Sci. Technol. 2021, 107, 201–212. [Google Scholar] [CrossRef]
- Kato, Y.; Kishi, Y.; Okano, Y.; Kawai, M.; Shimizu, M.; Suga, N.; Yakemoto, C.; Kato, M.; Nagata, A.; Miyoshi, N. Methylglyoxal Binds to Amines in Honey Matrix and 2′-Methoxyacetophenone Is Released in Gaseous Form into the Headspace on the Heating of Manuka Honey. Food Chem. 2021, 337, 127789. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial Activity of Manuka Honey and Its Components: An Overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lullmann, C.; Borneck, R.; Flamini, C.; Morlot, M.; Lheritier, J.; Vorwohl, G.; Russmann, H.; Persano, L.; et al. Harmonised Methods of the European Honey Commission. Apidologie 1997, 28, 1–59. [Google Scholar]
- Szczęsna, T.; Waś, E.; Semkiw, P.; Skubida, P.; Jaśkiewicz, K.; Witek, M. Changes of Physicochemical Properties of Starch Syrups Recommended for Winter Feeding of Honeybees during Storage. Agriculture 2021, 11, 374. [Google Scholar] [CrossRef]
- Moar, N.T.; Wilmshurst, J.M.; McGlone, M.S. Standardizing Names Applied to Pollen and Spores in New Zealand Quaternary Palynology. N. Z. J. Bot. 2011, 49, 201–229. [Google Scholar] [CrossRef]
- Li, X.; Prebble, J.G.; de Lange, P.J.; Raine, J.I.; Newstrom-Lloyd, L. Discrimination of Pollen of New Zealand Mānuka (Leptospermum Scoparium agg.) and Kānuka (Kunzea spp.) (Myrtaceae). PLoS ONE 2022, 17, e0269361. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, N.M.; Elghani, G.E.A.; Farag, M.A. The Super-Food Manuka Honey, a Comprehensive Review of Its Analysis and Authenticity Approaches. J. Food Sci. Technol. 2022, 59, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Belay, A.; Haki, G.D.; Birringer, M.; Borck, H.; Lee, Y.-C.; Kim, K.-T.; Baye, K.; Melaku, S. Enzyme Activity, Amino Acid Profiles and Hydroxymethylfurfural Content in Ethiopian Monofloral Honey. J. Food Sci. Technol. 2017, 54, 2769–2778. [Google Scholar] [CrossRef]
- Zappalà, M.; Fallico, B.; Arena, E.; Verzera, A. Methods for the Determination of HMF in Honey: A Comparison. Food Control 2005, 16, 273–277. [Google Scholar] [CrossRef]
- Korkmaz, S.D.; Küplülü, Ö. Effects of Storage Temperature on HMF and Diastase Activity of Strained Honeys. Ank. Univ. Vet. Fak. Derg. 2017, 64, 281–287. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Kowalski, S.; Lukasiewicz, M.; Duda-Chodak, A.; Zięć, G. 5-Hydroxymethyl-2-Furfural (HMF)—Heat-Induced Formation, Occurrence in Food and Biotransformation—A Review. Pol. J. Food Nutr. Sci. 2013, 63, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) Levels in Honey and Other Food Products: Effects on Bees and Human Health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Ćirić, J.; Sando, D.; Spirić, D.; Janjić, J.; Bošković, M.; Glišić, M.; Baltić, M.Ž. Characterisation of Bosnia and Herzegovina Honeys According to Their Physico-Chemical Properties during 2016-2017. Meat Technol. 2018, 59, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Makhloufi, C.; Taïbi, K.; Ait Abderrahim, L. Characterization of Invertase and Diastase Activities, 5-Hydroxymethylfurfural Content and Hydrogen Peroxide Production of Some Algerian Honeys. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 1295–1302. [Google Scholar] [CrossRef]
- Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and Quantification of Methylglyoxal as the Dominant Antibacterial Constituent of Manuka (Leptospermum scoparium) Honeys from New Zealand. Mol. Nutr. Food Res. 2008, 52, 483–489. [Google Scholar] [CrossRef] [PubMed]
Sample Number | LS Pollen Grains |
---|---|
1. | 45% |
2. | 51% |
3. | 52% |
4. | 52% |
5. | 54% |
6. | 55% |
7. | 61% |
8. | 64% |
9. | 65% |
10. | 65% |
11. | 66% |
12. | 67% |
13. | 68% |
14. | 68% |
15. | 70% |
16. | 71% |
17. | 71% |
18. | 73% |
19. | 74% |
20. | 75% |
21. | 76% |
22. | 76% |
23. | 78% |
24. | 78% |
25. | 78% |
26. | 80% |
27. | 83% |
28. | 85% |
29. | 85% |
30. | 90% |
Parameter | Unit | Min | Max | Mean | SD |
---|---|---|---|---|---|
L. scoparium pollen | % | 70.0 | 90.0 | 77.7 | 5.7 |
Diastase number | Schade | 1.8 | 15.2 | 6.4 | 4.0 |
HMF content | mg·kg−1 | 5.1 | 55.5 | 29.0 | 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sęk, A.; Porębska, A.; Szczęsna, T. Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content. Foods 2023, 12, 2930. https://doi.org/10.3390/foods12152930
Sęk A, Porębska A, Szczęsna T. Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content. Foods. 2023; 12(15):2930. https://doi.org/10.3390/foods12152930
Chicago/Turabian StyleSęk, Alicja, Aneta Porębska, and Teresa Szczęsna. 2023. "Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content" Foods 12, no. 15: 2930. https://doi.org/10.3390/foods12152930
APA StyleSęk, A., Porębska, A., & Szczęsna, T. (2023). Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content. Foods, 12(15), 2930. https://doi.org/10.3390/foods12152930