Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Mineral Elements
2.3. Analysis of Soluble Sugar
2.4. Analysis of Free Amino Acids
2.5. Analysis of Total Polyphenols and Total Flavonoids
2.6. Analysis of Glucosinolate Profiles
2.7. Statistical Analysis
3. Results
3.1. Elemental Composition
3.2. Soluble Sugar Contents
3.3. Free Amino Acids Contents
3.4. Total Polyphenol and Total Flavonoid Contents
3.5. Glucosinolate Profiles
3.6. Assessment Using PCA, FA, and HCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdel-Razzak, H.S. Turnip (Brassica rapa var. rapa L.) breeding. In Advances in Plant Breeding Strategies: Vegetable Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Volume 8: Bulbs, Roots and Tubers; Springer International Publishing: Cham, Switzerland, 2021; pp. 345–405. [Google Scholar] [CrossRef]
- Bonnema, G.; Lee, J.G.; Shuhang, W.; Lagarrigue, D.; Bucher, J.; Wehrens, R.; de Vos, R.; Beekwilder, J. Glucosinolate variability between turnip organs during development. PLoS ONE 2019, 14, e0217862. [Google Scholar] [CrossRef]
- Chu, B.; Li, Y.; Gong, J.; Li, J.; Wang, N.; Chen, X.; Xu, M.; Tang, W.; Chen, C.; Zhang, Y. Human trials of Tibetan turnip on promoting athletes’ tolerant ability to hypoxia. J. Chin. Inst. Food Sci. Technol. 2018, 18, 62–71. [Google Scholar] [CrossRef]
- Dahdouh, A.; Kati, D.E.; Bachir-bey, M.; Aksas, A.; Rezgui, F. Deployment of response surface methodology to optimize microencapsulation of peroxidases from turnip roots (Brassica rapa L.) by double emulsion in PLA polymer. J. Food Sci. 2021, 86, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Geng, C.A.; Yang, T.H.; Yang, Y.P.; Chen, J.J. Phytochemical and Health-Beneficial Progress of Turnip (Brassica rapa). J. Food Sci. 2019, 84, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Chihoub, W.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I. Valorisation of the green waste parts from turnip, radish and wild cardoon: Nutritional value, phenolic profile and bioactivity evaluation. Food Res. Int. 2019, 126, 108651. [Google Scholar] [CrossRef] [PubMed]
- Mitreiter, S.; Gigolashvili, T. Regulation of glucosinolate biosynthesis. J. Exp. Bot. 2021, 72, 70–91. [Google Scholar] [CrossRef]
- Camara-Martos, F.; Obregon-Cano, S.; Mesa-Plata, O.; Cartea-Gonzalez, M.E.; de Haro-Bailon, A. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Food Chem. 2021, 339, 127860. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Chung, I.M. Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem. 2015, 173, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Lee, J.T.; Rochell, S.J.; Kriseldi, R.; Kim, W.K.; Mitchell, R.D. Functional properties of amino acids: Improve health status and sustainability. Poult. Sci. 2023, 102, 102288. [Google Scholar] [CrossRef]
- Wang, B.; Li, N.; Huang, S.; Hu, J.; Wang, Q.; Tang, Y.; Yang, T.; Asmutola, P.; Wang, J.; Yu, Q. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing. PeerJ 2021, 9, e12478. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends. Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhao, M.L.; Han, R. Analysis and evaluation of nutrient components of different Brassica rapa L. ssp. rapa resources. J. Chin. Inst. Food Sci. Technol. 2021, 21, 159–173. [Google Scholar] [CrossRef]
- Ruan, J.; Gerendás, J.; Härdter, R.; Sattelmacher, B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) Plants. Ann. Bot. 2007, 99, 301–310. [Google Scholar] [CrossRef]
- Kowalska, H.; Woźniak, Ł.; Masiarz, E.; Stelmach, A.; Salamon, A.; Kowalska, J.; Piotrowski, D.; Marzec, A. The impact of using polyols as osmotic agents on mass exchange during osmotic dehydration and their content in osmodehydrated and dried apples. Dry. Technol. 2019, 38, 1620–1631. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Chen, X.; Zhu, B.; Liu, T.; Yang, J. Nutritional composition and antioxidant activity of Gonostegia hirta: An underexploited, potentially edible, wild plant. Plants 2023, 12, 875. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Krumbein, A.; Schonhof, I.; Schreiner, M. Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J. Appl. Bot. Food Qual. 2005, 79, 168–174. [Google Scholar]
- Singh, M.; Nara, U.; Rani, N.; Pathak, D.; Kaur, K.; Sangha, M.K. Comparison of Mineral Composition in Microgreens and Mature leaves of Celery (Apium graveolens L.). Biol. Trace. Elem. Res. 2023, 201, 4156–4166. [Google Scholar] [CrossRef]
- Liu, D.; Ma, L.; Zhou, Z.; Liang, Q.; Xie, Q.; Ou, K.; Liu, Y.; Su, Y. Starch and mineral element accumulation during root tuber expansion period of Pueraria thomsonii Benth. Food Chem. 2021, 343, 128445. [Google Scholar] [CrossRef] [PubMed]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and their role in human health. In Soil Components and Human Health; Springer: Berlin/Heidelberg, Germany, 2018; pp. 317–374. [Google Scholar]
- Dejanovic, G.M.; Asllanaj, E.; Gamba, M.; Raguindin, P.F.; Itodo, O.A.; Minder, B.; Bussler, W.; Metzger, B.; Muka, T.; Glisic, M.; et al. Phytochemical characterization of turnip greens (Brassica rapa ssp. Rapa): A systematic review. PLoS ONE 2021, 16, e0247032. [Google Scholar] [CrossRef]
- Cartea, M.E.; de Haro, A.; Obregon, S.; Soengas, P.; Velasco, P. Glucosinolate variation in leaves of Brassica rapa crops. Plant Food Hum. Nutr. 2012, 67, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Liu, P.Y.; He, H.J. Analysis of Nutritional Components and Glucosinolates in Turnip. Acta Nutri. Sin. 2016, 38, 610–612. [Google Scholar]
- Bhandari, S.R.; Rhee, J.; Choi, C.S.; Jo, J.S.; Shin, Y.K.; Lee, J.G. Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (Brassica oleracea var. capitata) Germplasm. Molecules 2020, 25, 1860. [Google Scholar] [CrossRef]
- Kim, M.J.; Chiu, Y.-C.; Ku, K.-M. Glucosinolates, Carotenoids, and Vitamins E and K Variation from Selected Kale and Collard Cultivars. J. Food Qual. 2017, 2017, 5123572. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef]
- Zhu, B.; Liang, Z.; Zang, Y.; Zhu, Z.; Yang, J. Diversity of glucosinolates among common Brassicaceae vegetables in China. Hortic. Plant J. 2023, 9, 365–380. [Google Scholar] [CrossRef]
- Park, C.H.; Park, S.Y.; Park, Y.J.; Kim, J.K.; Park, S.U. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid xBrassicoraphanus. J. Agric. Food Chem. 2020, 68, 13711–13719. [Google Scholar] [CrossRef]
- Iahtisham Ul, H.; Khan, S.; Awan, K.A.; Iqbal, M.J. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J. Food Biochem. 2022, 46, e13886. [Google Scholar] [CrossRef]
- Felker, P.; Bunch, R.; Leung, A.M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr. Rev. 2016, 74, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Bouslimi, H.; Ferreira, R.; Dridi, N.; Brito, P.; Martins-Dias, S.; Cador, I.; Sleimi, N. Effects of barium stress in Brassica juncea and Cakile maritima: The indicator role of some antioxidant enzymes and secondary metabolites. Phyton-Inter. J. Exp Bot. 2021, 90, 145–158. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abdullah, A.T.M.; Sharif, M.; Jahan, S.; Kabir, M.A.; Motalab, M.; Khan, T.A. Relative evaluation of in-vitro antioxidant potential and phenolic constituents by HPLC-DAD of Brassica vegetables extracted in different solvents. Heliyon 2022, 8, e10838. [Google Scholar] [CrossRef] [PubMed]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Vincieri, F.F.; Romani, A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem. 2006, 99, 464–469. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. -Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Bong, Y.S.; Shin, W.J.; Gautam, M.K.; Jeong, Y.J.; Lee, A.R.; Jang, C.S.; Lim, Y.P.; Chung, G.S.; Lee, K.S. Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses. Food Chem. 2012, 135, 2666–2674. [Google Scholar] [CrossRef]
- Serna, J.; Bergwitz, C. Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- Ward, N.P.; DeNicola, G.M. Sulfur metabolism and its contribution to malignancy. Int. Rev. Cell Mol. Biol. 2019, 347, 39–103. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.S.; Chuang, L.T.; Sanz, C.; Hayırlıoglu-Ayaz, S. Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Shyu, Y.-S.; Hwang, J.-Y.; Shen, S.-T.; Sung, W.-C. The Effect of different frying methods and the addition of potassium aluminum sulfate on sensory properties, acrylamide, and oil content of fried bread (Youtiao). Appl. Sci. 2021, 11, 549. [Google Scholar] [CrossRef]
- Smeekens, S.; Hellmann, H.A. Sugar sensing and signaling in plants. Front. Plant Sci. 2014, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Das, N.; Maiti, M.K. Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea. Plant Physiol. Biochem. 2016, 107, 204–213. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical composition and antioxidant activity in different tissues of brassica vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Schonhof, I.; Krumbein, A.; Bruckner, B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Food/Nahrung 2004, 48, 25–33. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, M.; Han, H.; Luo, Y.; Ding, W.; Xu, W.; Zhong, Y.; Huang, H.; Qu, S. Soluble sugars accumulation and related gene expression during fruit development in Cucurbita maxima Duchesne. Sci. Hortic. 2020, 272, 109520. [Google Scholar] [CrossRef]
- Johansen, T.J.; Hagen, S.F.; Bengtsson, G.B.; Molmann, J.A. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chem. 2016, 196, 228–235. [Google Scholar] [CrossRef]
- Kirimura, J.; Shimizu, A.; Kimizuka, A.; Ninomiya, T.; Katsuya, N. Contribution of peptides and amino acids to the taste of foods. J. Agric. Food Chem. 1969, 17, 689–695. [Google Scholar] [CrossRef]
- Wüst, M. Biosynthesis of Plant-Derived Odorants. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–10. [Google Scholar]
- Yoon, Y.E.; Kuppusamy, S.; Cho, K.M.; Kim, P.J.; Kwack, Y.B.; Lee, Y.B. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea). Food Chem. 2017, 215, 185–192. [Google Scholar] [CrossRef]
- Tang, Q.; Tan, P.; Ma, N.; Ma, X. Physiological functions of threonine in animals: Beyond nutrition metabolism. Nutrients 2021, 13, 2592. [Google Scholar] [CrossRef]
- Bingol, A.; Turkyilmaz, M.; Ozkan, M. Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation. Food Chem. 2022, 384, 132518. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.J. Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients 2019, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
Strain | TF (mg Rutin/g DW) | TP (mg Gallic Acid/g DW) | ||||
---|---|---|---|---|---|---|
R | S | L | R | S | L | |
1 | 2.92 ± 0.34 k | 8.44 ± 0.89 i | 47.30 ± 3.20 f | 2.29 ± 0.16 bcde | 2.55 ± 0.13 h | 11.55 ± 0.31 abcde |
2 | 3.10 ± 0.47 jk | 12.47 ± 0.40 abc | 49.55 ± 4.87 ef | 2.27 ± 0.34 bcde | 3.81 ± 0.76 abcd | 12.47 ± 0.93 a |
3 | 3.92 ± 0.34 ij | 10.34 ± 2.27 defghi | 52.09 ± 7.57 def | 2.35 ± 0.14 bcd | 2.56 ± 0.58 gh | 10.91 ± 0.29 cde |
4 | 4.07 ± 0.45 hi | 10.86 ± 1.31 cdefgh | 62.72 ± 3.51 ab | 1.48 ± 0.16 f | 3.12 ± 0.36 defgh | 11.96 ± 0.41 abcd |
5 | 4.26 ± 0.47 ghi | 10.01 ± 0.89 ghi | 55.46 ± 1.91 cde | 2.88 ± 0.18 a | 2.55 ± 0.13 hc | 11.73 ± 0.74 abcde |
6 | 3.07 ± 0.49 jk | 10.19 ± 0.61 efghi | 55.82 ± 1.75 cde | 2.54 ± 0.27 ab | 3.30 ± 0.25 bcdef | 11.02 ± 0.36 bcde |
7 | 4.07 ± 0.22 hi | 12.43 ± 0.71 abcd | 57.77 ± 1.58 bcd | 2.10 ± 0.46 bcde | 3.25 ± 0.21 bcdefg | 10.84 ± 0.91 de |
8 | 5.60 ± 0.39 bcde | 11.87 ± 1.73 bcdefg | 60.24 ± 5.03 bc | 2.00 ± 0.37 cde | 3.04 ± 0.40 efgh | 11.82 ± 0.25 abcde |
9 | 4.56 ± 0.39 fghi | 12.72 ± 1.30 abc | 59.71 ± 2.31 bc | 2.42 ± 0.26 bcd | 3.31 ± 0.21 bcdef | 12.47 ± 0.53 a |
10 | 6.57 ± 0.57 a | 10.75 ± 0.40 cdefgh | 55.99 ± 0.25 bcde | 2.47 ± 0.22 abc | 3.31 ± 0.27 bcdef | 11.98 ± 0.38 abg |
11 | 6.13 ± 0.50 abcd | 9.18 ± 0.34 hi | 59.73 ± 3.48 bc | 2.44 ± 0.13 abcd | 3.18 ± 0.18 cdefgh | 11.51 ± 0.35 abcde |
12 | 6.31 ± 0.33 abc | 12.24 ± 0.81 abcde | 58.72 ± 0.77 cde | 2.50 ± 0.38 ab | 3.91 ± 0.33 ab | 12.42 ± 0.58 a |
13 | 6.46 ± 0.36 ab | 12.13 ± 1.47 abcdef | 60.14 ± 1.15 bc | 2.15 ± 0.10 bcde | 3.10 ± 0.56 defgh | 11.79 ± 0.36 abcde |
14 | 5.12 ± 0.91 efg | 11.04 ± 0.55 bcdefgh | 54.77 ± 7.19 cde | 2.48 ± 0.15 abs | 3.49 ± 0.22 abcde | 12.09 ± 0.41 ab |
15 | 4.89 ± 0.23 efgh | 12.69 ± 1.07 abc | 53.97 ± 0.80 cde | 2.50 ± 0.05 ab | 2.74 ± 0.18 fgh | 12.04 ± 0.72 abg |
16 | 6.28 ± 0.28 abc | 14.04 ± 0.51 a | 68.49 ± 0.43 a | 2.49 ± 0.10 ab | 3.91 ± 0.48 ab | 11.34 ± 0.66 abcde |
17 | 5.45 ± 0.34 cdef | 13.06 ± 0.62 ab | 60.68 ± 2.20 bc | 1.88 ± 0.21 e | 4.06 ± 0.19 a | 11.54 ± 0.67 abcde |
18 | 5.53 ± 0.96 bcde | 10.08 ± 1.71 fghi | 54.57 ± 4.04 cde | 2.03 ± 0.18 cde | 3.17 ± 0.34 cdefgh | 10.76 ± 0.38 e |
19 | 3.07 ± 0.40 jk | 12.21 ± 0.87 abcde | 59.70 ± 2.84 bc | 2.30 ± 0.04 bcde | 3.87 ± 0.48 abc | 11.56 ± 0.94 abcde |
20 | 5.23 ± 0.85 def | 12.28 ± 0.85 abcde | 58.96 ± 2.56 bc | 1.99 ± 0.27 de | 3.26 ± 0.19 bcdefg | 11.48 ± 0.49 abcde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Lou, J.; Zhong, W.; Li, Y.; He, Y.; Su, S.; Chen, X.; Zhu, B. Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach. Foods 2023, 12, 3195. https://doi.org/10.3390/foods12173195
Yang J, Lou J, Zhong W, Li Y, He Y, Su S, Chen X, Zhu B. Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach. Foods. 2023; 12(17):3195. https://doi.org/10.3390/foods12173195
Chicago/Turabian StyleYang, Jing, Jiashu Lou, Weiwei Zhong, Yaochen Li, Yong He, Shiwen Su, Xianzhi Chen, and Biao Zhu. 2023. "Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach" Foods 12, no. 17: 3195. https://doi.org/10.3390/foods12173195
APA StyleYang, J., Lou, J., Zhong, W., Li, Y., He, Y., Su, S., Chen, X., & Zhu, B. (2023). Chemical Profile of Turnip According to the Plant Part and the Cultivar: A Multivariate Approach. Foods, 12(17), 3195. https://doi.org/10.3390/foods12173195