In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Authentication of Fu Ling
2.2. Preparation of Materials
2.2.1. Preparation of Fu Ling
2.2.2. Extraction of FL β-Glucan
2.3. Monosaccharide Composition Analysis
2.3.1. Hydrolysis and Alditol Acetate Conversion
2.3.2. Gas Chromatography-Flame Ionization Detection (GC-FID) Analysis
2.4. β-Glucan Content
2.5. Glycosidic Linkage Analysis
2.5.1. Partially Methylated Alditol Acetate (PMAA) Conversion
2.5.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.6. Human Fecal Microbiota Collection
2.7. In Vitro Fermentation
2.8. Bacterial Growth
2.9. pH and Short-Chain Fatty Acids (SCFAs) Production
2.10. Microbial Composition
2.11. Statistical Analysis
3. Results
3.1. DNA Authentication
3.2. Structural Characterization of Fu Ling (FL) and β-Glucan
3.3. Post-Fermentation Assessments
3.4. Modulation of Human Fecal Microbiota
4. Discussion
4.1. Fermentability of FL and BG
4.2. SCFAs Mediate the Interference of Gut Microbiota in Host
4.3. FL and BG Modulate Gut Microbial Profile and Potential Impacts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Zuo, Z.T.; Wang, Y.Z. The Traditional Usages, Chemical Components and Pharmacological Activities of Wolfiporia Cocos: A Review. Am. J. Chin. Med. 2022, 50, 389–440. [Google Scholar] [CrossRef] [PubMed]
- Nie, A.; Chao, Y.; Zhang, X.; Jia, W.; Zhou, Z.; Zhu, C. Phytochemistry and Pharmacological Activities of Wolfiporia Cocos (F.A. Wolf) Ryvarden & Gilb. Front. Pharmacol. 2020, 11, 505249. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, Y.; Zeng, P.; Liu, Y.; Zhang, M.; Hao, C.; Wang, H.; Lv, Z.; Zhang, L. Molecular Basis for Poria Cocos Mushroom Polysaccharide Used as an Antitumour Drug in China. J. Cell. Mol. Med. 2019, 23, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers 2020, 8, 1. [Google Scholar] [CrossRef]
- Wong, K.H.; Cheung, P.C.K. Dietary Fibers from Mushroom Sclerotia: 1. Preparation and Physicochemical and Functional Properties. J. Agric. Food Chem. 2005, 53, 9395–9400. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Chen, M.; Xu, Z. First Report on the Regulation and Function of Carbon Metabolism during Large Sclerotia Formation in Medicinal Fungus Wolfiporia Cocos. Fungal Genet. Biol. 2023, 166, 103793. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Ruan, D.; Shashkov, A.S.; Kilcoyne, M.; Savage, A.V.; Zhang, L. Chemical Components and Molecular Mass of Six Polysaccharides Isolated from the Sclerotium of Poria Cocos. Carbohydr. Res. 2004, 339, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Bhardwaj, A. Β-Glucans: A Potential Source for Maintaining Gut Microbiota and the Immune System. Front. Nutr. 2023, 10, 1143682. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Baruah, K.; Cox, E.; Vanrompay, D.; Bossier, P. Structure-Functional Activity Relationship of β-Glucans from the Perspective of Immunomodulation: A Mini-Review. Front. Immunol. 2020, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Huang, S. The Structure–Activity Relationships of Natural Glucans. Phyther. Res. 2020, 35, 2890–2901. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, S.; Feng, Y.; Cao, C.; Zhang, Y.; Cheng, S. Characteristics and Properties of a Polysaccharide Isolated from Wolfiporia Cocos as Potential Dietary Supplement for IBS. Front. Nutr. 2023, 10, 1119583. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Wong, K.Y.; Kwan, H.S.; Cheung, P.C.K. Dietary Fibers from Mushroom Sclerotia: 3. In Vitro Fermentability Using Human Fecal Microflora. J. Agric. Food Chem. 2005, 53, 9407–9412. [Google Scholar] [CrossRef]
- Lu, Z.; Kvammen, A.; Li, H.; Hao, M.; Inman, A.R.; Bulone, V.; Mckee, L.S. A Polysaccharide Utilization Locus from Chitinophaga Pinensis Simultaneously Targets Chitin and β-Glucans Found in Fungal Cell Walls. mSphere 2023, 8, e00244-23. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current Understanding of the Human Microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, E.; Pautova, A.; Fatuev, O.; Zakharchenko, V.; Onufrievich, A.; Grechko, A.; Beloborodova, N.; Chernevskaya, E. Promising Markers of Inflammatory and Gut Dysbiosis in Patients with Post-COVID-19 Syndrome. J. Pers. Med. 2023, 13, 971. [Google Scholar] [CrossRef]
- Safadi, J.M.; Quinton, A.M.G.; Lennox, B.R.; Burnet, P.W.J.; Minichino, A. Gut Dysbiosis in Severe Mental Illness and Chronic Fatigue: A Novel Trans-Diagnostic Construct? A Systematic Review and Meta-Analysis. Mol. Psychiatry 2022, 27, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Kim, D. Gut Microbiota-Mediated Pharmacokinetics of Ginseng Saponins. J. Ginseng Res. 2018, 42, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2004, 7, 203–214. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, A.; Li, C.; Li, T.; Jiao, Q. Spectroscopic Characterization of Pachyman Sulfate and Its Binding Interaction with Azur A. Spectrosc. Lett. 2007, 40, 83–95. [Google Scholar] [CrossRef]
- Saeman, J.F.; Moore, W.E.; Millet, M.A. Sugar Unit Present. In Methods in Carbohydrate Chemistry; Whistler, R.L., Ed.; Academic Press: New York, NY, USA, 1963; pp. 54–69. [Google Scholar]
- Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. A Simple and Rapid Preparation of Alditol Acetates for Monosaccharide Analysis. Carbohydr. Res. 1983, 113, 291–299. [Google Scholar] [CrossRef]
- Black, I.; Heiss, C.; Carlson, R.W.; Azadi, P. Linkage Analysis of Oligosaccharides and Polysaccharides: A Tutorial. In Mass Spectrometry of Glycoproteins; Delobel, A., Ed.; Humana: New York, NY, USA, 2021; pp. 249–271. [Google Scholar]
- Lam, K.L.; Ko, K.C.; Li, X.; Ke, X.; Cheng, W.Y.; Chen, T.; You, L.; Kwan, H.S.; Chi-Keung Cheung, P. In Vitro Infant Faecal Fermentation of Low Viscosity Barley β-Glucan and Its Acid Hydrolyzed Derivatives: Evaluation of Their Potential as Novel Prebiotics. Molecules 2019, 24, 828. [Google Scholar] [CrossRef]
- Van Der Meulen, R.; Adriany, T.; Verbrugghe, K.; De Vuyst, L. Kinetic Analysis of Bifidobacterial Metabolism Reveals a Minor Role for Succinic Acid in the Regeneration of NAD+ through Its Growth-Associated Production. Appl. Environ. Microbiol. 2006, 72, 5204–5210. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; O’Toole, P.W.; de Vos, W.M.; van Sinderen, D. Selected Aspects of the Human Gut Microbiota. Cell. Mol. Life Sci. 2018, 75, 81–82. [Google Scholar] [CrossRef]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the Gut Microbiota in Disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Inoue, D.; Hirano, K.; Tsujimoto, G. The SCFA Receptor GPR43 and Energy Metabolism. Front. Endocrinol. 2014, 5, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, S.; Chun, E.; Bae, S.; Brennan, C.A.; Comeau, C.A.G.; Lang, J.K.; Michaud, M.; Hoveyda, H.R.; Fraser, G.L.; Fuller, M.H.; et al. Expression of Free Fatty Acid Receptor 2 by Dendritic Cells Prevents Their Expression of Interleukin 27 and Is Required for Maintenance of Mucosal Barrier and Immune Response Against Colorectal Tumors in Mice. Gastroenterology 2020, 158, 1359–1372. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, P.; Jiang, Q.; Xu, Q.; Zheng, Y.; Yan, J.; Ji, H.; Ning, J.; Zhang, X.; Li, C.; et al. Depletion of Acetate-Producing Bacteria from the Gut Microbiota Facilitates Cognitive Impairment through the Gut-Brain Neural Mechanism in Diabetic Mice. Microbiome 2021, 9, 145. [Google Scholar] [CrossRef]
- Nakano, T.; Uchiyama, K.; Ushiroda, C.; Kashiwagi, S.; Toyokawa, Y.; Mizushima, K.; Inoue, K.; Dohi, O.; Okayama, T.; Yoshida, N.; et al. Promotion of Wound Healing by Acetate in Murine Colonic Epithelial Cell via C-Jun N-Terminal Kinase Activation. J. Gastroenterol. Hepatol. 2020, 35, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.; Grootaert, C.; Verstraete, W.; Van de Wiele, T. Propionate as a Health-Promoting Microbial Metabolite in the Human Gut. Nutr. Rev. 2011, 69, 245–258. [Google Scholar] [CrossRef]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Julia, P.J.; Jose, M.-M.; van Sinderen, D. A Comprehensive Review on the Impact of β-Glucan Metabolism by Bacteroides and Bifidobacterium Species as Members of the Gut Microbiota. Int. J. Biol. Macromol. 2021, 181, 877–889. [Google Scholar] [CrossRef]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; et al. Bacteroides Vulgatus and Bacteroides Dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
- Wang, K.; Liao, M.; Zhou, N.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; Liu, S.-J.; et al. Parabacteroides Distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019, 26, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Kverka, M.; Zakostelska, Z.; Klimesova, K.; Sokol, D.; Hudcovic, T.; Hrncir, T.; Rossmann, P.; Mrazek, J.; Kopecny, J.; Verdu, E.F.; et al. Oral Administration of Parabacteroides Distasonis Antigens Attenuates Experimental Murine Colitis through Modulation of Immunity and Microbiota Composition. Clin. Exp. Immunol. 2010, 163, 250–259. [Google Scholar] [CrossRef]
- Wu, F.; Guo, X.; Zhang, J.; Zhang, M.; Ou, Z.; Peng, Y. Phascolarctobacterium Faecium Abundant Colonization in Human Gastrointestinal Tract. Exp. Ther. Med. 2017, 14, 3122–3126. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Hesser, L.A.; He, Z.; Zhou, X.; Nadeau, K.C.; Nagler, C. Fecal Microbiome and Metabolome Differ in Healthy and Food-Allergic Twins. J. Clin. Investig. 2021, 131, e141935. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, Q.; Xiong, D. Associations between Phascolarctobacterium/ Phascolarctobacterium Faecium and Disorders of Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus—A Population Cohort Study. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Rachek, S.; Nikpoor, N.; Gómez del Pulgar, E.M.; Gonzaga, A.; Sanz, Y.; Tompkins, T.A. Complete Genome Sequence of Phascolarctobacterium Faecium G 104, Isolated from the Stools of a Healthy Lean Donor. Microbiol. Resour. Announc. 2021, 10, e01054-20. [Google Scholar] [CrossRef] [PubMed]
- Hempen, C.-H.; Fischer, T. Herbs That Drain and Transform Dampness. In A Materia Medica for Chinese Medicine: Plants, Minerals, and Animal Products; Churchill Livingstone: London, UK, 2009; pp. 296–343. ISBN 978-0-443-10094-9. [Google Scholar]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella Pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tapias, D.F.; Brown, E.M.; Temple, E.R.; Onyekaba, M.A.; Mohamed, A.M.T.; Duncan, K.; Schirmer, M.; Walker, R.L.; Mayassi, T.; Pierce, K.A.; et al. Inflammation-Associated Nitrate Facilitates Ectopic Colonization of Oral Bacterium Veillonella Parvula in the Intestine. Nat. Microbiol. 2022, 7, 1673–1685. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Frank, M.O. Veillonella Parvula Meningitis: Case Report and Review of Veillonella Infections. Clin. Infect. Dis. 2000, 31, 839–840. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Zhou, F.; Zhang, B.; Wu, J.; Yang, L.; Xu, S.; Stedtfeld, R.; Chen, Q.; Liu, J.; et al. Featured Gut Microbiomes Associated with the Progression of Chronic Hepatitis B Disease. Front. Microbiol. 2020, 11, 383. [Google Scholar] [CrossRef] [PubMed]
Primer | Primer Sequence (5′→ 3′) |
---|---|
ITS 1 | TCCGTAGGTGAACCTGCGG |
ITS 4 | TCCTCCGCTTATTGATATGC |
Primer | Primer Sequence (5′ → 3′) |
---|---|
Tailed 27 F 1 | TTTCTGTTGGTGCTGATATTGCAGAGTTTGATCCTGGCTCAG |
Tailed 1492 R 1 | ACTTGCCTGTCGCTCTATCTTCTACGGYTACCTTGTTACGACTT |
Monosaccharide | FL | FL β-Glucan |
---|---|---|
Arabinose | 5.39 | n.d. 1 |
Mannose | 1.57 | n.d. |
Glucose | 93.04 | 100.00 |
FL | FL β-Glucan | |
---|---|---|
Total glucan | 76.47 ± 9.61 | 73.10 ± 6.66 n.s. |
Percentage β-(1 → 3), (1 → 6)-glucans | 99.31 ± 0.07 | 99.94 ± 0.02 n.s. |
Retention Time (min) | Methylated Sugars | Linkage Pattern | FL | FL β-Glucan | ||
---|---|---|---|---|---|---|
Peak Area (%) | Molar Ratio | Peak Area (%) | Molar Ratio | |||
17.7 | 2,3,4,6-Me4-Glc | T-Glcp 1 | 10.06 | 1.00 | 3.08 | 1.00 |
20.7 | 2,4,6-Me3-Glc | 1,3-Glcp | 76.08 | 6.96 | 91.22 | 27.29 |
24.6 | 2,4-Me2-Glc | 1,3,6-Glcp | 13.86 | 1.17 | 5.70 | 1.58 |
DB 2 | 0.24 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.L.; Kei, N.; Yang, F.; Lauw, S.; Chan, P.L.; Chen, L.; Cheung, P.C.K. In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota. Foods 2023, 12, 4014. https://doi.org/10.3390/foods12214014
Ma KL, Kei N, Yang F, Lauw S, Chan PL, Chen L, Cheung PCK. In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota. Foods. 2023; 12(21):4014. https://doi.org/10.3390/foods12214014
Chicago/Turabian StyleMa, Ka Lee, Nelson Kei, Fan Yang, Susana Lauw, Po Lam Chan, Lei Chen, and Peter Chi Keung Cheung. 2023. "In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota" Foods 12, no. 21: 4014. https://doi.org/10.3390/foods12214014
APA StyleMa, K. L., Kei, N., Yang, F., Lauw, S., Chan, P. L., Chen, L., & Cheung, P. C. K. (2023). In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota. Foods, 12(21), 4014. https://doi.org/10.3390/foods12214014