Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Sample Preparation
2.4. Determination of Gel Texture
2.5. Dynamic Time Scan Determination
2.6. Determination of Thermodynamic Properties
2.7. Fourier Infrared Spectrum Scanning
2.8. X-ray Diffraction Measurement
2.9. Measurement of Water Migration Change
2.10. SEM
2.11. Statistical Analysis
3. Results and Discussion
3.1. Gel Strength Analysis of the Compound System of WS and TP
3.2. Dynamic Time Scan Analysis
3.3. Thermodynamic Properties of Wheat Starch–Tremella Polysaccharide Compound System
3.4. Fourier Infrared Spectrum Scanning Analysis of Mixed Systems
3.5. X-ray Diffraction Analysis
3.6. Determination of Water Migration Change Rule
3.7. SEM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Xu, D.; Sang, S.; Jin, Y.; Cui, B. Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocoll. 2021, 112, 106362. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Wang, L.J.; Li, D.; Zhou, Y.G.; Adhikari, B. The effect of partial gelatinization of corn starch on its retrogradation. Carbohydr. Polym. 2013, 97, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Norziah, M.H.; Seow, C.C. Methods for the study of starch retrogradation. Food Chem. 2009, 71, 9–36. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M.; Liang, Y.; Zheng, X.L.; Sun, L.; Dang, W.Q.; Li, J.; Li, L.M.; Liu, C. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain Oil Sci. Technol. 2022, 5, 87–97. [Google Scholar] [CrossRef]
- Lee, M.H.; Baek, M.H.; Cha, D.S.; Park, H.J.; Lim, S.T. Freeze–thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocoll. 2002, 16, 345–352. [Google Scholar] [CrossRef]
- Chen, H.-M.; Fu, X.; Luo, Z.-G. Effect of gum arabic on freeze-thaw stability, pasting and rheological properties of tapioca starch and its derivatives. Food Hydrocoll. 2015, 51, 355–360. [Google Scholar] [CrossRef]
- Zhou, J.J.; Jia, Z.Y.; Wang, M.; Wang, Q.; Barba, F.J.; Wan, L.Y.; Wang, X.D.; Fu, Y. Effects of Laminaria japonica polysaccharides on gelatinization properties and long-term retrogradation of wheat starch. Food Hydrocoll. 2022, 133, 107908. [Google Scholar] [CrossRef]
- Li, Q.Q.; Wang, Y.S.; Chen, H.H.; Liu, S.; Li, M. Retardant effect of sodium alginate on the retrogradation properties of normal cornstarch and anti-retrogradation mechanism. Food Hydrocoll. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, L. Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocoll. 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Tang, M.; Hong, Y.; Gu, Z.; Zhang, Y.; Cai, X. The effect of xanthan on short and long-term retrogradation of rice starch. Starch-Strke 2013, 65, 702–708. [Google Scholar] [CrossRef]
- He, H.; Zhang, Y.; Yan, H.; Gu, Z. Effects of hydrocolloids on corn starch retrogradation. Starch-Strke 2015, 67, 348–354. [Google Scholar] [CrossRef]
- Lan, X.; Wang, Y.; Deng, S.; Zhao, J.Y.; Jia, D.Y. Physicochemical and rheological properties of Tremella fuciformis polysaccharide fractions by ethanol precipitation. CyTA-J. Food 2021, 19, 645–655. [Google Scholar] [CrossRef]
- Ge, X.; Huang, W.; Xu, X.; Lei, P.; Sun, D.; Xu, H.; Li, S. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis XY—ScienceDirect. Int. J. Biol. Macromol. 2020, 148, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.P.; Bo, H.; Zhao, W.H.; Cui, D.Y.; Tan, L.J.; Wang, J.T. Effects of increasing nutrient disturbances on phytoplankton community structure and biodiversity in two tropical seas. Mar. Pollut. Bull. 2018, 135, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Gao, Q.; Ma, C.W.; Ge, Y.; You, L.; Liu, R.H.; Fu, X.; Liu, D. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J. Funct. Foods 2016, 200, 400–410. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Wang, X.M.; Zhao, M.X.; Qi, H.M. Free-radical degradation by Fe2+/Vc/H2O2 and antioxidant activity of polysaccharide from Tremella fuciformis. Carbohydr. Polym. 2014, 112, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yang, J.; Cao, C.; Zhang, Y. Rheological and Gelling Properties of Tremella fuciformis Polysaccharide and Gellan Gum Mixtures. Food Sci. 2019, 40, 72–78. [Google Scholar]
- Yang, F.; Du, Q.; Miao, T.; Zhang, X.; Xu, W.; Jia, D. Interaction between potato starch and Tremella fuciformis polysaccharide. Food Hydrocoll. 2022, 127, 107509. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, D.D.; Li, R.F.; Luo, L.; Luo, D.L.; Zhu, W.X. Effects of Gleditsia sinensis Lam. Gum on the Retrogradation Properties of Corn Starch and Water Distribution in Mixture Systems. Food Sci. 2021, 6, 31–36. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, Q.; Zhu, W.; Ren, F. Pasting, rheological properties and gelatinization kinetics of tapioca starch with sucrose or glucose. J. Food Eng. 2013, 114, 255–261. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, W.; Fan, H.; Xie, J.; Qian, Y.-F. Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar) stored at 0 and 4 °C by low-field nuclear magnetic resonance (LF NMR 1H). Food Sci. Technol. 2018, 55, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, Y.; Manthey, F.A.; Xu, X.; Jin, Z.; Li, D. Influence of β-cyclodextrin on the short-term retrogradation of rice starch. Food Chem. 2009, 116, 54–58. [Google Scholar] [CrossRef]
- Chen, L.; Tian, Y.; Tong, Q.; Zhang, Z.; Jin, Z. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chem. 2016, 214, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, Z.; Fan, Z.; Zhang, X.; Zhong, G. Effect of soybean soluble polysaccharide on the pasting, gels, and rheological properties of kudzu and lotus starches. Food Hydrocoll. 2019, 89, 443–452. [Google Scholar] [CrossRef]
- Schirmer, M.; Jekle, M.; Becker, T. Starch gelatinization and its complexity for analysis. Starch-Stärke 2015, 67, 30–41. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Fan, X.; Wang, Q.; Wang, P.; Yuan, J.; Yu, Y.; Zhang, Y.; Cui, L. The effect of branched limit dextrin on corn and waxy corn gelatinization and retrogradation. Int. J. Biol. Macromol. Struct. Funct. Interact. 2018, 106, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-H.; Lu, S.; Huang, C. Viscoelastic Changes of Rice Starch Suspensions During Gelatinization. J. Food Sci. 2010, 65, 215–220. [Google Scholar] [CrossRef]
- Kim, W.W.; Yoo, B. Rheological and thermal effects of galactomannan addition to acorn starch paste. LWT-Food Sci. Technol. 2011, 44, 759–764. [Google Scholar] [CrossRef]
- Chen, X.; He, X.-W.; Zhang, B.; Fu, X.; Jane, J.-L.; Huang, Q. Effects of adding corn oil and soy protein to corn starch on the physicochemical and digestive properties of the starch. Int. J. Biol. Macromol. 2017, 104, 481–486. [Google Scholar] [CrossRef]
- Leite, T.D.; Nicoleti, J.F.; Penna, A.L.B.; Franco, C.M.L. Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch. Food Sci. Technol. 2012, 32, 579–587. [Google Scholar] [CrossRef]
- Ovando-Martinez, M.; Whitney, K.; Reuhs, B.L.; Doehlert, D.C.; Simsek, S. Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res. Int. 2013, 52, 17–25. [Google Scholar] [CrossRef]
- Ying, S.; Mwa, B.; Sma, B.; Hwa, B. Physicochemical characterization of rice, potato, and pea starches, each with different crystalline pattern, when incorporated with Konjac glucomannan. Food Hydrocoll. 2020, 101, 105499. [Google Scholar] [CrossRef]
- Ren, Y.M.; Shen, M.Y.; Liu, W.M.; Xiao, W.H.; Luo, Y.; Xie, J.H. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2020, 240, 116316. [Google Scholar] [CrossRef]
- Zhou, D.; Ma, Z.; Yin, X.; Hu, X.; Boye, J.I. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments. Food Hydrocoll. 2019, 93, 386–394. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Mousaa, S.A.S.; Zhang, Q.; Shen, Q. Effect of High Hydrostatic Pressure on Physicochemical and Structural Properties of Rice Starch. Food Bioprocess Technol. 2012, 5, 2233–2241. [Google Scholar] [CrossRef]
- Luo, D.L.; Li, Y.; Xu, B.C.; Ren, G.Y.; Li, P.Y.; Li, X.; Han, S.H.; Liu, J.X. Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch. Food Chem. 2017, 229, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Wu, X.; Dai, Q.; Zhang, R.; Zhang, Y. Characterization of Oat (Avena nuda L.) β-Glucan Cryogelation Process by Low-Field NMR. J. Agric. Food Chem. 2016, 64, 310. [Google Scholar] [CrossRef]
- Din, Z.; Xiong, H.; Wang, Z.; Chen, L.; Ullah, I.; Fei, P.; Ahmad, N. Effects of different emulsifiers on the bonding performance, freeze-thaw stability and retrogradation behavior of the resulting high amylose starch-based wood adhesive. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 192–201. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.S.; Zheng, M.Z.; Zhao, C.B.; Cao, Y.; Dong, Y.J.; Yaqoob, S.; Xiao, Y.; Xu, X.Y. Effect of fermentation on water mobility and distribution in fermented cornmeal using LF-NMR and its correlation with substrate. J. Food Sci. Technol. 2019, 56, 1027–1036. [Google Scholar] [CrossRef]
- Fan, Z. NMR spectroscopy of starch systems. Food Hydrocoll. 2016, 63, 611–624. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Blennow, A.; Engelsen, S.B. The Effects of Amylose and Starch Phosphate on Starch Gel Retrogradation Studied by Low-field 1H NMR Relaxometry. Starch-Strke 2003, 55, 241–249. [Google Scholar] [CrossRef]
- Donmez, D.; Pinho, L.; Patel, B.; Desam, P.; Campanella, H.O. Characterization of starch–water interactions and their effects on two key functional properties: Starch gelatinization and retrogradation. Curr. Opin. Food Sci. 2021, 39, 103–109. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Y.; Shen, M.; Wen, H.; Ren, Y.; Yang, J.; Han, X.; Xie. J. Effect of Mesona chinensis on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocoll. 2020, 101, 105538. [Google Scholar] [CrossRef]
TP (% w/w) | Storage Time/d | T0/°C | Tp/°C | ΔH/J·g−1 | Retrogradation Percentage/% |
---|---|---|---|---|---|
0% | 0 | 56.01 ± 0.11 c | 61.50 ± 0.36 a | 2.89 ± 0.02 a | |
7 | 43.35 ± 0.07 h | 54.27 ± 0.32 cd | 1.59 ± 0.01 f | 55.00 ± 0.08 c | |
14 | 42.39 ± 0.14 i | 53.59 ± 0.20 d | 1.99 ± 0.07 e | 68.87 ± 0.10 a | |
0.5% | 0 | 56.07 ± 0.21 c | 61.60 ± 0.15 a | 2.38 ± 0.01 b | |
7 | 43.58 ± 0.09 gh | 54.58 ± 0.40 bc | 1.06 ± 0.01 ij | 44.54 ± 0.03 g | |
14 | 43.40 ± 0.24 h | 54.32 ± 0.49 cd | 1.33 ± 0.02 g | 55.85 ± 0.12 b | |
1% | 0 | 56.33 ± 0.08 bc | 61.63 ± 0.06 a | 2.26 ± 0.03 c | |
7 | 43.88 ± 0.12 fg | 54.64 ± 0.44 bc | 0.98 ± 0.01 k | 43.36 ± 0.10 h | |
14 | 43.67 ± 0.29 fgh | 54.47 ± 0.61 bc | 1.23 ± 0.01 h | 54.43 ± 0.05 d | |
2% | 0 | 56.50 ± 0.03 b | 61.69 ± 0.19 a | 2.15 ± 0.01 d | |
7 | 44.36 ± 0.24 d | 54.86 ± 0.13 bc | 0.83 ± 0.02 l | 38.20 ± 0.06 i | |
14 | 43.97 ± 0.16 ef | 54.56 ± 0.36 bc | 1.10 ± 0.02 i | 51.17 ± 0.19 e | |
3% | 0 | 57.46 ± 0.18 a | 61.92 ± 0.36 a | 2.03 ± 0.01 e | |
7 | 44.62 ± 0.16 d | 55.15 ± 0.17 b | 0.76 ± 0.03 l | 37.44 ± 0.06 i | |
14 | 44.29 ± 0.33 de | 54.94 ± 0.65 bc | 1.02 ± 0.05 jk | 50.25 ± 0.41 f |
TP (% w/w) | Storage Time/d | R (1054/1021) cm−1 | R (995/1022) cm−1 |
---|---|---|---|
0 | 1 | 1.116 ± 0.01 def | 1.323 ± 0.01 efg |
7 | 1.142 ± 0.01 d | 1.344 ± 0.02 de | |
14 | 1.214 ± 0.01 ab | 1.424 ± 0.01 a | |
0.5 | 1 | 1.107 ± 0.01 efg | 1.315 ± 0.02 efg |
7 | 1.135 ± 0.01 d | 1.332 ± 0.01 ef | |
14 | 1.236 ± 0.02 a | 1.415 ± 0.02 a | |
1 | 1 | 1.097 ± 0.01 fgh | 1.306 ± 0.03 fg |
7 | 1.126 ± 0.01 de | 1.327 ± 0.01 efg | |
14 | 1.219 ± 0.02 ab | 1.401 ± 0.01 ab | |
2 | 1 | 1.082 ± 0.01 gh | 1.303 ± 0.02 fg |
7 | 1.098 ± 0.01 fgh | 1.314 ± 0.02 fg | |
14 | 1.200 ± 0.01 bc | 1.384 ± 0.01 g | |
3 | 1 | 1.076 ± 0.01 h | 1.298 ± 0.01 d |
7 | 1.083 ± 0.02 gh | 1.303 ± 0.00 fg | |
14 | 1.186 ± 0.02 c | 1.370 ± 0.01 cd |
TP (% w/w) | Storage Time/d | T2b | T21 | T22 | T23 |
---|---|---|---|---|---|
0% | 1 | 0.19 ± 0.01 b | 1.95 ± 0.20 a | 12.33 ± 1.08 a | 231.01 ± 0.00 a |
7 | 0.22 ± 0.00 a | 1.75 ± 0.13 ab | 12.33 ± 1.08 a | 215.22 ± 7.23 b | |
14 | — | 1.75 ± 0.13 ab | 10.72 ± 1.00 ab | 200.92 ± 3.15 c | |
0.5% | 1 | 0.16 ± 0.02 c | 1.95 ± 0.20 a | 10.72 ± 1.00 ab | 231.01 ± 0.00 a |
7 | 0.22 ± 0.00 a | 1.52 ± 0.11 bc | 9.33 ± 0.90 b | 200.92 ± 3.15 c | |
14 | — | 1.52 ± 0.11 bc | 9.33 ± 0.90 b | 174.75 ± 0.00 d | |
1% | 1 | 0.16 ± 0.02 c | 1.75 ± 0.13 ab | 10.72 ± 1.00 ab | 215.22 ± 7.23 b |
7 | 0.22 ± 0.00 a | 1.32 ± 0.00 cd | 9.33 ± 0.90 b | 200.92 ± 3.15 c | |
14 | — | 1.52 ± 0.11 bc | 9.33 ± 0.90 b | 174.75 ± 0.00 d | |
2% | 1 | 0.16 ± 0.00 c | 1.75 ± 0.13 a | 10.72 ± 1.00 ab | 200.92 ± 3.15 c |
7 | 0.19 ± 0.01 b | 1.15 ± 0.00 d | 9.33 ± 0.90 b | 174.75 ± 0.00 d | |
14 | — | 1.32 ± 0.00 cd | 9.33 ± 0.90 b | 174.75 ± 0.00 d | |
3% | 1 | 0.16 ± 0.00 c | 1.75 ± 0.13 ab | 10.72 ± 1.00 ab | 200.92 ± 3.15 c |
7 | 0.19 ± 0.01 b | 1.15 ± 0.00 d | 9.33 ± 0.90 b | 174.75 ± 0.00 d | |
14 | — | 1.15 ± 0.00 d | 9.33 ± 0.90 b | 174.75 ± 0.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, S.; Wang, N.; Fan, H.; Wang, H.; Liu, T. Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research. Foods 2023, 12, 3115. https://doi.org/10.3390/foods12163115
Wang J, Zhang S, Wang N, Fan H, Wang H, Liu T. Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research. Foods. 2023; 12(16):3115. https://doi.org/10.3390/foods12163115
Chicago/Turabian StyleWang, Jiaxun, Shanshan Zhang, Nan Wang, Hongxiu Fan, Hanmiao Wang, and Tingting Liu. 2023. "Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research" Foods 12, no. 16: 3115. https://doi.org/10.3390/foods12163115
APA StyleWang, J., Zhang, S., Wang, N., Fan, H., Wang, H., & Liu, T. (2023). Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research. Foods, 12(16), 3115. https://doi.org/10.3390/foods12163115