The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey
Abstract
:1. Honey Quality and Authenticity
- Mixing honey with water and sugar or selling solutions of water, sugar and flour, and boiled flowers;
- Mixing varieties;
- The sale of imported honeys (often of lower quality, not meeting the requirements as to the composition and properties) or their mixture with domestic honeys;
- The addition of imported honeys containing residues of drugs prohibited in EU countries due to their toxic effects (e.g., chloramphenicol—an antibiotic found in honeys from China);
- Placing incorrect data on the botanical and geographic origin of the product;
- Added sugar syrups (glucose–fructose);
- The addition of potato and beetroot syrup;
- The addition of molasses;
- Adding inverts to honey in order to increase its commercial weight and achieve quick profits (an illegal practice and foreign to beekeeping ethics);
- Feeding bees with sugar during the nectar period of plants;
- The repeated heating of honey in order to decrystallize it;
- Harvesting honey before its maturity;
2. A Review of the Methods for Assessing the Quality and Authenticity of Honeys
2.1. Melissopalynological Analysis (Honey Pollen Analysis)
2.2. Sensory Analysis
2.3. Analysis of Physicochemical Parameters
- Determination of the water content;
- Determination of the total and active acidity;
- Determination of the total ash content;
- Determination of the sugar content, including the ratio of glucose to fructose concentration (especially important when identifying heather honey);
- Analysis of aromatic acids and amino acids;
- Determination of the proline content;
- Determination of the diastase number;
- Determination of the proline content;
- Determination of the pH.
- Determination of the 5-HMF content;
- Determination of the diastase number.
2.4. Measurements of Color Parameters in L * a * b * and X Y Z Systems
2.5. Extraction of Volatile Compounds
2.6. Analysis of the Antioxidant Activity of Honey and Analysis of the Presence of Flavonoids
2.7. Nuclear Magnetic Resonance Spectroscopic Analysis
2.8. Analysis of Honey Microscopic Image Identification
2.9. Analysis of the Isotopic Composition of Honey Using 13C/12C Isotope-Ratio Mass Spectrometry Measurement
2.10. Chromatographic Analysis of Honey Composition
2.11. Analysis of Glycerin or Ethanol Content
2.12. Fluorescence Spectroscopy Research
2.13. Infrared Spectroscopic Analysis
- -
- Near infrared (NIR) spectroscopy, 14,300–4000 cm−1 (700–2500 nm);
- -
- Mid (proper) infrared (MIR) spectroscopy, 700–4000 cm−1 (2500–14,300 nm);
- -
- Far infrared (FIR) spectroscopy, 700–200 cm−1 (14,300–50,000 nm).
2.14. Research on Electrical Properties
2.15. Analysis of the Microbiological Purity of Honey
2.16. Research on Rheological Properties of Honeys
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haska, A.; Martyniuk, E. Wybrane metody wyróżniania produktów spożywczych na rynku. Żywn. Nauka Technol. Jakość 2019, 26, 18–31. [Google Scholar] [CrossRef]
- Downey, G. Advances in Food Authenticity Testing; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- EN ISO 9001:2015; Quality Management Systems—Requirements. International Organization for Standardization: Genève, Switzerland, 2015.
- Galanakis, C.M. (Ed.) Innovative Food Analysis; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Medina, S.; Pereira, J.A.; Silva, P.; Perestrelo, R.; Câmara, J.S. Food fingerprints–A valuable tool to monitor food authenticity and safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, G.; Puaud, M.; Colquhoun, I.J. Discrimination between orange juice and pulp wash by 1H nuclear magnetic resonance spectroscopy: Identification of marker compounds. J. Agric. Food Chem. 2001, 49, 580–588. [Google Scholar] [CrossRef]
- Rubert, J.; Lacina, O.; Zachariasova, M.; Hajslova, J. Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. Food Chem. 2016, 204, 201–209. [Google Scholar] [CrossRef]
- Tena, N.; Aparicio-Ruiz, R.; Koidis, A.; García-González, D.L. Analytical tools in authenticity and traceability of olive oil. In Food Traceability and Authenticity; CRC Press: Boca Raton, FL, USA, 2017; pp. 232–260. [Google Scholar]
- Spink, J.W. Food Fraud Prevention: Introduction, Implementation and Management; Springer: New York, NY, USA, 2019; p. 25. [Google Scholar]
- Codex Standard for Honey, European Regional Standard CXS-12-1981, Codex Alimentarius, International Food Standards, Rev. 1. 1987, Rev. 2 2001. FAO, WHO, 2019, p. 52. Available online: www.fao.org/input/download/standards/310/cxs_012e.pdf (accessed on 16 February 2021).
- Śmiechowska, M. Wybrane problemy autentyczności i identyfikowalności żywności ekologicznej. J. Res. Applic. Agric. Eng. 2007, 52, 80–88. [Google Scholar]
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 23 Grudnia 2014 r. W Sprawie Znakowania Poszczególnych Rodzajów Środków Spożywczych; Polish Minister: Warsaw, Poland, 2015; p. 29. [Google Scholar]
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 29 maja 2015 r. Zmieniające Rozporządzenie w Sprawie Szczegółowych Wymagań w Zakresie Jakości Handlowej Miodu; Polish Minister: Warsaw, Poland, 2015; p. 850. [Google Scholar]
- Spink, J.; Moyer, D.C. Defining the public health threat of food fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef]
- Everstine, K.; Spink, J.; Kennedy, S. Economically motivated adulteration (EMA) of food: Common characteristics of EMA incidents. J. Food Prot. 2013, 76, 723–735. [Google Scholar] [CrossRef]
- Llano, S.M.; Muñoz-Jiménez, A.M.; Jiménez-Cartagena, C.; Londoño-Londoño, J.; Medina, S. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits. Food Chem. 2018, 244, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R. Methods for sensory analysis. In Food Flavours: Chemical, Sensory and Technological Properties; Jeleń, H., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2012; pp. 439–456. [Google Scholar]
- Wijayaa, C.H.; Wijaya, W.; Mehta, B.M. General Properties of Major Food Components. In Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–32. [Google Scholar]
- Piotrowska-Puchała, A. Preferencje konsumentów, jakość i bezpieczeństwo nabywanej przez nich żywności. In Jakość i Zarządzanie w Agrobiznesie Wybrane Aspekty; Czernyszewicz, E., Kołodziej, E., Eds.; Uniwersytet Rolniczy im Hugona Kołłątaja w Krakowie: Kraków, Poland, 2018; pp. 84–93. [Google Scholar]
- Niemczas-Dobrowolska, M. Jakość i Bezpieczeństwo Żywności. Systemy, Postawy, Konsumenci; Wydawnictwo Naukowe PTTŻ: Kraków, Poland, 2021. [Google Scholar]
- Grzybowska-Brzezińska, M. Preferencje konsumentów wobec atrybutów produktów żywnościowych. Handel. Wewn. 2018, 3, 184–196. [Google Scholar]
- Tiwari, K.; Tudu, B.; Bandyopadhyay, R.; Chatterjee, A.; Pramanik, P. Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode. J. Sens. Sens. Syst. 2018, 7, 319–329. [Google Scholar] [CrossRef]
- PN-88 A-77626; Miód Pszczeli. Polski Komitet Normalizacyjny: Warsaw, Poland, 1988.
- Bogdanov, S.; Gallmann, P. Authenticity of Honey and Other Bee Products: State of the Art; Agroscope Liebefeld-Posieux Swiss Federal Research Station for Animal Production and Dairy Products (ALP): Bern, Switzerland, 2008. [Google Scholar]
- Council Directive 2014/63/EC of the European Parliament and of the Council of 15 May 2014 Amending Council Directive 2001/110/EC Relating to Honey; European Parliament: Luxembourg, 2014.
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup. Food Chem. 2007, 105, 1119–1125. [Google Scholar] [CrossRef]
- Szczęsna, T. Problemy z jakością miodu na rynku krajowym. Pasieka 2003, 3, 5–7. [Google Scholar]
- Piotraszewska-Pająk, A.; Gliszczyńska-Świgło, A. Directions of colour changes of nestar honeys depending on honey type and storage conditions. J. Apic. Sci. 2015, 59, 51–61. [Google Scholar]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive review on the main honey. Authentication issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Kemsley, E.K.; Defernez, M.; Marini, F. Multivariate statistics: Considerations and confidences in food authenticity problems. Food Control 2019, 105, 102–112. [Google Scholar] [CrossRef]
- Council Directive 2001/110/EC of 20 December 2001 Relating to Honey; European Parliament: Luxembourg, 2001.
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; Tastemur, B.; Sagdic, O.; Kayacier, A. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind. Crops Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Pentoś, K.; Łuczycka, D.; Wysoczański, T. Dielectric properties of selected wood species in Poland. Wood Res. 2017, 62, 727–736. [Google Scholar]
- Laaroussi, H.; Bouddine, T.; Bakour, M.; Ousaaid, D.; Lyoussi, B. Physicochemical Properties, Mineral Content, Antioxidant Activities, and Microbiological Quality of Bupleurum spinosum Gouan Honey from the Middle Atlas in Morocco. J. Food Qual. 2020, 2022, 7609454. [Google Scholar] [CrossRef]
- Wilczyńska, A. Jakość Miodów w Aspekcie Czynników Wpływających na ich Właściwości Przeciwutleniające; Wydawnictwo Akademii Morskiej w Gdyni: Gdynia, Poland, 2012. [Google Scholar]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Battino, M. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, K.; Luginbühl, W.; Kilchenmann, V.; Bosset, J.O.; von Der Ohe, K.; von Der Ohe, W.; Amadò, R. Authentication of the botanical origin of honey using profiles of classical measurands and discriminant analysis. Apidologie 2007, 38, 438–452. [Google Scholar] [CrossRef]
- Jędrusek-Golińska, A.; Szymandera-Buszka, K.; Hęś, M. Gospodarcze i prozdrowotne znaczenie miodu. Zag. Doradz. Rol. 2023, 112, 42–53. [Google Scholar]
- Terrab, A.; González, A.G.; Díez, M.J.; Heredia, F.J. Characterisation of Moroccan unifloral honey using multivariate analysis. Eur. Food Res. Technol. 2003, 218, 88–95. [Google Scholar] [CrossRef]
- Pasias, I.N.; Kiriakou, I.K.; Proestos, C. HMF and diastase activity honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and Adulteration. Food Chem. 2017, 229, 425–431. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Wolanciuk, A.; Florek, M.; Skałecki, P.; Litwińczuk, A. Hydroxymethylfurfural content, diastase activity and colour of multifloral honeys in relation to origin and storage time. J. Cent. Europ. Agri. 2017, 18, 657–668. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. Aktywność i stabilność termiczna diastazy występującej w podkarpackich miodach odmianowych. Żywn. Nauka Technol. Jakość 2017, 24, 103–112. [Google Scholar] [CrossRef]
- Al- Diab, D.; Jarkas, B. Effect of storage and termal treatment on the quality of some locals brands of honey from Latakia markets. J. Entomol. Zool. Stud. 2015, 3, 328–334. [Google Scholar]
- Kursa, K.; Popek, S. Próba zastosowania oceny poziomu 5-HMF jako wskaźnika jakości miodu pszczelego typu spadziowego. Zesz. Nauk. Uniw. Ekon. Poz. 2011, 196, 84–90. [Google Scholar]
- Teixido, E.; Nunez, O.; Santos, F.J.; Galceran, M.T. 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography. Food Chem. 2011, 126, 1902–1908. [Google Scholar] [CrossRef]
- Nikolov, P.Y.; Yaylayan, V.A. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids. J. Food Agric. Food Chem. 2011, 59, 6099–6107. [Google Scholar] [CrossRef] [PubMed]
- Śliwińska, A.; Przybylska, A.; Bazylak, G. Wpływ zmian temperatury przechowywania na zawartość 5-hydroksymetylofurfuralu w odmianowych i wielokwiatowych miodach pszczelich. Bromat. Chem. Toksykol.—XlV 2012, 3, 271–279. [Google Scholar]
- Kursa, K. Zawartość proliny jako wskaźnik autentyczności miodów. Zesz. Nauk. Akad. Morskiej Gdyni 2015, 88, 172–176. [Google Scholar]
- Majewska, E.; Drużyńska, B.; Kowalska, J.; Wołosiak, R.; Ciecierska, M.; Derewiaka, D. Zastosowanie metod fizykochemicznych i chemometrycznych do oceny jakości i autentyczności botanicznej miodów gryczanych. Zesz. Prob. Postępów Nauk Rol. 2017, 589, 59–68. [Google Scholar] [CrossRef]
- Tichonow, A.I.; Bondarenko, L.A.; Jarnych, T.G.; Szpyczak, O.S.; Kowal, W.M.; Skrypnik–Tichonow, R.I. Miód Naturalny w Medycynie i Farmacji (Pochodzenie, Właściwości, Zastosowanie, Preparaty Lecznicze); Gospodarstwo Pasieczne Sądecki Bartnik: Stróże, Poland, 2017. [Google Scholar]
- Zhu, X.; Li, S.; Zhang, Z.; Li, G.; Su, D.; Liu, F. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng. 2010, 101, 92–97. [Google Scholar] [CrossRef]
- Kowalski, S.; Łukasiewicz, M. Zafałszowania i autentyczność miodu–metody identyfikacji. In Proceedings of the Pszczoły Ludziom, Ludzie Pszczołom, Kraków, Poland, 13 October 2018; Volume 25. [Google Scholar]
- Kuś, P.M.; Jerković, I.; Marijanović, Z.; Kranjac, M.; Tuberosod, C.I.G. Unlocking Phacelia tanacetifolia Benth. honey characterization through melissopalynological analysis, color determination and volatiles chemical profiling. Food Res. Int. 2018, 106, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Flaczyk, E.; Górecka, D.; Korczak, J. Towaroznawstwo Produktów Spożywczych; Akademia Rolnicza: Poznań, Poland, 2006. [Google Scholar]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Thakodee, T.; Deowanish, S.; Duangmal, K. Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand. J. Asia-Pac. Entom 2018, 21, 620–630. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.V.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem. 2014, 165, 181–190. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Brawska, M.H. Odmianowe miody pszczele—pyłki główne i towarzyszące jako podstawa ich zaklasyfikowania. Probl. Hig. Epidemiol. 2016, 97, 275–278. [Google Scholar]
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagya, D.U.; Ágnes, F.; Kocsis, M. Melissopalynology, antioxidant activity and multielement analysis of two types of early spring honeys from Hungary. Food Biosci. 2020, 35, 100587. [Google Scholar] [CrossRef]
- Yang, Y.; Battesti, M.-J.; Gjabou, N.; Muselli, A.; Paolini, J.; Tomi, P.; Costa, J. Melissopalynological origin determination and volatile composition analysis of Corsican “chestnut grove” honeys. Food Chem. 2012, 132, 2144–2154. [Google Scholar] [CrossRef]
- Mureșan, C.I.; Cornea-Cipcigan, M.; Suharoschi, R.; Erler, S.; Mărgăoan, R. Honey botanical origin and honey-specific protein pattern: Characterization of some European honeys. LWT 2022, 154, 112883. [Google Scholar] [CrossRef]
- Serra Bonvehi, J.; Gomez Pajuelo, A. Evaluation of honey by organoleptical analysis. Apiacta 1988, 23, 103. [Google Scholar]
- Popek, S. Studium Identyfikacji Miodów Odmianowych i Metodologii Oceny Właściwości Fizykochemicznych Determinujących ich Jakość; Zeszyty Naukowe/Akademia Ekonomiczna w Krakowie: Kraków, Poland, 2001. [Google Scholar]
- Kortesniemi, M.; Rosenvald, S.; Laaksonena, O.; Vanaga, A.; Ollikka, T.; Vene, K.; Yanga, B. Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. Food Chem. 2018, 246, 351–359. [Google Scholar] [CrossRef]
- Vieira da Costa, A.C.; Batista Sousa, J.M.; Pereirada Silva, M.A.A.; dos Santos Garrut, D.; Madruga, M.S. Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the brazilian semiarid region. Food Res. Int. 2018, 105, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, E.; Jaworska, D. Właściwości probiotyczne i prebiotyczne miodów Pszczelich w aspekcie ich jakości i bezpieczeństwa zdrowotnego. Żywn. Nauka Technol. Jakość 2019, 26, 36–48. [Google Scholar] [CrossRef]
- Tischer Seraglio, S.K.; Bergamo, G.; Molognoni, L.; Daguer, H.; Silva, B.; Gonzaga, L.V.; Fett, R.; Oliviera Costa, A.C. Quality changes during long-term storage of a peculiar Brazilian honeydew honey: “Bracatinga”. J. Food Comp. Anal. 2021, 97, 103769. [Google Scholar] [CrossRef]
- Srinual, K.; Intipunya, P. Effects of crystallization and processing on sensory and physicochemical qualities of Thai sunflower honey. Asian J. Food Agro-Ind. 2009, 2, 749–754. [Google Scholar]
- Popek, S. Electrical conductivity as an indicator of the quality of nectar honeys. Forum Ware 1998, 1, 75–79. [Google Scholar]
- Popek, S.; Halagarda, M.; Kursa, K. A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT 2017, 77, 482–487. [Google Scholar] [CrossRef]
- Mohamat, R.N.; Noor, N.R.A.M.; Yusof, Y.A.; Sabri, S.; Zawawi, N. Differentiation of High-Fructose Corn Syrup Adulterated Kelulut Honey Using Physicochemical, Rheological, and Antibacterial Parameters. Foods 2023, 12, 1670. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Chan, B.K.; Haron, H.; Talib, R.A.; Subramaniam, P. Physical properties, antioxidant content and anti-oxidative activities of Malaysian stingless Kelulut (Trigona spp.). Honey J. Agric. Sci. 2017, 9, 32–40. [Google Scholar]
- Bakar, M.A.; Sanusi, S.B.; Bakar, F.A.; Cong, O.J.; Mian, Z. Physicochemical and antioxidant potential of raw unprocessed honey from Malaysian stingless bees. Pak. J. Nutr. 2017, 16, 888–894. [Google Scholar] [CrossRef]
- Bogdanov, S.; Ruoff, K.; Oddo, L.P. Physico-chemical methods for the characterisation of unifloral honeys: A review. Apidologie 2004, 35 (Suppl. 1), 4–17. [Google Scholar] [CrossRef]
- Acquarone, C.; Buera, P.; Elizalde, B. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007, 101, 695–703. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbuhl, W.; Bogdanov, S.; Bosset, J.O.; Estermann, B.; Ziolko, T.; Amadò, R. Authentication of the botanical origin of honey by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 6867–6872. [Google Scholar] [CrossRef]
- Majewska, E.; Kowalska, J. Badanie korelacji pomiędzy przewodnością elektryczną i zawartością popiołu w wybranych miodach pszczelich. Acta Agrophysica 2011, 17, 369–376. [Google Scholar]
- Sykut, B.; Kowalik, K.; Hus, W. Badanie jakości i zafałszowań miodów naturalnych. Postępy Tech. Przetw. Spoż. 2018, 1, 60–64. [Google Scholar]
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.-L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vavoura, M.V.; Nikolaou, C.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Floral authentication of Greek unifloral honeys based on the combination of phenolic compounds, physicochemical parameters and chemometrics. Food Res. Int. 2014, 62, 753–760. [Google Scholar] [CrossRef]
- Giemza, M.A. Znaczenie Barwy w Ocenie Jakości Produktów na Przykładzie Miodów Odmianowych; Akademia Ekonomiczna: Kraków, Poland, 1999. [Google Scholar]
- Wilczyńska, A. Wpływ procesów technologicznych na jakość miodów pszczelich—zmiany parametrów barwy oraz zawartości HMF pod wpływem przechowywania i ogrzewania. Zesz. Nauk. Uniw. Ekon. Pozn. 2011, 196, 91–98. [Google Scholar]
- Szabó, R.T.; Mézes, M.; Szalai, T.; Zajácz, E.; Weber, M. Colour identification of honey and methodical development of its instrumental measuring. Columella. J. Agric. Environ. Sci. 2016, 3, 29–36. [Google Scholar]
- Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Verzera, A.; Campisi, S.; Zappala, M.; Bonaccorsi, I. SPME-GC/MS Analysis of honey volatile components for the characterization of different floral origin. Am. Lab. 2001, 33, 18–21. [Google Scholar]
- Majewska, E.; Delmanowicz, A. Profile związków lotnych wybranych miodów pszczelich. Żywn. Nauka Technol. Jakość 2007, 14, 247–259. [Google Scholar]
- Glory-Cuevas, L.F. A review of volatile analytical methods for determining the botanical origin of honey. Food Chem. 2007, 103, 1032–1043. [Google Scholar] [CrossRef]
- Jasicka-Misiak, I.; Kafarski, P. Chemiczne markery miodów odmianowych. Wiad Chem. 2011, 65, 823–837. [Google Scholar]
- Majewska, E. Studia nad Wykorzystaniem Wybranych Parametrów Fizyko-Chemicznych i Związków Lotnych do Określania Autentyczności Polskich Miodów Odmianowych; Wydawnictwo SGGW: Warszawa, Poland, 2013. [Google Scholar]
- Escriche, I.; Sobrino-Gregorio, L.; Conchado, A.; Juan-Borrás, M. Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. Food Chem. 2017, 226, 61–68. [Google Scholar] [CrossRef]
- Morais da Silva, P.L.; de Lima, L.S.; Kaminski Caetano, Í.; Reyes Torres, Y. Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC–MS. Food Res. Int. 2017, 102, 536–543. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.V.; Kontominas, M.G. A decisive strategy for monofloral honey authentication using analysis of volatile compounds and pattern recognition techniques. Microchem. J. 2020, 152, 104263. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Falcão, S.I.; Escuredo, O.; Seijo, M.C.; Vilas-Boas, M. Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. Food Chem. 2021, 336, 127758. [Google Scholar] [CrossRef] [PubMed]
- Meda, A.; Euloga Lamiec, C.; Romito, M.; Millogo, J.; Nacoulma, O. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Wilczyńska, A. Phenolic content and antioxidant activity of different types of polish honey—A short report. Pol. J. Food Nutr. Sci. 2010, 60, 309–313. [Google Scholar]
- Borawska, M.H.; Piekut, J. Wartość liczby diastazowej, potencjał antyoksydacyjnego i zawartość polifenoli w miodach pszczelich z regionu Podlasia. Brom. Chem. Toksyk. 2006, 39, 373–376. [Google Scholar]
- Braghini, F.; Biluca, F.C.; Ottequir, F.; Gonzaga, V.L.; da Silva, M.; Vitali, L.; Micke, G.A.; Costa, A.C.O.; Fetta, R. Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys. LWT 2020, 131, 10972. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gonzaga, L.V.; Biluca, F.C.; Schulz, M.; Vitali, L.; Micke, G.A.; Costa, A.C.O.; Fetta, R. Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT 2020, 129, 109521. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef]
- Popov, I.; Lewin, G. Antioxidative homeostasis: Characterization by means of chemiluminescent technique. Methods Enzym. 1999, 300, 437–456. [Google Scholar]
- Dżugan, M.; Kisała, J. Application of the Photochem system in agricultural investigations. In Modern Methods in Analysis of Agricultural Raw Materials; Puchalski, C., Bartosz, G., Eds.; University of Rzeszow Publishing Office: Rzeszów, Poland, 2011; pp. 193–203. [Google Scholar]
- Sarmento Silva, T.M.; Santos, F.P.; Evangelista-Rodrigues, A.; Sarmentoda Silva, E.M.; Sarmento da Silva, G.; Santosde Novais, J.; de Assis, F.; dos Santos, R.; Camaraa, C.A. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Comp. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A.; Drgas, M.; Korczak, J.; Skręty, J. Evaluation of chokeberry preparations antioxidant activity with use of the photochemilumiescence (PCL) assay. Probl. Hig. Epidemiol. 2013, 94, 835–838. [Google Scholar]
- Wesołowska, M.; Dżugan, M. The use of the photochem device in evaluation of antioxidant activity of polish honey. Food Anal. Methods 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Cazor, A.; Deborde, C.; Moing, A.; Rolin, D.; This, H. Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J. Agric. Food Chem. 2006, 54, 4681–4686. [Google Scholar] [CrossRef] [PubMed]
- Donarski, J.A.; Roberts, D.P.T.; Charlton, A.J. Quantitative NMR spectroscopy for the rapid measurement of methylglyoxal in manuka honey. Anal. Methods 2010, 2, 1479–1483. [Google Scholar] [CrossRef]
- Boffo, E.F.; Tavares, L.A.; Tobias, A.C.T.; Ferreira, M.M.C.; Ferreira, A.G. Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods. LWT Food Sci. Technol. 2012, 49, 55–63. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R.; Cogliati, C. NMR characterization of saccharides in Italian honeys of different floral sources. J. Agric. Food Chem. 2012, 60, 4526–4534. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Wu, H.; Dong, J.; Feng, J. Origin Identification and Quantitative Analysis of Honeys by Nuclear Magnetic Resonance and Chemometric Techniques. Food Anal. Methods 2016, 9, 1470–1479. [Google Scholar] [CrossRef]
- Schievano, E.; Piana, L.; Tessari, M. Automatic NMR-based protocol for assessment of honey authenticity. Food Chem. 2023, 420, 136094. [Google Scholar] [CrossRef]
- Chaji, S.; Olmo-García, L.; Serrano-García, I.; Carrasco-Pancorbo, A.; Bajoub, A. Metabolomic approaches applied to food authentication: From data acquisition to biomarkers discovery. In Food Authentication and Traceability; Academic Press: Cambridge, MA, USA, 2021; pp. 331–378. [Google Scholar]
- Zuccato, V.; Finotello, C.; Menegazzo, I.; Peccolo, G.; Schievano, E. Entomological authentication of stingless bee honey by1H NMR-based metabolomics approach. Food Control 2017, 82, 145–153. [Google Scholar] [CrossRef]
- Schievano, S.; Stocchero, M.; Zuccato, V.; Conti, I.; Piana, L. NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers. Food Chem. 2019, 288, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Gerginova, D.; Simova, S.; Popova, M.; Stefova, M.; Stanoeva, J.P.; Bankova, V. NMR profiling of North Macedonian and Bulgarian honeys for detection of botanical and geographical origin. Molecules 2020, 25, 4687. [Google Scholar] [CrossRef] [PubMed]
- Kerkvliet, J.D.; Meijer, H.A.J. Adulteration of honey: Relation between microscopic analysis and delta C-13 easurements. Apidologie 2000, 31, 717–726. [Google Scholar] [CrossRef]
- Przetaczek-Rożnowska, I.; Rosiak, M. Wykrywanie zafałszowań żywności. Przem. Spoż 2011, 65, 20–24. [Google Scholar]
- Lipiński, Z.; Czajkowska, K. Metody nowoczesnego wykrywania zafałszowań miodu syropami cukrowymi ze skrobi, Higiena żywności i pasz. Życie Wet. 2012, 87, 417–418. [Google Scholar]
- She, S.; Chen, L.; Song, H.; Lin, G.; Li, Y.; Zhou, J.; Liu, C. Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols. Food Chem. 2019, 272, 580–585. [Google Scholar] [CrossRef]
- Bong, J.; Middleditch, M.; Stephens, J.M.; Loomes, K.M. Analiza proteomiczna miodu: Profilowanie peptydów jako nowatorskie podejście do uwierzytelniania miodu Mānuka (Leptospermum scoparium) w Nowej Zelandii. Żywność 2023, 12, 1968. [Google Scholar]
- Wang, X.; Yan, S.; Zhao, W.; Wu, L.; Tian, W.; Xue, X. Comprehensive study of volatile compounds of rare Leucosceptrum canum Smith honey: Aroma profiling and characteristic compound screening via GC–MS and GC–MS/MS. Food Res. Int. 2023, 169, 112799. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, G.; Wu, D.; Guo, L.; Huang, X.; Ning, F.; Luo, L. Identification of the botanical origins of honey based on nanoliter electrospray ionization mass spectrometry. Food Chem. 2023, 418, 135976. [Google Scholar] [CrossRef] [PubMed]
- Cabanero, A.I.; Recio, J.L.; Ruperez, M. Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection. J. Agric. Food Chem. 2006, 54, 9719–9727. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; van Ruth, S. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics. LWT–Food Sci. Technol. 2015, 62, 69–75. [Google Scholar] [CrossRef]
- Nasaba, S.G.; Yazd, M.; Marini, F.; Nescatelli, R.; Biancolillo, A. Classification of honey applying high performance liquid chromatography, near-infrared spectroscopy and chemometrics. Chemom. Intell. Lab. Syst. 2020, 202, 104037. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, L.; Zhang, J.; Ma, X.; Weng, R. Determination of endogenous phenolic compounds in honey by HPLC-MS/MS. LWT 2023, 183, 114951. [Google Scholar] [CrossRef]
- Beckh, G.; Wessel, P.; Lullmann, C. Contribution to yeasts and their metabolisms products as natural components of honey—Part 3: Contents of ethanol and glycerol as quality parameters. Dtsch. Leb. Rundsch 2005, 101, 1–6. [Google Scholar]
- Zucchi, P.; Marcazzan, G.L.; Dal Pozzo, M.; Sabatini, A.G.; Desalvo, F.; Floris, I. Il contenuto di etanolo nel miele per la valutazione di processi fermentativi. APOidea 2006, 3, 18–26. [Google Scholar]
- Gębala, S. Measurements of solution fluorescence—A new concept. Opt. Appl. 2009, 39, 391–399. [Google Scholar]
- Karoui, R.; Dufour, E.; Bosset, J.-O.; De Baerdemaeker, J. The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland. Food Chem. 2007, 101, 314–323. [Google Scholar] [CrossRef]
- Lenhardt, L.; Bro, R.; Zekovic, I.; Dramicanin, T.; Dramicanin, M.D. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem. 2015, 175, 284–291. [Google Scholar] [CrossRef]
- Lenhardt, L.; Zekovic, I.; Dramicanin, T.; Dramicanin, M.D.; Bro, R. Determination of the botanical origin of honey by front-face synchronous fluorescence spectroscopy. Appl. Spectrosc. 2014, 68, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Dramićanin, T.; Lenhardt, L.; Ackovic, L.; Zekovic, I.; Dramicanin, M.D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices. J. Spectrosc. 2018, 2018, 8395212. [Google Scholar] [CrossRef]
- Wilczyńska, A.; Żak, N. The Use of Fluorescence Spectrometry to Determine the Botanical Origin of Filtered Honeys. Molecules 2020, 25, 1350. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Santinami, G.; Domenici, V. Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef]
- Xagoraris, M.; Revelou, P.-K.; Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.S. The Use of Right Angle Fluorescence Spectroscopy to Distinguish the Botanical Origin of Greek Common Honey Varieties. Appl. Sci. 2021, 11, 4047. [Google Scholar] [CrossRef]
- Żak, N.; Wilczyńska, A.; Przybyłowski, P. Zastosowanie spektroskopii fluoroscencyjnej do oceny stopnia podgrzania miodu. Folia Pomeranae Univ. Technol. Stetin. 2018, 340, 131–142. [Google Scholar]
- Truong, H.T.D.; Reddy, P.; Reis, M.M.; Archer, R. Internal reflectance cell fluorescence measurement combined with multi-way analysis to detect fluorescence signatures of undiluted honeys and a fusion of fluorescence and NIR to enhance predictability. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122274. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, K.; Iglesias, M.T.; Luginbuehl, W.; Jacques-Olivier, B.; Stefan, B.; Amado, R. Quantitative analysis of physical and cemical measurands in honey by mid-infrared spectrometry. Eur. Food Res. Technol. 2005, 223, 22–29. [Google Scholar] [CrossRef]
- Ruoff, K.; Karoui, R.; Dufour, E.; Luginbuhl, W.; Bosset, J.O.; Bogdanov, S.; Amadò, R. Authentication of the botanical origin of honey by front-face fluorescence spectroscopy, a preliminary study. J. Agric. Food Chem. 2005, 53, 1343–1347. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Bogdanov, S.; Bosset, J.O.; von der Ohe, K.; von der Ohe, W.; Amadò, R. Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. J. Agric. Food Chem. 2006, 54, 6858–6866. [Google Scholar] [CrossRef]
- Kelly, J.D.; Petisco, C.; Downey, G. Potential of near infrared transflectance spectroscopy to detect adulteration of Irish honey by beet invert syrup and high fructose corn syrup. J. Near Infrared Spectr. 2006, 14, 139–146. [Google Scholar] [CrossRef]
- Woodcock, T.; Downey, G.; O’Donnell, C.O. Near infrared spectral fingerprinting for confirmation of claimes PDO provenance of honey. Food Chem. 2009, 114, 742–746. [Google Scholar] [CrossRef]
- Szterk, A.; Lewicki, P. Spektroskopia NIR on-line w kontroli procesów produkcji żywności. Przem. Spoż 2010, 64, 26–30. [Google Scholar]
- Piekut, J. Zastosowanie Spektroskopii w Bliskiej Podczerwieni (NIR) Do Analizy Wybranych Parametrów Jakościowych Naturalnych Miodów Pszczelich; Politechnika Białostocka, Zakład Chemii: Białystok, Poland, 2011. [Google Scholar]
- Łuczycka, D. Właściwości dielektryczne wybranych odmian miodu. Inżynieria Rol. 2010, 5, 137–142. [Google Scholar]
- Pentoś, K.; Łuczycka, D.; Kapłon, T. The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model. Eur. Food Res. Technol. 2015, 241, 793–801. [Google Scholar] [CrossRef]
- Pentoś, K.; Łuczycka, D.; Wróbel, R. The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comp. Biol. Med. 2014, 53, 244–249. [Google Scholar] [CrossRef]
- Łuczycka, D.; Pentoś, K. The use of dielectric honey features for overheating diagnostics. Acta Aliment. 2019, 48, 28–36. [Google Scholar] [CrossRef]
- Łuczycka, D.; Pentoś, K.; Wysoczański, T. The influence of crystallization and temperature on electrical parameters of honey. Zesz. Probl. Postępów Nauk Rol. 2016, 586, 59–68. [Google Scholar]
- Vozáry, E.; Ignáczk, K.; Gillay, B. Dielectrical properties of Hungarian acacia honeys. Prog. Agric. Eng. Sci. 2020, 16 (Suppl. S1), 131–139. [Google Scholar] [CrossRef]
- Pentoś, K. The methods of extracting the contribution of variables in artificial neural network models—Comparison of inherent instability. Comp. Electr. Agric. 2016, 127, 141–146. [Google Scholar] [CrossRef]
- Pentoś, K.; Łuczycka, D. Dielectric properties of honey—The potential usability for quality assessment. Eur. Food Res. Technol. 2018, 244, 873–880. [Google Scholar] [CrossRef]
- Bakier, S. Badania Właściwości Reologicznych Miodu w Postaci Skrystalizowanej; Wydawnictwo SGGW: Warszawa, Poland, 2008. [Google Scholar]
- Addo, M.G.; Mutala, A.H.; Badu, K. A Comparative Study on the Antimicrobial Activity of Natural and Artificial (Adulterated) Honey Produced in Some Localities in Ghana. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 962–972. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, U.; Mishra, S. Prediction of adulteration in honey using rheological parameters. Int. J. Food Prop. 2015, 18, 2056–2063. [Google Scholar] [CrossRef]
- Karoui, R. Food authenticity and fraud. In Chemical Analysis of Food; Academic Press: Cambridge, MA, USA, 2020; pp. 579–608. [Google Scholar]
- Brar, D.S.; Pant, K.; Krishnan, R.; Kaur, S.; Rasane, P.; Nanda, V.; Gautam, S. A comprehensive review on unethical honey: Validation by emerging techniques. Food Control 2023, 145, 109482. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Elmore, J.S.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef] [PubMed]
Name | Parameters | Assessment Methods |
---|---|---|
Sensory and organoleptic attributes |
|
|
Safety | Level of presence of toxic substances; organic and inorganic food additives; and microbiological, biochemical, chemical, physical and technological contamination. | Chemical, microbiological and biochemical analysis. |
Health and nutritional value | The nutrient and non-nutrient content of the product and its energy value. In addition, it indicates the presence, assimilation and impact on the body of food additives, often with health-promoting effects, such as probiotics, polyphenolic compounds or vitamins. | Chemical and biochemical analysis of the composition of products and based on biological experiments. |
Functional features | They mainly concern related aspects such as the ease of use of ingredients for processing, but also the size of the portions; in addition, their range is responsible for the characteristics of resistance to damage and storage stability. | Physical, biochemical and chemical analysis of raw materials and finished products. |
Psychological parameters | The use of such features as convenience and ease of use at the appropriate price level and the level of novelty and attractiveness, taking into account the individual characteristics and needs of the consumer, makes the product habituated. |
|
Parameter | Limit Value | Exceeding the Limit Values of the Parameters | |
---|---|---|---|
Water content | Not more than 20%; however, not more than:
| The water content is considered as an indicator of honey stability and resistance to yeast fermentation. At a high level, it causes not only the fermentation and spoilage of honey, but also loss of taste. In addition, water activity is a parameter responsible for the growth of microorganisms [34,35]. In the case of changes in the water content, especially an increase, it can be presumed that water was added to the honey or it may indicate that the honey was removed from the hive too quickly. This parameter is also influenced by weather conditions during honey harvesting, e.g., the intensity of rainfall. An increase in its value is dangerous because it can affect the development of yeast and mold in honey [30,36]. Changes in this parameter may indicate adulteration of honey by adding, for example, invert sugar or potato (starch) syrup. It is added to honey to increase its weight. Adding water to honey has the same effect. This is very unfavorable for honey, as the increased amount of water increases the tendency to ferment [37]. | |
Reducing sugar content (sum of fructose and glucose) | Not less than 60 g/100 g (nectar) | Not less than 45 g/100 g (nectar and honeydew) | The quantitative ratio of glucose to fructose is the main factor used to classify monofloral honeys [38]–acacia honey contains, on average, 34.6 g of fructose and 21.6 g of glucose; rapeseed honey, 37 g of fructose and 36.7 g of glucose; and dandelion honey, 35.9 g of fructose and 37.6 g of glucose [39,40]. It was observed that in honeydew honeys, the ratio of fructose to glucose content is higher than in nectar honeys. The only exception is black locust honey, in which the predominance of fructose over glucose ensures a liquid consistency for as long as several months. The preponderance of glucose is responsible for the rapid crystallization of honey, e.g., in rapeseed or dandelion honeys [38,39,40]. |
Sucrose content | Not more than 5 g/100 g, except when not more than:
| The content of saccharides in honey is determined, inter alia, by the origin of the honey, the time of harvesting and the length of the storage period; honeydew honeys contain more oligosaccharides and dextrins, while nectar honeys are dominated by simple sugars. Unripe honey contains the highest amount of sucrose. The content of individual carbohydrates may indicate the maturity of the honey or its lack [30,40]. An increased sucrose content may indicate adulteration of honey by feeding bees with sucrose or its addition to honey, but also the mixing varieties of honey [36]. Another very important indicator of honeydew honey is honeydew sugar—melezitose; this sugar is not found in nectar honeys. It may be an indicator of mixing honey varieties or a lack of varietal purity [27,30]. | |
Free acid content | Not more than 50 mval/kg, but not more than 80 mval/kg in baking honey (industrial). | The value of the level of free acids—the level of free acids may indicate the maturity of the honey, as well as disorders related to the microbiological contamination of honey [35,41]. They can determine the taste and aroma of honey. | |
Diastase number (according to the Schade scale) | Not less than 8, except for baker’s (industrial) honey, but not less than 3 in honey with naturally low enzyme activity and an HMF content not more than 15 mg/kg. | The diastase number depends on the type and origin of the honey. Diastase (α-amylase) and invertase—enzymes derived from the salivary glands of bees—are among the most important biological components of honey. It is their presence that determines the nutritional and health-promoting properties of honey. The diastase number is an indicator of the enzymatic activity of honey. It is expressed by the number of Schade units per 1 g of honey. The level of diastase activity is one of the most important indicators that prove the high quality of honey. In the case of a low value of the diastase number, it can be presumed that the honey was heated to a temperature above 40 °C, which may also indicate the addition of sugar syrup [42] and the long storage of honey in unfavorable conditions [43,44]. | |
5-hydroxymethylfurfural (HMF) content | Not more than 40 mg/kg, except for baker’s honey (industrial); also not more than 80 mg/kg in honey from regions with a tropical climate, and in mixtures of such honeys. | Content of 5-HMF (5-hydroxymethylfurfural)—this natural component of honey, heterocyclic 5-hydroxymethylfurfural aldehyde, is formed in an acidic environment from fructose (2-oxohexose). Natural honey does not contain 5-HMF or it is present in very small amounts (2–7 mg/kg). Its content may increase with prolonged storage and a too-high processing temperature; hence, 5-HMF is called the honey aging parameter. The content of 5-HMF proves not only the quality, but also the authenticity of the honey—the increased content of this ingredient also indicates adulteration with invert sugar or starch syrup. In the case of a very high level of this compound above 200 mg/kg, adulteration with chemical invert can be presumed [43,44,45,46]. HMF exhibits mutagenic activity and causes damage to the structure of the DNA helix [47]. HMF derivatives in the form of 5-sulfooxymethylfurfural (SOMF), 5-chloromethylfurfural and 5-hydroxymethyl-2-furancarboxylic acid (5-HMFK) have cytotoxic, genotoxic, neurotoxic, mutagenic and carcinogenic effects, which can lead to neoplastic changes in the liver, skin and lower colon tissues [42,48,49]. | |
Proline content, mg/100 g of honey | Not less than 25 mg/100 g of honey. | Proline is an amino acid that is predominant in honey. In the case of the adulteration of natural honey with sucrose, a decrease in its content up to 10 mg/100 g of honey is observed [50]. A high proline content indicates the maturity of the honey; this indicator is often used in research as a honey quality parameter. The largest amounts of proline are found in buckwheat honey (approx. 80.8/100 g) [40]. | |
Conductivity | Not more than 0.8 mS/cm, except for honeys and their mixtures listed below, but not less than 0.8 mS/cm in honeydew honey, chestnut honey and their mixtures. The conductivity of originating honey is not specified from strawberry tree (Arbutus unedo), heather (Erica), eucalyptus, linden (Tilia spp.), common heather (Calluna vulgaris), manuka leptospermum and tea tree (Melaleuca spp.) | The electrical conductivity of honey, as one of the physicochemical parameters, can be used to characterize its botanical origin, because it depends to a large extent on the plant from which honey was made [51,52]. The value of the electrical conductivity depends on the value of the level of mineral compounds and honey acids. In the case of this parameter, nectar honeys should have a value of up to 0.8 mS × cm−1, and honeydew honeys, due to a greater presence of minerals, should have this value above the level indicated above, even up to 1.5 times—up to 0.17 mS/cm2. Any deviations from this standard may indicate the mixing of nectar and honeydew honeys. The reduced value of electrical conductivity in honeydew honeys may indicate adulteration with nectar honey. Increased sucrose content combined with a reduced electrical conductivity, diastase number and proline content may indicate the adulteration of honey with sugar syrup [43,52]. | |
Content of insoluble substances | No more than 0.1 g/100 g, but not more than 0.5 g/100 g in pressed honey | The content of insoluble substances indicates contamination of the hive or the product itself. The presence of these substances can lead to product contamination and consumer exposure [37,52]. |
Methods Used—Name | Applied Methods | Problem Identification Factors | Group of Honey Authenticity Problems |
---|---|---|---|
Melissopalynological analysis (honey pollen analysis) | Quantitative analysis consists of counting all plant parts (N), i.e., pollen grains, fungal spores and algae hyphae, yeast, starch grains and others in 10 g of honey. As a result, honey is assigned to one of five classes. | Identification of the leading pollen. | Identification of the botanical/geographical origin of the honey. |
Sensory analysis | The bases for this form of research are the senses and feelings related to the smell, taste, color, appearance, and consistency of the product. | Identification of sensory features (color, taste, smell, appearance, consistency) characteristic of:
| Identification of the botanical/geographical origin of the honey. |
Evaluation of the quality of bee honey. | |||
Counterfeit identification. | |||
Identification of bee honey fermentation. | |||
Identification of impurities. | |||
Analysis of physicochemical parameters | The most useful parameters in identification are electrical conductivity, water content, total and active acidity, total ash content and sugar content, including the ratio of glucose to fructose concentration (especially important when identifying heather honey), the analysis of aromatic acids and amino acids, proline content, diastase number, proline content and pH level. | Identification of physicochemical parameters characteristic of:
| Identification of the botanical/geographical origin of the honey. |
Evaluation of the quality of bee honey. | |||
Counterfeit identification. | |||
Identification of bee honey fermentation. | |||
Identification of impurities. | |||
The methods that deserve special mention are the determination of 5-HMF content and the determination of the diastase number. | Identification of heating/overheating of honey and improper storage conditions. | ||
Measurements of color parameters in L * a * b * and X Y Z systems | Color parameters L * a * b * were determined in the international CIE system. | Identification of characteristic color parameters for varietal honeys. | Identification of too-long storage of honey. |
Extraction of volatile compounds | The solid-phase microextraction (SPME) technique using gas chromatography coupled with a mass spectrometer (GC-MS). | Identification of volatile fractions of characteristic honeys for varietal honeys. | Identification of the botanical/geographical origin of the honey. |
Analysis of antioxidant activity of honey and analysis of the presence of flavonoids | The botanical origin of honey significantly affects the antioxidant activity measured as the ability to scavenge DPPH• free radicals. | Identification of the level of antioxidant activity and the total value of characteristic polyphenols for given honey varieties. | Identification of the botanical/geographical origin of the honey. |
Evaluation of the quality of bee honey. | |||
The photochemiluminescence test (PCL). | Counterfeit identification. | ||
NMR (nuclear magnetic resonance) spectroscopic analysis | This analysis is very versatile and is used with principal component analysis (PCA). | Identification and assessment of characteristic honey components for given honey varieties. | Identification of the botanical/geographical origin of the honey. |
Evaluation of the quality of bee honey. | |||
Metabolic analysis of organic extracts. | Counterfeit identification. | ||
Identification of impurities. | |||
Analysis of honey microscopic image identification | This method shows the picture of honey. | Identification of additives and impurities. | Identification of honey adulteration with additives. |
Evaluation of the quality of bee honey. | |||
Identification of bee honey fermentation. | |||
Identification of impurities. | |||
Analysis of the isotopic composition of honey using isotope ratio mass spectrometry (IRMS) | Measurement of the 13C/12C isotope ratio. | Identification of additives and impurities. | Identification of honey adulteration with additives. |
Chromatographic analysis of honey composition | Chromatographic analysis using high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography coupled with mass spectrometry (PTR-MS). | Identification of additives and impurities. | Identification of honey adulteration with additives. |
Evaluation of the quality of bee honey. | |||
Identification of bee honey fermentation. | |||
Identification of impurities. | |||
Analysis of glycerin or ethanol content | Analysis of glycerin content. | Identification of characteristics for fermented honeys. | Evaluation of honey quality. |
Identification of bee honey fermentation. | |||
Fluorescence spectroscopy research | The advantage of fluorescence spectroscopy is the high sensitivity and specificity of classification. | Identification and assessment of honey authenticity. | Identification of the botanical/geographical origin of the honey. |
Infrared spectroscopic analysis | Infrared spectroscopy covers the spectrum of electromagnetic radiation in the range between the visible region and the microwave region (14,300 and 200 cm−1; 700–50,000 nm). | Identification and assessment of honey authenticity. | Identification of honey adulteration with additives. |
Identification of ingredients determining the quality of natural bee honeys | Including, in particular, the adulteration of honey with sugar syrup from C4 plants. Identification of the botanical/geographical origin of the honey. | ||
Evaluation of the quality of bee honey. | |||
Research on electrical properties | The electrical properties of materials (impedance, permittivity and dielectric loss factor) describe the behavior of the material in an electric field. The molecular structure of the material is responsible for the physical and chemical properties, so there is a relationship between the electrical properties of a given material and its physical and chemical parameters. | Identification and assessment of honey authenticity. Identification of characteristics for fermented honeys. | Identification of honey adulteration with additives. |
Evaluation of honey quality. | |||
Identification of the botanical/geographical origin of the honey. | |||
Analysis of the microbiological purity of honey | The examination of the microbiological contamination of honey is aimed at assessing its quality; the parameters usually determined are coliform bacteria, sulfite-reducing Clostridium, yeasts and molds, aerobic mesophilic bacteria, Salmonella spp. and Bacillus spp. | Identification of characteristics for fermented honeys. Identification and assessment of honey authenticity. | Identification of honey adulteration with additives. |
Identification of the botanical/geographical origin of the honey. | |||
Research on rheological properties of honeys | The crystal structure is a valuable source of information about honey. The rheological properties of honey indicate the characteristics of their origin and quality. | Identification and assessment of honey authenticity. | Identification of honey adulteration with additives. |
Evaluation of honey quality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żak, N.; Wilczyńska, A. The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey. Foods 2023, 12, 3210. https://doi.org/10.3390/foods12173210
Żak N, Wilczyńska A. The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey. Foods. 2023; 12(17):3210. https://doi.org/10.3390/foods12173210
Chicago/Turabian StyleŻak, Natalia, and Aleksandra Wilczyńska. 2023. "The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey" Foods 12, no. 17: 3210. https://doi.org/10.3390/foods12173210
APA StyleŻak, N., & Wilczyńska, A. (2023). The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey. Foods, 12(17), 3210. https://doi.org/10.3390/foods12173210