Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD)
Abstract
:1. Introduction
2. Effects of Food-Derived β-Glucans on NAFLD
2.1. Anti-Liver Injury Activity
2.2. Anti-Steatotic Activity
2.3. Anti-Inflammatory Activity
2.4. Anti-Fibrotic Activity
2.5. Antioxidant Activity
2.6. Alteration of Gut Microbiota
2.7. Regulation of Bile Acid Metabolism
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Goh, G.B.; Chan, W.K.; Wong, G.L.; Fan, J.G.; Seto, W.K.; Huang, Y.H.; Lin, H.C.; Lee, I.C.; Lee, H.W.; et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease. Liver Int. 2020, 40, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Ong, J.; Trimble, G.; AlQahtani, S.; Younossi, I.; Ahmed, A.; Racila, A.; Henry, L. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin. Gastroenterol. Hepatol. 2021, 19, 580–589.e5. [Google Scholar] [CrossRef] [PubMed]
- Ferrarese, A.; Battistella, S.; Germani, G.; Russo, F.P.; Senzolo, M.; Gambato, M.; Vitale, A.; Cillo, U.; Burra, P. Nash up, virus down: How the waiting list is changing for liver transplantation: A single center experience from Italy. Medicina 2022, 58, 290. [Google Scholar] [CrossRef] [PubMed]
- Holmer, M.; Melum, E.; Isoniemi, H.; Ericzon, B.G.; Castedal, M.; Nordin, A.; Aagaard Schultz, N.; Rasmussen, A.; Line, P.D.; Stål, P.; et al. Nonalcoholic fatty liver disease is an increasing indication for liver transplantation in the Nordic countries. Liver Int. 2018, 38, 2082–2090. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.M.; Oranu, A.; Khungar, V. Nonalcoholic fatty liver disease: Pathophysiology and management. Gastroenterol. Clin. N. Am. 2016, 45, 639–652. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Wong, V.W.S.; Ekstedt, M.; Wong, G.L.H.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef]
- Hartmann, P.; Schnabl, B. Risk factors for progression of and treatment options for NAFLD in children. Clin. Liver Dis. 2018, 11, 11–15. [Google Scholar] [CrossRef]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and prevention of hepatic steatosis. Gastroenterol. Hepatol. 2015, 11, 167–175. [Google Scholar]
- Harrison, S.A.; Allen, A.M.; Dubourg, J.; Noureddin, M.; Alkhouri, N. Challenges and opportunities in NASH drug development. Nat. Med. 2023, 29, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Spengler, E.K.; Loomba, R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin. Proc. 2015, 90, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wong, V.W.S.; Peleg, N.; et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterology 2020, 158, 1611–1625.e12. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015, 1, 15080. [Google Scholar] [CrossRef]
- Hallsworth, K.; Avery, L.; Trenell, M.I. Targeting lifestyle behavior change in adults with NAFLD during a 20-min consultation: Summary of the dietary and exercise literature. Curr. Gastroenterol. Rep. 2016, 18, 11. [Google Scholar] [CrossRef]
- Hartmann, P.; Schnabl, B. New developments in microbiome in alcohol-associated and nonalcoholic fatty liver disease. Semin. Liver Dis. 2021, 41, 87–102. [Google Scholar] [CrossRef]
- Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 2020, 11, 569–580. [Google Scholar] [CrossRef]
- Carter, J.K.; Bhattacharya, D.; Borgerding, J.N.; Fiel, M.I.; Faith, J.J.; Friedman, S.L. Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales. PLoS ONE 2021, 16, e0244763. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, C.; Cui, J.; Lu, J.; Yan, C.; Wei, X.; Zhao, X.; Li, N.; Li, S.; Xue, G.; et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 2019, 30, 1172. [Google Scholar] [CrossRef]
- Fianchi, F.; Liguori, A.; Gasbarrini, A.; Grieco, A.; Miele, L. Nonalcoholic fatty liver disease (NAFLD) as model of gut-liver axis interaction: From pathophysiology to potential target of treatment for personalized therapy. Int. J. Mol. Sci. 2021, 22, 6485. [Google Scholar] [CrossRef]
- Albillos, A.; de Gottardi, A.; Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020, 72, 558–577. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Tang, J.; Wang, N.; Feng, Y.; Ma, H. Research progress on the therapeutic effect of polysaccharides on non-alcoholic fatty liver disease through the regulation of the gut-liver axis. Int. J. Mol. Sci. 2022, 23, 11710. [Google Scholar] [CrossRef]
- Chen, C.; Huang, X.; Wang, H.; Geng, F.; Nie, S. Effect of β-glucan on metabolic diseases: A review from the gut microbiota perspective. Curr. Opin. Food Sci. 2022, 47, 100907. [Google Scholar] [CrossRef]
- Sivieri, K.; de Oliveira, S.M.; de Souza Marquez, A.; Pérez-Jiménez, J.; Diniz, S.N. Insights on β-glucan as a prebiotic coadjuvant in the treatment of diabetes mellitus: A review. Food Hydrocoll. Health 2022, 2, 100056. [Google Scholar] [CrossRef]
- Jayachandran, M.; Chen, J.; Chung, S.S.M.; Xu, B. A critical review on the impacts of beta-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018, 61, 101–110. [Google Scholar] [CrossRef]
- Kagimura, F.Y.; da Cunha, M.A.A.; Barbosa, A.M.; Dekker, R.F.H.; Malfatti, C.R.M. Biological activities of derivatized D-glucans: A review. Int. J. Biol. Macromol. 2015, 72, 588–598. [Google Scholar] [CrossRef]
- Lam, K.L.; Cheung, P.C.K. Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet. Fibre 2013, 2, 45–64. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cheung, P.C. Comparative proteome analysis of Bifidobacterium longum subsp. infantis grown on beta-glucans from different sources and a model for their utilization. J. Agric. Food Chem. 2013, 61, 4360–4370. [Google Scholar] [CrossRef]
- Mitsou, E.K.; Panopoulou, N.; Turunen, K.; Spiliotis, V.; Kyriacou, A. Prebiotic potential of barley derived β-glucan at low intake levels: A randomised, double-blinded, placebo-controlled clinical study. Food Res. Int. 2010, 43, 1086–1092. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, L.; Wu, J.; Xu, Y.; Qi, S.; Liu, W.; Liu, P.; Shi, S.; Wang, H.; Zhang, Q.; et al. Extraction, characterization, and anti-nonalcoholic steatohepatitis activity of a (1,3) (1,6)-β-D-glucan from the Polyporus umbellatus (Pers.) Fries. Int. J. Biol. Macromol. 2023, 230, 123252. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Fang, Q.; Zhang, Z.; Zhu, C.; Xu, R.; Chen, G.; Wang, Y. Lentinan protects against nonalcoholic fatty liver disease by reducing oxidative stress and apoptosis via the PPARα pathway. Metabolites 2022, 12, 55. [Google Scholar] [CrossRef]
- Ghalwash, A.A.; Baalash, A.A.; Gaafar, N.K.; Wasfy, R.E.; Noeman, S.E.D.A. The interplay between oat beta glucan, gut microbiota and gut-liver axis in treatment of obesity associated non-alcoholic steatohepatitis and Type II diabetes mellitus. Indian J. Biochem. Biophys. 2022, 59, 14–22. [Google Scholar]
- Ikewaki, N.; Levy, G.A.; Kurosawa, G.; Iwasaki, M.; Dedeepiya, V.D.; Vaddi, S.; Senthilkumar, R.; Preethy, S.; Abraham, S.J.K. Hepatoprotective effects of Aureobasidium pullulans derived β 1,3-1,6 glucans in a murine model of non-alcoholic steatohepatitis. J. Clin. Exp. Hepatol. 2022, 12, 1428–1437. [Google Scholar] [CrossRef]
- Preethy, S.; Ikewaki, N.; Levy, G.A.; Raghavan, K.; Dedeepiya, V.D.; Yamamoto, N.; Srinivasan, S.; Ranganathan, N.; Iwasaki, M.; Senthilkumar, R.; et al. Two unique biological response-modifier glucans beneficially regulating gut microbiota and faecal metabolome in a non-alcoholic steatohepatitis animal model, with potential applications in human health and disease. BMJ Open Gastroenterol. 2022, 9, e000985. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Xie, X.; Wang, X.; Luo, Y.; Xu, N.; Sa, Z.; Zhang, M.; Chen, Z.; Hu, X.; et al. Hepatic lipidomics analysis reveals the ameliorative effects of highland barley β-glucan on western diet-induced nonalcoholic fatty liver disease mice. J. Agric. Food Chem. 2021, 69, 9287–9298. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Nie, C.; Xie, X.; Yuan, X.; Ma, Q.; Zhang, M.; Chen, Z.; Hu, X.; Li, J. Highland barley β-glucan alleviated western diet-induced non-alcoholic fatty liver disease via increasing energy expenditure and regulating bile acid metabolism in mice. Food Funct. 2022, 13, 11664–11675. [Google Scholar] [CrossRef] [PubMed]
- Vu, V.; Muthuramalingam, K.; Singh, V.; Hyun, C.; Kim, Y.M.; Unno, T.; Cho, M. Effects of β-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice. Eur. J. Nutr. 2022, 61, 793–807. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Lam, K.L.; Li, X.; Kong, A.P.; Cheung, P.C. Circadian disruption-induced metabolic syndrome in mice is ameliorated by oat beta-glucan mediated by gut microbiota. Carbohydr. Polym. 2021, 267, 118216. [Google Scholar] [CrossRef] [PubMed]
- Chyau, C.C.; Wang, H.F.; Zhang, W.J.; Chen, C.C.; Huang, S.H.; Chang, C.C.; Peng, R.Y. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int. J. Mol. Sci. 2020, 21, 360. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Liu, Y.; Li, H.; Zhang, Y.; Kong, D.; Cui, G. β-glucan ameliorates nonalcoholic steatohepatitis induced by methionine and choline-deficient diet in mice. J. Food Biochem. 2020, 44, e13408. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Song, J.; Li, J.; Wang, H.; Zhang, Y.; Suo, H. A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley beta-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydr. Polym. 2020, 243, 116398. [Google Scholar] [CrossRef]
- Yau, Y.F.; El-Nezami, H.; Galano, J.M.; Kundi, Z.M.; Durand, T.; Lee, J.C.Y. Lactobacillus rhamnosus GG and oat beta-glucan regulated fatty acid profiles along the gut-liver-brain axis of mice fed with high fat diet and demonstrated antioxidant and anti-inflammatory potentials. Mol. Nutr. Food Res. 2020, 64, 2000566. [Google Scholar] [CrossRef]
- Ke, X.; Walker, A.; Haange, S.B.; Lagkouvardos, I.; Liu, Y.; Schmitt-Kopplin, P.; von Bergen, M.; Jehmlich, N.; He, X.; Clavel, T.; et al. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol. Metab. 2019, 22, 96–109. [Google Scholar] [CrossRef]
- Liu, B.; Yang, T.; Luo, Y.; Zeng, L.; Shi, L.; Wei, C.; Nie, Y.; Cheng, Y.; Lin, Q.; Luo, F. Oat β-glucan inhibits adipogenesis and hepatic steatosis in high fat diet-induced hyperlipidemic mice via AMPK signaling. J. Funct. Foods 2018, 41, 72–82. [Google Scholar] [CrossRef]
- Silva, A.Z.; Costa, F.P.L.; Souza, I.L.; Ribeiro, M.C.; Giordani, M.A.; Queiroz, D.A.; Luvizotto, R.A.M.; Nascimento, A.F.; Bomfim, G.F.; Sugizaki, M.M.; et al. Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats. Life Sci. 2018, 211, 147–156. [Google Scholar] [CrossRef]
- Aoki, S.; Iwai, A.; Kawata, K.; Muramatsu, D.; Uchiyama, H.; Okabe, M.; Ikesue, M.; Maeda, N.; Uede, T. Oral administration of the Aureobasidium pullulans-derived beta-glucan effectively prevents the development of high fat diet-induced fatty liver in mice. Sci. Rep. 2015, 5, 10457. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.K.; Ku, S.K.; Choi, J.S.; Kim, J.W. Effect of polycan, a β-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp. Ther. Med. 2015, 9, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Kanagasabapathy, G.; Malek, S.N.A.; Mahmood, A.A.; Chua, K.H.; Vikineswary, S.; Kuppusamy, U.R. Beta-glucan-rich extract from Pleurotus sajor-caju (Fr.) Singer prevents obesity and oxidative stress in C57BL/6J mice fed on a high-fat diet. Evid.-Based Complement. Altern. Med. 2013, 2013, 185259. [Google Scholar] [CrossRef]
- You, S.; Hu, X.; Zhao, Q.; Chen, X.; Xu, C. Oat β-glucan inhibits lipopolysaccharide-induced nonalcoholic steatohepatitis in mice. Food Funct. 2013, 4, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014, 20, 15539–15548. [Google Scholar] [CrossRef]
- Bolshette, N.; Ibrahim, H.; Reinke, H.; Asher, G. Circadian regulation of liver function: From molecular mechanisms to disease pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 2023, 1–13. [Google Scholar] [CrossRef]
- Rada, P.; Gonzalez-Rodríguez, A.; García-Monzón, C.; Valverde, A.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 2020, 11, 802. [Google Scholar] [CrossRef]
- Smith, B.K.; Marcinko, K.; Desjardins, E.M.; Lally, J.S.; Ford, R.J.; Steinberg, G.R. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E730–E740. [Google Scholar] [CrossRef]
- Carreres, L.; Jilková, Z.M.; Vial, G.; Marche, P.N.; Decaens, T.; Lerat, H. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review. Biomedicines 2021, 9, 378. [Google Scholar] [CrossRef]
- Bovi, A.P.D.; Marciano, F.; Mandato, C.; Siano, M.A.; Savoia, M.; Vajro, P. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front. Med. 2021, 8, 595371. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, G.; Heo, S.Y.; Roh, Y.S. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants 2021, 11, 91. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, J.; Zhang, S.; Wang, B.; Wu, C.; Guo, X. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front. Med. 2020, 7, 361. [Google Scholar] [CrossRef]
- Liu, J.; Wu, A.; Cai, J.; She, Z.G.; Li, H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front. Immunol. 2022, 13, 968799. [Google Scholar] [CrossRef]
- Raman, M.; Ahmed, I.; Gillevet, P.M.; Probert, C.S.; Ratcliffe, N.M.; Smith, S.; Greenwood, R.; Sikaroodi, M.; Lam, V.; Crotty, P.; et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2013, 11, 868–875. [Google Scholar] [CrossRef]
- Hrncir, T.; Hrncirova, L.; Kverka, M.; Hromadka, R.; Machova, V.; Trckova, E.; Kostovcikova, K.; Kralickova, P.; Krejsek, J.; Tlaskalova-Hogenova, H. Gut microbiota and NAFLD: Pathogenetic mechanisms, microbiota signatures, and therapeutic interventions. Microorganisms 2021, 9, 957. [Google Scholar] [CrossRef]
- Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016, 63, 764–775. [Google Scholar] [CrossRef]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef]
- Tsai, M.C.; Liu, Y.Y.; Lin, C.C.; Wang, C.C.; Wu, Y.J.; Yong, C.C.; Chen, K.D.; Chuah, S.K.; Yao, C.C.; Huang, P.Y.; et al. Gut microbiota dysbiosis in patients with biopsy-proven nonalcoholic fatty liver disease: A cross-sectional study in Taiwan. Nutrients 2020, 12, 820. [Google Scholar] [CrossRef]
- Panasevich, M.R.; Peppler, W.T.; Oerther, D.B.; Wright, D.C.; Rector, R.S. Microbiome and NAFLD: Potential influence of aerobic fitness and lifestyle modification. Physiol. Genom. 2017, 49, 385–399. [Google Scholar] [CrossRef]
- Jiao, T.Y.; Ma, Y.D.; Guo, X.Z.; Ye, Y.F.; Xie, C. Bile acid and receptors: Biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol. Sin. 2022, 43, 1103–1119. [Google Scholar] [CrossRef]
- Mouzaki, M.; Wang, A.Y.; Bandsma, R.; Comelli, E.M.; Arendt, B.M.; Zhang, L.; Fung, S.; Fischer, S.E.; McGilvray, I.G.; Allard, J.P. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE 2016, 11, e0151829. [Google Scholar] [CrossRef] [PubMed]
- Stellwag, E.J.; Hylemon, P.B. Characterization of 7-α-dehydroxylase in Clostridium leptum. Am. J. Clin. Nutr. 1978, 31, S243–S247. [Google Scholar] [CrossRef] [PubMed]
β-Glucan Type | Animal Model | Study Type | Intervention | Effects on Liver | Bioactivity Mechanisms | Reference |
---|---|---|---|---|---|---|
β-glucan from Polyporus umbellatus (Pers.) Fries sclerotia | C57BL/6J mice fed MCD | Treatment | Daily oral gavage Dose: 50 or 100 mg/kg BW Purity: NA Period: 3 weeks | ↓ Serum ALT, AST ↓ Hepatic TG ↓ Hepatic steatosis, NAS, Oil red O-positive area, Sirius red-positive area ↓ F4/80, CD68, IL-1β, TNF-α, αSMA-positive area | ↓ Hepatic CIDEC, SREBP1, PLIN2, PPARγ, CPT1A ↓ Hepatic IL-1β, IL-6, TNF-α, F4/80, CD68, CD11b, CCL5 ↓ Hepatic αSMA, COL1A1 | [35] |
Lentinan (β-glucan obtained from Lentinus edodes) | Male C57BL/6J mice fed HFD | Treatment | Daily oral gavage Dose: 6 mg/kg BW Purity: NA Period: 15 weeks | ↓ Serum ALT, AST ↓ Hepatic TG, TC, Oil red O-positive area | ↓ Hepatic TNF-α, IL-6, CD36 ↑ Hepatic PPARα, ACAT, and CPT1α ↓ Hepatic ROS, MDA, 4-HNE ↑ Hepatic GSH/GSSG, SOD1, SOD2 ↓ Hepatic NOX2, NOX4 ↑ Hepatic Bcl-2 ↓ Hepatic Caspase3 activity ↓ Hepatic cleaved-Caspase3, Bax | [36] |
Oat β-glucan | Male albino rats fed HFD | Prevention | Mixed in diet Dose: 61.4 g/kg diet Purity: NA Period: 24 weeks | ↓ Serum ALT, AST ↓ Hepatic steatosis, inflammatory infiltration | ↓ Serum TMAO ↑ Hepatic GPR43 | [37] |
Aureobasidium pullulans strain AFO-202 β-glucan | STAM™ mice | Treatment | Daily oral administration Dose: 1 mg/kg BW Purity: NA Period: 3 weeks | NS Liver weight NS Plasma ALT NS Hepatic FFA ↓ NAS NS Sirius red, F4/80-positive area | NS Hepatic IL-6 ↓ Firmicutes, Enterobacteriaceae | [38,39] |
Aureobasidium pullulans strain N-163 β-glucan | STAM™ mice | Treatment | Daily oral administration Dose: 1 mg/kg BW Purity: NA Period: 3 weeks | NS Liver weight NS Plasma ALT NS Hepatic FFA ↓ NAS ↓ Sirius red-positive area NS F4/80-positive area | NS Hepatic IL-6 ↓ Bilophila, Turicibacter | [38,39] |
AFO-202 β-glucan + N-163 β-glucan | STAM™ mice | Treatment | Daily oral administration Dose: 1 mg/kg BW AFO-202 + 1 mg/kg BW N-163 β-glucan Purity: NA Period: 3 weeks | ↓ Liver weight NS Plasma ALT NS Hepatic FFA ↓ NAS ↓ Sirius red-positive area NS F4/80-positive area | ↓ Hepatic IL-6 ↓ Proteobacteria, Prevotella ↑ Lactobacillus | [38,39] |
Highland barley β-glucan | Male C57BL/6 mice fed the western diet and 4.2% sugar water containing 18.9 g/L sucrose and 23.1 g/L fructose | Prevention | Daily oral administration Dose: 100 or 300 mg/kg BW Purity: 70% Period 16 weeks | 100 mg/kg BW: ↓ Lipid droplets NS Liver index NS Serum ALT, AST ↓ Hepatic FFA NS NAS NS Hepatic TC, TG 300 mg/kg BW: ↓ Lipid droplets ↓ Liver index ↓ Serum ALT, AST ↓ NAS score ↓ Hepatic TC, TG, FFA | 300 mg/kg BW: ↓ Hepatic FAS, SREBP1c ↑ Hepatic AMPKα, PPARα, CPT1α, CYP7A1, CYP27A1, CYP8B1, FXR, SHP ↑ Hepatic total BAs, primary BAs, secondary BAs ↓ Hepatic primary BAs/ secondary BAs ↑ Hepatic LCA, ApoCA, HDCA, DCA, UCA, TDCA, HCA ↑ Energy expenditure ↓ Ileal FXR ↑ Ileal FGF15 | [40,41] |
β-glucan produced from Schizophyllum commune | Male C57BL/6J male mice fed HFD + 5 days DSS-colitis induction | Prevention | Mixed in diet Dose: 3 g/kg HFD Purity: 95% Period: 12 weeks | ↑ Serum ALT ↓ Hepatic steatosis grade, ratio of lipid droplet area | NS Cecal acetate, propionate, butyrate ↑ Lactobacillus, Enterococcus ↓ Lachnospiraceae, Ruminococcaceae, Bacteroides, Bifidobacterium, Bilophila, Olsenella ↓ Colon COX2 | [42] |
Oat β-glucan | Male C57BL/6J mice fed HFD | Treatment | Dissolved in drinking water Dose: 5% Purity: 75.3% Period: 10 weeks | ↓ Hepatic steatosis | ↑ Microbial species richness (ASV and Shannon diversity) ↑ Butyrate producers Lachnospiraceae, Ruminococcaceae ↑ Cecal butyrate and propionate | [43] |
Antrodan (β-glucan obtained from Antrodia cinnamomea) | Male C57BL/6 mice fed a high-fat and high-fructose diet | Treatment | Daily oral gavage Dose: 20 or 40 mg/kg BW Purity: NA Period: 45 days | Both doses: ↓ Plasma ALT, AST, fat droplets, hepatic inflammation 40 mg/kg BW: ↓ Liver weight, liver weight to body weight ratio | ↑ Hepatic Sirt1, p-AMPK ↓ Hepatic PPARγ, SREBP1c | [44] |
Baker’s yeast β-glucan | Male C57BL/6J male mice fed MCD | Prevention | Daily oral administration Dose: 10, 30 or 100 mg/kg BW Purity: 90% Period: 8 weeks | 10 mg/kg BW: NS Serum ALT, AST, oil red O-positive area, hepatic TC, ballooning score, liver weight, liver index ↓ Hepatic TG ↓ Steatosis, inflammation score, NAS 30 mg/kg BW: ↓ Serum ALT, AST ↓ Oil red O-positive area ↓ Hepatic TG, liver index NS Hepatic TC, ballooning score, liver weight ↓ Steatosis, inflammation score, NAS 100 mg/kg BW: ↓ Serum ALT, AST ↓ Oil red O-positive area ↓ Hepatic TG, liver index NS Hepatic TC, ballooning score, liver weight ↓ Steatosis, inflammation score, NAS | 10 mg/kg BW: ↓ Hepatic TNF-α, IL-6 ↓ Hepatic p-JNK NS Hepatic GRP78, p-eiF-2α, p-MAPK ↑ Hepatic ERp57, p-Akt 30 mg/kg BW: ↓ Hepatic TNF-α, IL-6 ↓ Hepatic GRP78, p-eiF-2α, p-JNK ↑ Hepatic ERp57, p-Akt, p-MAPK 100 mg/kg BW: ↓ Hepatic TNF-α, IL-6 ↓ Hepatic GRP78, p-eiF-2α, p-JNK ↑ Hepatic ERp57, p-Akt, p-MAPK | [45] |
Hull-less barley β-glucan | Male C57BL/6J mice fed HFD | Prevention | Daily oral gavage Dose: 500 mg/kg BW Purity: NA Period: 12 weeks | ↓ Liver weight, lipid accumulation, hepatic TG | ↓ Hepatic PPARγ, SCD1, LPL ↑ Hepatic HSL ↓ Serum LPS ↑ Dubosiella, Faecalibaculum, Turicibacter ↓ Helicobacter | [46] |
Oat β-glucan | Male C57BL/6N mice fed HFD | Prevention | Mixed in diet Dose: 32 mg/day Purity: NA Period: 17 weeks | NS Hepatic steatosis, relative liver weight | NA | [47] |
Oat β-glucan | Male C57BL/6J mice fed HFD | Prevention | Daily oral gavage Dose: 1 g/kg BW Purity: 80% Period: 12 weeks | ↓ Hepatic steatosis | ↓ Serum LBP ↓ Hepatic TNF-α ↑ Erysipelotrichaceae ↑ Cecal acetate, propionate, butyrate ↓ Fecal BA ↓ Fecal TCDCA, THDCA, TUDCA, CA, αTMCA, βTMCA, TCA | [48] |
Oat β-glucan | Male ICR mice fed HFD | Prevention | Daily intragastric administration Dose: 500 or 1000 mg/kg BW Purity: 99% Period: 10 weeks | ↓ Liver weight, lipid droplet, hepatic inflammation | 500 mg/kg BW: NS Hepatic FAS ↑ Hepatic p-AMPKα, p-ACC, PPARα, CPT1 ↓ Hepatic SREBP1 1000 mg/kg BW: ↑ Hepatic p-AMPKα, p-ACC, PPARα, CPT1 ↓ Hepatic SREBP1, FAS | [49] |
Botryosphaeran (β-glucan produced by Botryosphaeria rhodina) | Male Wistar rats fed a high-fat and high-sugar diet and water containing sucrose (300 g/L) | Treatment | Daily oral gavage Dose: 12 mg/kg BW Purity: NA Period: 15 days | NS Serum ALT, AST ↓ Liver weight, lipid quantity ↓ Hepatic TG | NA | [50] |
Aureobasidium pullulans-derived β-glucan | Male C57BL/6N mice fed HFD | Prevention | Dissolved in drinking water Dose: NA Purity: 99% Period: 16 weeks | ↓ Serum ALT ↓ Oil red O-positive area, hepatic TG, hepatic fat area revealed by CT scan | ↑ Hepatic HMGR, CYP7A1 ↑ Fecal BA production | [51] |
Polycan (β-glucan extracted from A. pullulans) | Male hamsters fed HFD | Prevention | Daily oral gavage Dose: 31.25, 62.5 or 125 mg/kg BW Purity: NA Period: 8 weeks | ↓ Serum ALT, AST ↓ Hepatic fatty change region | NA | [52] |
β-glucan-rich extract of Pleurotus sajor-caju | Female C57BL/6J mice fed HFD | Prevention | Oral gavage thrice a week Dose: 60, 120 or 240 mg/kg BW Purity: 80.55% Period: 16 weeks | 60 mg/kg BW: NS Serum ALT ↓ Serum AST, ALP 120 or 240 mg/kg BW: ↓ Serum ALT, AST, ALP | ↑ Hepatic GPx, CAT, SOD ↓ Hepatic LPO | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kei, N.; Wong, V.W.S.; Lauw, S.; You, L.; Cheung, P.C.K. Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods 2023, 12, 3279. https://doi.org/10.3390/foods12173279
Kei N, Wong VWS, Lauw S, You L, Cheung PCK. Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods. 2023; 12(17):3279. https://doi.org/10.3390/foods12173279
Chicago/Turabian StyleKei, Nelson, Vincent Wai Sun Wong, Susana Lauw, Lijun You, and Peter Chi Keung Cheung. 2023. "Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD)" Foods 12, no. 17: 3279. https://doi.org/10.3390/foods12173279
APA StyleKei, N., Wong, V. W. S., Lauw, S., You, L., & Cheung, P. C. K. (2023). Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods, 12(17), 3279. https://doi.org/10.3390/foods12173279