The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement
Abstract
:1. Introduction
1.1. Classification and Labelling
- The relative ageing time may only be declared for cachaça, aged entirely for a period equal to or greater than one year.
- In the case of mixtures between aged products, the declaration of ageing time on the label shall correspond to the product with the shortest ageing period.
- In the labelling of cachaça, as long as it is dissociated from the denomination, the terms of:
- ○
- “Premium” may be used for a beverage aged for at least one year.
- ○
- “Extrapremium” may be used for a beverage that is entirely aged for at least three years.
1.2. Overview of the Production Process
1.2.1. Preparation of the Sugarcane
- Composition: sugarcane consists chiefly of two primary elements: fibre and juice. The fibre component constitutes approximately 8 to 14% of the cane and includes compounds such as cellulose, lignin, pentosan, and cane gum. Conversely, the juice represents a more substantial proportion, between 86 and 92% of the cane. This juice component predominantly consists of water, accounting for 75 to 82% of its composition. Within the juice, soluble solids are present in a range of 18 to 25%. Sugars, a significant component of these soluble solids, make up 15 to 24% and can be further classified into saccharose (14 to 24%), glucose (0.2 to 1.0%), and fructose (0.2 to 1.0%). Beyond sugars, soluble solids comprise non-sugars, representing 1 to 2.5% of the composition. These non-sugars are categorized into organics and inorganics. The organics, which make up 0.8 to 1.5%, encompass amino acids, nitric acid, fats and waxes, and nitrogenated material. In contrast, inorganic substances constitute 0.2% to 0.7% of the soluble solids, featuring compounds such as SiO2, K2, P2O5, CaO, Na2O, MgO, Cl, and Fe2O3 [12].
- Maturity: sugarcane is considered mature when Brix (% soluble solids or °Bx) ≥ 18 °Bx, Pol (% apparent sucrose) ≥ 14.4%, juice purity ≥ 80%, and reducing sugars (glucose and fructose) ≤ 1.4%. Field refractometers and densitometers can be used to determine the maturity index (MI) and Brix levels.
- Freshly cut: stalks should be processed within 36 h of cutting to ensure freshness. However, this interval may extend to 72 h in specific regions during the beginning of the harvest season.
- Topped stalks: sugarcane tops, low in sugar and containing components that can interfere with fermentation, should be removed before milling.
- Minimal foreign matter: the presence of vegetable or mineral impurities can compromise the quality of industrial sugarcane. Proper cane topping, lateral stripping, and weed control are essential, and minimal mineral impurities are ensured, especially for cachaça production.
- Good health: the quality of the raw materials is affected by the health of the stalks. The borer-rot complex can depreciate the quality of sugarcane, reducing sugar content and the purity of the raw material. Borer infestation rates up to 3% are considered normal.
1.2.2. Fermentation Process Parameters
1.2.3. Distillation
1.2.4. Ageing
1.3. Components, Contaminants, and Safety
1.4. Word Cloud
2. Fermentation
2.1. Role of Yeast in Cachaça Production
2.2. Improvement of Cachaça Quality
2.3. Alembic Cachaça Production
3. Distillation Process
3.1. The Chemical Composition of Cachaça
3.2. Controlling the Distillation Process
3.3. Monitoring and Improving Cachaça Production Processes
3.4. The Safety and Quality of Cachaça
4. Deciphering Cachaça: Insights into Its Composition and Ageing Markers
4.1. Desirable Secondary Compounds in Cachaça Production: Organic Acids, Volatile Compounds, and Aging Effects
4.2. Ageing Cachaça: The Crucial Role of Oak Barrels
4.3. The Effect of Wood Casks on Cachaça’s Sensory Properties
4.4. Key Secondary Compounds in Cachaça: Volatiles, Organic Acids, and Aging Impact
4.5. Distinguishing Cachaça from Rum: Pattern Recognition Methods
4.6. The Role of Analytical Techniques in Cachaça Production
4.7. Analysing the Aroma Profile of Cachaça: Implications for Production and Exportation
5. Contaminants during Cachaça Production
5.1. Vinasses
5.2. Ethyl Carbamate (EC), PAH and Other Compounds in Cachaça Production
5.2.1. EC in Food and Beverage Products
5.2.2. PAH in Cachaça Production
5.2.3. Formation of EC and Other Compounds
5.2.4. EC Levels in Cachaça Production
5.2.5. EC Formation during Distillation
6. Exploring the Current Research and Future Trends in Cachaça Production
7. Conclusions
- The role of yeast: yeast strains play a significant role in shaping the quality of cachaça, and further research is necessary to understand their impact on the fermentative process and their potential for biotechnological applications.
- Distillation factors: distillation is a critical aspect of cachaça production, and further study should investigate how various factors, including the raw material, type of yeast, fermentation, and chemical content, can affect the final quality.
- Chemical composition: monitoring the chemical composition of cachaça is crucial for ensuring its quality and identity. Development in production processes to improve flavour and consistency must be a focus of future research.
- Ageing in Brazilian wood casks: investigating the effects of different types of Brazilian wood casks on the final product can open new horizons in flavour profile and have potential industrial implications.
- Utilizing vinasse: exploring cachaça vinasse as an alternative yeast cell biomass production and fertigation resource provides a sustainable option that needs further research.
- Addressing health concerns: the presence of EC in cachaça is alarming due to its potential carcinogenic effects. Future studies must focus on understanding its formation, concentration, and reduction.
- Industry sustainability: overall, continued research is necessary to ensure the long-term sustainability and success of the cachaça industry, with particular emphasis on safety concerns, quality improvement, and the application of new technology and research in fermentation, distillation, and ageing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABV | Alcohol By Volume |
BaP | Benzo[a]pyrene |
BaPeq | Benzo[a]pyrene equivalent |
°Bx | Brix or percentage of soluble solids |
COD | Chemical Oxygen Demands |
CRT | Tequila Regulatory Council |
DI-CF-SPME | Direct Immersion Cooled Fibre Solid-Phase Microextraction |
DMS | Dimethyl Sulfide |
EC | Ethyl Carbamate |
ESI–MS | Electrospray Ionization Mass Spectrometry |
GC-BID | Gas Chromatography with Barrier Ionization Discharge |
GC-FID | Gas Chromatography-Flame Ionization Detector |
GC-MS | Gas Chromatography-Mass Spectrometry |
GC×GC | Two-dimensional Gas Chromatography |
GAE | Gallic Acid Equivalent |
GI | Geographical Indication |
GMP | Good Manufacturing Practices |
GYMP | Growth medium containing Glucose, Yeast extract, Malt extract, and Peptone |
HACCP | Hazard Analysis and Critical Control Points |
HCA | Hierarchical Cluster Analysis |
HMF | Hydroxymethylfurfural |
HPLC/UV | High-Performance Liquid Chromatography/Ultraviolet |
IBRAC | Brazilian Institute of Cachaça |
ITS | Internal Transcribed Spacer |
MAPA | Brazilian Ministry of Agriculture, Livestock, and Supply |
MI | Maturity Index |
MOE | Margin of Exposure |
PBDAC | Brazilian Program for the Development of Cane Spirit, Caninha or Cachaça |
PAHs | Polycyclic Aromatic Hydrocarbons |
PCA | Principal Component Analysis |
PCR | Polymerase Chain Reaction |
PET | Polyethylene Terephthalate |
QDA | Quantitative Descriptive Analysis |
QuEChERS | Quick, Easy, Cheap, Effective, Rugged, and Safe |
RAPD-PCR | Random Amplification of Polymorphic DNA—Polymerase Chain Reaction |
SPME | Solid-Phase Microextraction |
TFL | Trifluoroleucine |
TOFMS | Time-of-Flight Mass Spectrometry |
TR-WAX | Type of chromatography column |
UV-Vis | Ultraviolet-Visible |
VOCs | Volatile Organic Compounds |
Appendix A. Caipirinha Cocktail Recipe
- 60 mL cachaça
- One lime, cut into small wedges
- Four teaspoons (16 g) white cane sugar
- Method:
- Place the lime wedges and sugar into an old-fashioned double glass.
- Gently muddle the lime and sugar together to release the lime juice and dissolve the sugar.
- Fill the glass with cracked ice.
- Add the cachaça to the glass.
- Stir gently to combine the ingredients.
- Garnish: none needed.
Appendix B. Basic Calculation Scheme on Cachaça Production
Appendix B.1. Dilution of Sugarcane Juice for Fermentation
SG | % ABV | °Bx |
Appendix B.2. Fermentation Efficiency
Appendix B.3. Distillation Efficiency
Total Volume | Ethanol Content | Ethanol Volume | Fraction of Total Volume | Total Ethanol Fraction | |
---|---|---|---|---|---|
(L) | (% ABV) | (L) | (%) | (% ABV) | |
Wine (must) | 1000.00 | 8.50 | 85.00 | 100.00 | 100.00 |
Head | 13.08 | 65.00 | 8.50 | 1.31 | 10.00 |
Heart | 141.67 | 48.00 | 68.00 | 14.17 | 80.00 |
Tail | 21.25 | 20.00 | 4.25 | 2.12 | 5.00 |
Vinasses | 824.01 | 0.52 | 4.25 | 82.40 | 5.00 |
Appendix B.4. Formulas for Calculating Volume, Surface Area, and Ageing Time in Barrels
Appendix C. Inoculum for the Fermentation Process
- Gather ingredients: acquire 3 kg of rice bran, 4 kg of cornmeal, 1 kg of biscuits, and enough lemon or sour orange peel to form a paste.
- Prepare the inoculum: combine the ingredients in a bag and mix to form a paste. Leave the mixture to rest for 12 to 24 h until cracks appear on the surface.
- Add diluted cane juice: introduce diluted cane juice (1:1) to the mixture until submerged, cover it with a cloth and leave it to rest for an additional 24 h.
- Repeat the addition of cane juice: upon observing effervescence in the mixture, add two to five times more diluted cane juice and let it rest for 24 h. Repeat this step until the inoculum reaches 0.2% of the volume of the primary fermentation tank.
- Prepare inoculum directly in the primary fermentation tank: the inoculum can also be prepared directly in the primary fermentation tank.
- Obtain the initial volume of inoculum: the initial volume obtained from the “fermento caipira” process is usually equivalent to 20% of the volume of the primary fermentation tank when settled.
- Rehydrate yeast cells: mix 1 kg of yeast with 10 L of water at 40 °C and constantly agitate for 1 h.
- Initial juice addition: add 10 L of juice with 8 °Bx and 35 °C to the fermentation tank. Use a compressor to aerate the system.
- The second juice addition: once the Brix inside the tank reaches 2–3 °Bx, add 40 L of juice with 10 °Bx and 35 °C. Continue aeration.
- Third juice addition: wait for the Brix inside the tank to reach 2–3 °Bx, and add 70 L of juice with 12 °Bx.
- Transfer to fermentation tank: when the Brix inside the tank reaches 2–3 °Bx, transfer the contents to the primary fermentation tank, constantly agitating to remove all yeast mass. Add 150 L of juice with 14 °Bx and 30 °C. Wait for the Brix to reduce to 2–3 °Bx.
- Feeding process: start feeding the tank with juice at 15 °Bx, gradually adding the juice so that the Brix inside the tank does not exceed 7 °Bx. Wait for the Brix to reduce to 3 °Bx before adding the next portion of juice. Continue feeding until the total volume of juice (1000 L) has been added.
Appendix D. Cachaça Flavour Wheel
# | Volatile Compound Name (Tier 4) | IUPAC Name | Compound Category | CAS | Odour Type | Odour Descriptor | Tier1 | Tier2 | Tier3 | Tier1 | Tier2 | Tier3 | Author |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (-)-Cubenol | (1S,4R,4aR,8aR)-4,7-dimethyl-1-propan-2-yl-2,3,4,5,6,8a-hexahydro-1H-naphthalen-4a-ol | Alcohols | 21284-22-0 | Spicy | Spicy, herbal, tea, green tea | Spices | Clove | Vegetal | Green tea | [116] | ||
2 | (±)-Menthone | 5-methyl-2-propan-2-ylcyclohexan-1-one | Ketones | 89-80-5 | Minty | Minty | Vegetal | Mint | [116] | ||||
3 | (E)-2-Nonenal | (E)-non-2-enal | Aldehydes | 18829-56-6 | Fatty | Fatty, green, cucumber, aldehydic, citrus | Oily | Peanut | Fruity | Citric | Lemon | [10] | |
4 | (E)-3-Hexen-1-ol | (E)-3-hexen-1-ol | Alcohols | 928-97-2 | Green | Green, cortex, privet, leafy, floral, petal, oily, earthy | Vegetal | Herbal | Floral | Roses | [48] | ||
5 | (E)-a-Bergamotene | (1S,5S,6R)-2,6-dimethyl-6-(4-methylpent-3-en-1-yl)bicyclo[3.1.1]hept-2-ene | Terpene | 13474-59-4 | Woody | Woody, warm, tea | Woody | Resin | [116] | ||||
6 | (E)-b-Farnesene | (6E)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene | Terpene | 18794-84-8 | Woody | Woody, citrus, herbal, sweet | Woody | Resin | Fruity | Citric | Orange | [78] | |
7 | (E)-Ethyl dec-4-enoate | (E)-Ethyl dec-4-enoate | Esters | 76649-16-6 | Green | Green, fruity, waxy, cognac | Vegetal | Herbal | [94] | ||||
8 | (E)-Geranyl acetone | (5E)-6,10-dimethylundeca-5,9-dien-2-one | Ketones | 3796-70-1 | Floral | Fresh, green, fruity, waxy, roses, woody, magnolia, tropical, pear, guava. | Floral | Roses | Sweet | Honey | [116] | ||
9 | (E,E)-Farnesol | (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol | Alcohols | 106-28-5 | Floral | Floral, sweet, lily, waxy | Floral | Roses | Fruity | Citric | Orange | [48,116] | |
10 | (Z)-Nerolidol | (6Z)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol | Alcohols | 3790-78-1 | Waxy | Waxy, floral | Oily | Butter | [116] | ||||
11 | 10-Undecen-1-ol | 10-undecen-1-ol | Alcohols | 112-43-6 | Citrus | Fresh, floral, waxy, ozone, clean, citrus | Fruity | Citric | Lemon | [94,115] | |||
12 | 1-Dodecanol | 1-Dodecanol | Alcohols | 112-53-8 | Waxy | Earthy, soapy, waxy, fatty, honey, coconut | Oily | Butter | [48] | ||||
13 | 2,3-Butane diol | 2,3-butanediol | Diol | 513-85-9 | Creamy | Fruity, creamy, buttery | Oily | Butter | Sweet | Honey | [134] | ||
14 | 2,4-Nonadienal | Nona-2,4-dienal | Aldehydes | 6750-03-4 | Green | Fatty, green, cucumber, fruit, tropical fruit | Vegetal | Herbal | Fruity | Tropical | Pear | [10] | |
15 | 2,5-Diethyl tetrahydrofuran | 2,5-diethyloxolane | Ether | 41239-48-9 | Herbal | Sweet, herbal, caramellike | Vegetal | Herbal | Sweet | Caramel | [116] | ||
16 | 2-Butanol | Butan-2-ol | Alcohols | 78-92-2 | Fruity | Sweet, apricot | Fruity | Tropical | Apple | Sweet | Honey | [134] | |
17 | 2-Ethyl-1-hexanol | 2-ethylhexan-1-ol | Alcohols | 104-76-7 | Citrus | Citrus, fresh, floral, oily, sweet | Fruity | Citric | Lemon | Sweet | Honey | [48] | |
18 | 2-Heptanol | Heptan-2-ol | Alcohols | 543-49-7 | Citrus | Fresh, lemongrass, herbal, sweet, floral, fruity, green | Fruity | Citric | Lemon | Vegetal | Herbal | [94,115,116,134] | |
19 | 2-Methoxy-4-vinyl phenol | 4-ethenyl-2-methoxyphenol | Phenol | 7786-61-0 | Spicy | Spicy, clove, carnation, phenolic, peppery, smoky, woody, powdery | Spices | Clove | [10,134] | ||||
20 | 2-Methyl butyl acetate | 2-Methylbutyl acetate | Esters | 624-41-9 | Fruity | Fruit, overripe, sweet, banana, ripe, tropical fruit | Sweet | Honey | Fruity | Citric | Lemon | [94,115] | |
21 | 2-Methyl-1-butanol | 2-methylbutan-1-ol | Alcohols | 137-32-6 | Ethereal | Ethereal, fusel, alcoholic, fatty, greasy, winey, whiskey, leathery, cocoa, Fish oil, green, malt, onion, wine | Palate | Sensations | Alcoholic | Woody | Leather | [38,94,115,116] | |
22 | 2-Nonanol | Nonan-2-ol | Alcohols | 628-99-9 | Waxy | Waxy, green, creamy, citrus, orange, cheesy, fruity | Oily | Butter | [94,115] | ||||
23 | 2-Nonanone | Nonan-2-one | Ketones | 821-55-6 | Fruity | Fresh, sweet, green, weedy, earthy, herbal, fruity, waxy, soapy, cheesy, coconut | Sweet | Honey | Fruity | Citric | Lemon | [48] | |
24 | 2-Octanol | Octan-2-ol | Alcohols | 123-96-6 | Spicy | Fresh, spicy, green, woody, herbal, earthy | Spices | Clove | Vegetal | Herbal | [94,115] | ||
25 | 2-Undecanol | Undecan-2-ol | Alcohols | 1653-30-1 | Waxy | Fresh, waxy, cloth, laundered cloth, sarsaparilla | Oily | Butter | [94,115] | ||||
26 | 2-Undecanone | Undecan-2-one | Ketones | 112-12-9 | Fruity | Waxy, fruity, creamy, fatty, orris, floral, ketonic, pineapple | Sweet | Honey | Floral | Roses | [94,115] | ||
27 | 3-Methyl-1-pentanol | 3-methylpentan-1-ol | Alcohols | 589-35-5 | Fermented | Fusel, cognac, winey, cocoa, green, fruity, pungent | Palate | Sensations | Alcoholic | Vegetal | Herbal | [48,134] | |
28 | 4-Ethyl guaiacol | 4-Ethyl-2-methoxyphenol | Phenol | 2785-89-9 | Spicy | Spicy, smoky, bacon, phenolic, clove, medicinal, woody, sweet, vanilla | Spices | Clove | Woody | Vanilla | [10,94,115] | ||
29 | 4-Ethyl phenol | p-Ethylphenol | Phenol | 123-07-9 | Smoky | Phenolic, castoreum, smoky, guaiacol | Woody | Smoked | Chemical | Off flavours | Smoky | [48] | |
30 | 4-Methyl guaiacol | 2-methoxy-4-methylphenol | Phenolic Compounds | 93-51-6 | Spicy | Vanilla, clove, spicy, phenolic, medicinal, leathery, woody, smoky, burnt, candy, | Spices | Clove | Woody | Leather | [2] | ||
31 | 5-Hydroxymethyl furfural | 5-(hydroxymethyl)furan-2-carbaldehyde | Aldehydes | 67-47-0 | Fatty | Fatty, buttery, musty, waxy, caramellike | Oily | Butter | Sweet | Caramel | [42] | ||
32 | 5-Methyl hexanoic acid | 5-methylhexanoic acid | Acid | 628-46-6 | Fatty | Fatty, cheesy, oily, fruity | Oily | Peanut | Sweet | Honey | [116] | ||
33 | Acetal | 1,1-Diethoxyethane | Ether | 105-57-7 | Ethereal | Green, nutty, earthy, sweet, vegetable, Ethereal | Spices | Anise | Sweet | Honey | [94,115,116] | ||
34 | Acetaldehyde | Acetaldehyde | Aldehydes | 75-07-0 | Ethereal | Pungent, ethereal, aldehydic, fruity, musty, green apple | Palate | Sensations | Alcoholic | Sweet | Honey | [14,42,48,134] | |
35 | Acetic acid | Acetic acid | Acid | 64-19-7 | Acidic | Sharp, pungent, sour, vinegar | Chemical | Aggressive | Acetic | [14,38,42,48,78,134] | |||
36 | Acetone | Propan-2-one | Ketones | 67-64-1 | Solvent | Solvent, ethereal, apple, pear | Chemical | Aggressive | Solvent | Fruity | Tropical | Pear | [134] |
37 | Acetophenone | 1-phenylethanone | Ketones | 98-86-2 | Floral | Sweet, pungent, hawthorn, mimosa, almond, acacia, chemical, cherry, marzipan, coumarin, almond, nutty, heliotrope, vanilla | Floral | Roses | Sweet | Molasses | [42] | ||
38 | Acrolein | Acrolein | Aldehydes | 107-02-8 | Fruity | Almond, cherry | Fruity | Tropical | Apple | Sweet | Honey | [134] | |
39 | a-Farnesene | (3E,6E)-3,7,11-trimethyldodeca-1,3,6,10-tetraene | Terpene | 502-61-4 | Woody | Citrus, herbal, lavender, bergamot, myrrh, neroli, green, woody, vegetable, floral | Woody | Resin | Fruity | Citric | Lemon | [116] | |
40 | Amyl alcohol | Pentan-1-ol | Alcohols | 71-41-0 | Fermented | Fusel, oily, sweet, balsamic, pungent, fermented, bready, yeasty, fusel, winey, solvent | Palate | Sensations | Alcoholic | Chemical | Aggressive | Solvent | [14,38] |
41 | Anisole | Anisole | Ether | 100-66-3 | Phenolic | Phenolic, gasoline, ethereal, anise | Chemical | Aggressive | Medicinal | [94,115] | |||
42 | a-Terpeniol | 2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol | Alcohols | 98-55-5 | Terpene | Pine, terpene, lilac, citrus, woody, floral, resinous, cooling, lemon, lime | Woody | Resin | Floral | Roses | [48] | ||
43 | b-Damascenone | (E)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one | Ketones | 23696-85-7 | Floral | Natural, sweet, fruity, roses, plum, grape, raspberry, sugar, woody, earthy, green, floral, apple | Floral | Roses | Sweet | Honey | [94,115] | ||
44 | b-Damascone | (E)-1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one | Ketones | 35044-68-9 | Fruity | Floral, black currant, plum, roses, honey, tobacco | Sweet | Honey | Floral | Roses | [116] | ||
45 | Benzaldehyde | Benzaldehyde | Aldehydes | 100-52-7 | Fruity | Sharp, sweet, bitter, almond, cherry, fruity, powdery, nutty, maraschino cherry | Fruity | Tropical | Apple | Sweet | Honey | [42,48,134] | |
46 | Benzoic acid | Benzoic acid | Acid | 65-85-0 | Balsamic | Balsamic, urine | Vegetal | Balsamic | [38] | ||||
47 | Bisabolene | 1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohexene | Terpene | 495-62-5 | Fruity | Balsamic, citrus, myrrh, spicy, woody, fruity, tropical, terpene, green, banana | Sweet | Honey | Fruity | Citric | Orange | [116] | |
48 | Butyl alcohol | Butan-1-ol | Alcohols | 71-36-3 | Fermented | Fusel, oily, sweet, balsamic, whiskey, Malty, solvent-like | Palate | Sensations | Alcoholic | Oily | Butter | [42,48,134] | |
49 | Butyl butyrate | Butyl butanoate | Esters | 109-21-7 | Fruity | Fruity, banana, pineapple, green, cherry, tropical fruit, ripe, sweet | Fruity | Tropical | Apple | Sweet | Honey | [134] | |
50 | Butyric acid | Butanoic acid | Acid | 107-92-6 | Cheesy | Sharp, acetic, cheesy, buttery, fruity, dairy | Oily | Butter | Sweet | Honey | [38,48] | ||
51 | Caryophyllene | (4Z)-4,11,11-trimethyl-8-methylenebicyclo(7.2.0)undec-4-ene | Sesquiterpene | 13877-93-5 | Spicy | Sweet, woody, spicy, clove, dry, terpene | Spices | Clove | Sweet | Honey | [116] | ||
52 | Cis-oak lactone | (4R,5R)-5-butyl-4-methyloxolan-2-one | Lactones | 55013-32-6 | Spicy | Coconut, flowery, woody, sweet, spicy, coconut, vanilla | Woody | Vanilla | Woody | Resin | [2] | ||
53 | D-Dihydrogeraniol | (3R)-3,7-Dimethyloct-6-en-1-ol | Alcohols | 1117-61-9 | Floral | Citronella, roses, leafy, oily, petal | Floral | Roses | Fruity | Citric | Orange | [48,78,94,115] | |
54 | Decanal | Decanal | Aldehydes | 112-31-2 | Aldehydic | Sweet, aldehydic, waxy, orange, peel citrus, floral | Fruity | Citric | Orange | Fruity | Red fruits | Strawberry | [116] |
55 | Decanoic acid | Decanoic acid | Acid | 334-48-5 | Fatty | Rancid, sour, fatty, citrus | Oily | Peanut | Fruity | Citric | Orange | [38,48,78,134] | |
56 | Decanol | Decan-1-ol | Alcohols | 112-30-1 | Fatty | Fatty, waxy, floral, orange, sweet, clean, watery | Oily | Peanut | Fruity | Citric | Orange | [94,115] | |
57 | Decyl acetate | Decyl acetate | Esters | 112-17-4 | Waxy | Waxy, clean, fresh, cloth, laundered cloth, citrus, soapy, sweet, fatty, creamy | Oily | Butter | [94,115] | ||||
58 | Dextro,laevo-menthol | 5-methyl-2-propan-2-ylcyclohexan-1-ol | Terpene alcohol | 89-78-1 | Menthol | Peppermint, cooling, woody | Vegetal | Mint | Oily | Peanut | [48,116] | ||
59 | Diacetyl | Butane-2,3-dione | Ketones | 431-03-8 | Buttery | Buttery, sweet, creamy, pungent, caramellike | Oily | Butter | [10,42] | ||||
60 | Diethyl malate | Diethyl malate | Esters | 7554-12-3 | Caramellike | Caramellike, sugar, brown sugar, sweet, winey, fruity, herbal | Sweet | Caramel | Fruity | Tropical | Pear | [38] | |
61 | Diethyl succinate | Diethyl butanedioate | Esters | 123-25-1 | Fruity | Fruity, apple, cooked apple, ylang | Fruity | Tropical | Apple | Sweet | Honey | [38,48,94,115,116,134] | |
62 | Dihydroeugenol | 2-Methoxy-4-propylphenol | Alcohols | 2785-87-7 | Spicy | Clove, sharp, spicy, sweet, phenolic, powdery, allspice | Spices | Clove | Sweet | Honey | [94,115] | ||
63 | Dimethyl sulfide | Methylsulfanylmethane | Thioether | 75-18-3 | Sulphurous | Sulphurous, onion, sweet corn, vegetable, cabbage, tomato, green, radish, creamy, tomato, fishy, seafood, berry, fruity | Chemical | Off flavours | Sulphurous | Vegetal | Herbal | [42] | |
64 | Ethanol | Ethanol | Alcohols | 64-17-5 | Alcoholic | Alcoholic, ethereal, medicinal | Chemical | Aggressive | Ethanol | [14,48,78] | |||
65 | Ethyl (E)-2-decenoate | Ethyl (E)-dec-2-enoate | Esters | 7367-88-6 | Green | Green, aldehydic, fatty, watercress, herbal, waxy, melon, unripe melon, metallic, green apple, pear, fruit | Vegetal | Herbal | Fruity | Tropical | Apple | [94,115] | |
66 | Ethyl (R)-2-hydroxy-4-methyl pentanoate | Ethyl (R)-2-hydroxy-4-methyl pentanoate | Esters | 60856-83-9 | Fruity | Fresh, blackberry | Fruity | Tropical | Apple | Sweet | Honey | [78] | |
67 | Ethyl (Z)-linoleate | Ethyl (Z)-linoleate | Esters | 544-35-4 | Fatty | Fatty, fruity, oily | Oily | Peanut | Sweet | Honey | [78] | ||
68 | Ethyl 2-methyl butyrate | Ethyl 2-methylbutanoate | Esters | 7452-79-1 | Fruity | Sharp, sweet, green apple, fruity, berry, fresh, tropical | Fruity | Tropical | Apple | Sweet | Honey | [94,115] | |
69 | Ethyl 9-decenoate | Ethyl 9-decenoate | Esters | 67233-91-4 | Fruity | Fruity, fatty | Sweet | Honey | [94,115,116] | ||||
70 | Ethyl acetate | Ethyl acetate | Esters | 141-78-6 | Ethereal | Ethereal, fruity, sweet, weedy, green, grape, rummy, pineapple, solvent | Chemical | Off flavours | Ethyl acetate | Sweet | Molasses | [14,38,42,48,78,80,94,115,116,134] | |
71 | Ethyl acrylate | Ethyl prop-2-enoate | Esters | 140-88-5 | Plastic | Plastic, acrylate, fruity | Chemical | Off flavours | Plastic | [10] | |||
72 | Ethyl butyrate | Ethyl butanoate | Esters | 105-54-4 | Fruity | Fruity, pineapple, cognac, sweet, “tutti frutti”, Ethereal, apple, buttery | Sweet | Honey | Fruity | Citric | Lemon | [10,38,42,80,94,115,116] | |
73 | Ethyl decanoate | Ethyl decanoate | Esters | 110-38-3 | Waxy | Sweet, waxy, fruity, apple, grape, oily, brandy, fatty, nut | Oily | Butter | [42,78,80,94,115,116,134] | ||||
74 | Ethyl formate | Ethyl formate | Esters | 109-94-4 | Ethereal | Ethereal, fruity, rum-like, green, alcoholic, roses, cognac, fermented, winey, cognac | Palate | Sensations | Alcoholic | Sweet | Molasses | [2] | |
75 | Ethyl heptanoate | Ethyl heptanoate | Esters | 106-30-9 | Fruity | Fruity, pineapple, cognac, rummy, winey, sweet, banana, berry, green, seedy | Sweet | Honey | Fruity | Citric | Lemon | [94,115] | |
76 | Ethyl hexanoate | Ethyl hexanoate | Esters | 123-66-0 | Fruity | Sweet, fruity, pineapple, waxy, green, banana | Sweet | Honey | Fruity | Citric | Lemon | [42,48,78,80,94,115,134] | |
77 | Ethyl isobutyrate | Ethyl 2-methylpropanoate | Esters | 97-62-1 | Fruity | Sweet, ethereal, fruity, alcoholic, fusel, rummy, pungent | Palate | Sensations | Alcoholic | Sweet | Honey | [94,115] | |
78 | Ethyl isovalerate | Ethyl 3-methylbutanoate | Esters | 108-64-5 | Fruity | Fruity, sweet, apple, pineapple, “tutti frutti”, sharp, apple, green, orange | Sweet | Honey | Fruity | Citric | Lemon | [94,115] | |
79 | Ethyl lactate | Ethyl 2-hydroxypropanoate | Esters | 97-64-3 | Fruity | Sharp, tart, fruity, buttery, butterscotch, sweet, acidic, ethereal, strawberry, perfumed | Sweet | Honey | Oily | Butter | [42,78,80,134] | ||
80 | Ethyl laurate | Ethyl dodecanoate | Esters | 106-33-2 | Waxy | Sweet, waxy, floral, soapy, clean, rummy, creamy, oily, fatty | Oily | Butter | [42,48,78,80,116,134] | ||||
81 | Ethyl myristate | Ethyl tetradecanoate | Esters | 124-06-1 | Waxy | Sweet, waxy, violet, orris | Oily | Butter | [48,115,116] [94,134] | ||||
82 | Ethyl nonanoate | Ethyl nonanoate | Esters | 123-29-5 | Waxy | Fruity, roses, waxy, rummy, winey, tropical, cognac, apple, banana | Oily | Butter | [42,80,94,115,116] | ||||
83 | Ethyl octanoate | Ethyl octanoate | Esters | 106-32-1 | Waxy | Fruity, winey, waxy, sweet, apricot, banana, brandy, pear, musty, pineapple, creamy, dairy, cognac | Oily | Butter | [38,42,48,78,80,94,115,116,134] | ||||
84 | Ethyl palmitate | Ethyl hexadecanoate | Esters | 628-97-7 | Waxy | Waxy, fruity, creamy, milky, balsamic, greasy, oily | Oily | Butter | [116,134] | ||||
85 | Ethyl pentadecanoate | Ethyl pentadecanoate | Esters | 41114-00-5 | Sweet | Honey, sweet | Sweet | Honey | [78] | ||||
86 | Ethyl phenyl acetate | Ethyl 2-phenylacetate | Esters | 101-97-3 | Floral | Sweet, floral, honey, roses, balsamic, cocoa, chocolate, dark chocolate, anisic, liquorice, black liquorice. | Floral | Roses | Sweet | Honey | [10] | ||
87 | Ethyl propionate | Ethyl propanoate | Esters | 105-37-3 | Fruity | Sweet, fruity, rummy, grape, pineapple, ethereal, winey, fermented, egg-nog, rum-like | Sweet | Honey | Fruity | Citric | Lemon | [94,115] | |
88 | Ethyl undecanoate | Ethyl undecanoate | Esters | 627-90-7 | Soapy | Soapy, waxy, fatty, cognac, coconut, buttery | Chemical | Off flavours | Soap | Oily | Butter | [94,115] | |
89 | Ethyl valerate | Ethyl pentanoate | Esters | 539-82-2 | Fruity | Fruity, apple, sweet, pineapple, green, tropical, acidic, berry | Fruity | Tropical | Pineapple | Fruity | Tropical | Banana | [2] |
90 | Eugenol | 2-methoxy-4-prop-2-enylphenol | Phenolic ether | 97-53-0 | Spicy | Sweet, spicy, clove, woody, phenolic, savoury, ham, bacon, cinnamon, allspice | Spices | Clove | [94,115] | ||||
91 | Farnesyl acetate | 3,7,11-trimethyldodeca-2,6,10-trienyl acetate | Esters | 29548-30-9 | Floral | green, floral, orchid, metallic, cortex, waxy, roses, citrus | Floral | Roses | Fruity | Citric | Orange | [116] | |
92 | Fenchol | 1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol | Alcohols | 1632-73-1 | Camphoraceous | Camphoraceous, pine, woody, dry, sweet, lemon | Woody | Resin | Fruity | Citric | Lemon | [116] | |
93 | Furfural | Furan-2-carbaldehyde | Aldehydes | 98-01-1 | Bready | Sweet, woody, almond, bread, baked, caramellike, phenolic | Woody | Resin | Sweet | Caramel | [38,42,134] | ||
94 | Furfuryl acetate | Furan-2-ylmethyl acetate | Esters | 623-17-6 | Fruity | Sweet, fruity, banana, horseradish | Sweet | Honey | [48] | ||||
95 | Furfuryl alcohol | Furan-2-ylmethanol | Alcohols | 98-00-0 | Bready | Alcoholic, chemical, musty, sweet, caramellike, bready, coffee, sulphurous | Woody | Coffee | Sweet | Caramel | [38,48] | ||
96 | Geraniol | (2E)-3,7-dimethylocta-2,6-dien-1-ol | Alcohols | 106-24-1 | Floral | Sweet, floral, fruity, roses, waxy, citrus, citronella | Floral | Roses | Fruity | Citric | Lemon | [48] | |
97 | Heptanal | Heptanal | Aldehydes | 111-71-7 | Green | Fresh, aldehydic, fatty, green, herbal, cognac, ozone | Vegetal | Herbal | Palate | Sensations | Alcoholic | [10,94,115] | |
98 | Heptanoic acid | Heptanoic acid | Acid | 111-14-8 | Cheesy | Rancid, sour, cheesy, sweaty, waxy, fermented, pineapple, fruity | Chemical | Aggressive | Head fraction | Fruity | Tropical | Pineapple | [38,48] |
99 | Heptyl alcohol | 1-Heptanol | Alcohols | 111-70-6 | Green | Musty, leafy, violet, herbal, green, sweet, woody, peony | Vegetal | Herbal | Oily | Peanut | [48] | ||
100 | Hexadecanol | Hexadecan-1-ol | Alcohols | 36653-82-4 | Waxy | Waxy, clean, greasy, floral, oily | Oily | Butter | [134] | ||||
101 | Hexanal diethyl acetal | 1,1-Diethoxyhexane | Acetal | 3658-93-3 | Fermented | Cognac, pear, floral, hyacinth, apple, fruity | Palate | Sensations | Alcoholic | Sweet | Honey | [94,115] | |
102 | Hexanoic acid | Hexanoic acid | Acid | 42-62-1 | Fatty | Sour, fatty, sweaty, cheesy | Oily | Peanut | Chemical | Aggressive | Head fraction | [38,48,134] | |
103 | Hexanol | Hexan-1-ol | Alcohols | 111-27-3 | Herbal | Ethereal, fusel, oily, fruity, alcoholic, sweet, green, pungent | Vegetal | Herbal | Palate | Sensations | Alcoholic | [48,94,115] | |
104 | Isoamyl acetate | 3-methylbutyl acetate | Esters | 123-92-2 | Fruity | Sweet, fruity, banana, solvent, ripe | Sweet | Honey | [10,38] | ||||
105 | Isoamyl alcohol | 3-methylbutan-1-ol | Esters | 123-51-3 | Fermented | Fusel, alcoholic, whiskey, fruity, banana, pungent, ethereal, cognac, molasses | Palate | Sensations | Alcoholic | Sweet | Honey | [14,42,48,78,134] | |
106 | Isoamyl decanoate | 3-methylbutyl decanoate | Esters | 2306-91-4 | Waxy | Waxy, banana, fruity, sweet, cognac, green | Oily | Butter | [78] | ||||
107 | Isoamyl octanoate | 3-methylbutyl octanoate | Esters | 2035-99-6 | Fruity | Sweet, oily, fruity, green, soapy, pineapple, coconut | Sweet | Honey | Fruity | Citric | Lemon | [42,80,94,115,134] | |
108 | Isobutyl acetate | 2-Methylpropyl acetate | Esters | 110-19-0 | Fruity | Sweet, fruity, ethereal, banana, tropical, apple | Sweet | Honey | Fruity | Citric | Lemon | [38,94,115] | |
109 | Isobutyl alcohol | 2-methylpropan-1-ol | Alcohols | 78-83-1 | Ethereal | Ethereal, winey, malty | Palate | Sensations | Alcoholic | [14,42,48,116,134] | |||
110 | Isobutyl octanoate | 2-Methylpropyl octanoate | Esters | 5461-06-3 | Fruity | Fruity, green, oily, floral | Sweet | Honey | Floral | Roses | [94,115] | ||
111 | Isobutyraldehyde | 2-methylpropanal | Aldehydes | 78-84-2 | Aldehydic | Fresh, aldehydic, floral, pungent, green | Floral | Roses | Woody | Resin | [42] | ||
112 | Isobutyric acid | 2-methylpropanoic acid | Acid | 79-31-2 | Acidic | Acidic, sour, cheesy, dairy, buttery, rancid | Oily | Butter | Chemical | Aggressive | Solvent | [38] | |
113 | Isovaleraldehyde | 3-methylbutanal | Aldehydes | 590-86-3 | Aldehydic | Ethereal, aldehydic, chocolate, peach, fatty, green, sweet | Woody | Chocolate | Fruity | Tropical | Peach | [42] | |
114 | Linalool | 3,7-dimethylocta-1,6-dien-3-ol | Alcohols | 78-70-6 | Floral | Citrus, floral, sweet, bois de roses, woody, green, blueberry, orange, terpenic, waxy. | Floral | Roses | Fruity | Citric | Lemon | [38,48] | |
115 | Methyl 2-hydroxy-4-methyl valerate | Methyl 2-hydroxy-4-methylpentanoate | Esters | 40348-72-9 | Fruity | Sweet, fruity, musty | Sweet | Honey | [134] | ||||
116 | Methyl salicylate | Methyl 2-hydroxybenzoate | Esters | 119-36-8 | Minty | Wintergreen, minty, sweet, root beer, phenolic, camphoraceous | Vegetal | Mint | Vegetal | Balsamic | [2] | ||
117 | Methyl stearate | Methyl octadecanoate | Esters | 112-61-8 | Waxy | Oily, waxy | Oily | Butter | [134] | ||||
118 | Nerolidol | 3,7,11-trimethyldodeca-1,6,10-trien-3-ol | Terpene | 7212-44-4 | Floral | Floral, green, waxy, citrus, woody | Floral | Roses | Fruity | Citric | Lemon | [78,116] | |
119 | Nerolidol acetate | [(6E)-3,7,11-trimethyldodeca-1,6,10-trien-3-yl] acetate | Esters | 2306-78-7 | Floral | Fresh, sweet, citrus, waxy, freesia, woody | Floral | Roses | Fruity | Citric | Lemon | [116] | |
120 | Nonanal | Nonanal | Aldehydes | 124-19-6 | Aldehydic | Waxy, aldehydic, roses, fresh, orris, orange peel, fatty, citrus, green, lemon peel, cucumber | Floral | Roses | Fruity | Citric | Orange | [94,115] | |
121 | Nonanal diethyl acetal | 1,1-Diethoxynonane | Acetal | 54815-13-3 | Aldehydic | Aldehydic, floral, rose | Floral | Roses | [94,115] | ||||
122 | Nonanoic acid | Nonanoic acid | Acid | 112-05-0 | Waxy | Waxy, cheesy, dairy | Oily | Butter | [38,48] | ||||
123 | Nonanol | Nonan-1-ol | Alcohols | 143-08-8 | Floral | Fresh, clean, fatty, floral, roses, orange, dusty, wet, oily | Floral | Roses | Oily | Peanut | [94,115] | ||
124 | Octanal | Octanal | Aldehydes | 124-13-0 | Aldehydic | aldehydic, waxy, citrus, orange peel, green, herbal, fresh, fatty | Fruity | Citric | Orange | Vegetal | Herbal | [38,116] | |
125 | Octanoic acid | Octanoic acid | Acid | 124-07-2 | Fatty | Fatty, waxy, rancid, oily, vegetable, cheesy | Oily | Peanut | Vegetal | Herbal | [38,48,78,134] | ||
126 | Octanol | Octan-1-ol | Alcohols | 111-87-5 | Waxy | Waxy, green, orange, aldehydic, roses, mushroom, citrus, floral, sweet, fatty, coconut. | Oily | Butter | [48,78,116,134] | ||||
127 | Ortho-guaiacol | 2-methoxyphenol | Phenolic ether | 90-05-1 | Phenolic | Phenolic, smoky, spicy, vanilla, woody | Chemical | Aggressive | Medicinal | Sweet | Honey | [10,38,48] | |
128 | Palmitic acid | Hexadecanoic acid | Acid | 57-10-3 | Waxy | Waxy, fatty, creamy | Oily | Butter | [48] | ||||
129 | Phenethyl alcohol | 2-Phenylethanol | Alcohols | 60-12-8 | Floral | Floral, roses, dried roses, sweet, fresh, bready, honey | Floral | Roses | Sweet | Honey | [38,48,78,94,115,116,134] | ||
130 | Phenyl acetate | Phenyl acetate | Esters | 122-79-2 | Phenolic | Phenolic, medicinal, animal, resinous, castoreum, woody, smoky, burnt | Chemical | Aggressive | Medicinal | [48] | |||
131 | Phenylethyl acetate | 2-phenylethyl acetate | Esters | 103-45-7 | Floral | Floral, roses, sweet, honey, fruity, tropical, yeasty, cocoa, balsamic, raspberry. | Floral | Roses | Sweet | Honey | [38,48] | ||
132 | Propionaldehyde | Propanal | Aldehydes | 123-38-6 | Ethereal | Earthy, alcoholic, winey, whiskey, cocoa, nutty, ethereal, pungent, cognac, brandy, meaty, grape | Palate | Sensations | Alcoholic | Spices | Anise | [42,134] | |
133 | Propionic acid | Propanoic acid | Acid | 79-09-4 | Acidic | Pungent, acidic, cheesy, vinegar, dairy. | Chemical | Aggressive | Acetic | Oily | Butter | [38] | |
134 | Propyl acetate | Propyl acetate | Esters | 109-60-4 | Fruity | Solvent, celery, fruity, fusel, raspberry, pear, pungent, sweet | Fruity | Red fruits | Raspberry | Sweet | Honey | [38] | |
135 | Propyl alcohol | Propan-1-ol | Alcohols | 71-23-8 | Alcoholic | Alcoholic, fermented, fusel, musty, tequila, yeasty, sweet, fruity, apple, pear | Palate | Sensations | Alcoholic | Fruity | Tropical | Pear | [14,38,42,48,134] |
136 | Propyl decanoate | Propyl decanoate | Esters | 30673-60-0 | Waxy | Waxy, fruity, fatty, green, vegetable, woody, oily, fruity | Oily | Butter | [94,115] | ||||
137 | Propyl octanoate | Propyl octanoate | Esters | 624-13-5 | Coconut | Coconut, cocoa, cognac, winey, fatty | Oily | Coconut | [94,115] | ||||
138 | Valeraldehyde | Pentanal | Aldehydes | 110-62-3 | Fermented | Fermented, bready, fruity, nutty, berry | Palate | Sensations | Alcoholic | Sweet | Molasses | [42] | |
139 | Valeric acid | Pentanoic acid | Acids | 109-52-4 | Cheesy | Strong, pungent, cheesy, acidic, sweaty, rancid, sharp, sour milky, tobacco, fruity | Chemical | Aggressive | Medicinal | Woody | Tobacco | [2] | |
140 | Vanillin | 4-hydroxy-3-methoxybenzaldehyde | Phenolic aldehyde | 121-33-5 | Vanilla | Sweet, vanilla, creamy, chocolate, phenolic | Sweet | Vanilla | Sweet | Chocolate | [10] | ||
141 | Vinyl amyl ketone | 1-octen-3-one | Ketones | 4312-99-6 | Earthy | Herbal, mushroom, earthy, musty, dirty, metallic, vegetable, cabbage, broccoli, savoury, fishy, chicken | Vegetal | Herbal | Woody | Resin | [10] | ||
142 | α-Bisabolol | (2R)-6-methyl-2-[(1R)-4-methyl-1-cyclohex-3-enyl]hept-5-en-2-ol | Terpene alcohol | 515-69-5 | Floral | Floral, peppery, balsamic, clean | Floral | Roses | Spices | Pepper | [116] | ||
143 | γ-Nonalactone | 5-pentyloxolan-2-one | Lactones | 104-61-0 | Coconut | Coconut, creamy, waxy, buttery, sweet, oily, fatty | Oily | Coconut | Oily | Butter | [2] | ||
The odour type and odour descriptors were obtained from the Good Scents Company Information System [200]. |
References
- FGV. The Brazilian Cachaca Industry and Their Interactions with International Trade. 2017. Available online: https://agro.fgv.br/publicacao/brazilian-cachaca-industry-and-their-interactions-international-trade (accessed on 1 July 2023).
- Bortoletto, A.M. Chapter 3—Rum and cachaça. In Distilled Spirits; Hill, A., Jack, F., Eds.; Academic Press: London, UK, 2023; pp. 61–74. [Google Scholar] [CrossRef]
- De Silva, A.P.; Silvello, G.C.; Bortoletto, A.M.; Alcarde, A.R. Composição química de aguardente de cana obtida por diferentes métodos de destilação. Braz. J. Food Technol. 2020, 23, e2018308. [Google Scholar] [CrossRef]
- BRASIL. Ministério da Agricultura, Pecuária e Abastecimento (MAPA). no 539, de 26 de Dezembro de 2022. 2023. Available online: https://www.in.gov.br/en/web/dou/-/portaria-mapa-n-539-de-26-de-dezembro-de-2022-453828778 (accessed on 1 July 2023).
- Pataro, C.; Guerra, J.B.; Gomes, F.C.; Neves, M.J.; Pimentel, P.F.; Rosa, C.A. Trehalose accumulation, invertase activity and physiological characteristics of yeasts isolated from 24 h fermentative cycles during the production of artisanal Brazilian cachaça. Braz. J. Microbiol. 2002, 33, 202–208. [Google Scholar] [CrossRef]
- Haller, H. Cachaça: The most famous spirit you’ve never heard on. Artisan Spirit: Spring 2016, 16 April 2016; 104–107. [Google Scholar]
- Silva, J.H.D.N.; Verruma-Bernardi, M.R.; de Oliveira, A.L. Cachaça Production in Brazil and its Main Contaminant (Ethyl Carbamate). Sci. Agric. 2020, 77. [Google Scholar] [CrossRef]
- Schwan, R.F.; Mendonça, A.T.; Da Silva, J.J.; Rodrigues, V.; Wheals, A.E. Microbiology and physiology of Cachaça (Aguardente) fermentations. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2001, 79, 89–96. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Andrade-Sobrinho, L.G.; Leite-Neto, A.F.; Reche, R.V.; Isique, W.D.; Ferreira, M.M.C.; Lima-Neto, B.S.; Franco, D.W. Comparison between Cachaça and Rum Using Pattern Recognition Methods. J. Agric. Food Chem. 2004, 52, 3429–3433. [Google Scholar] [CrossRef]
- De Souza, M.D.C.A.; Vásquez, P.; del Mastro, N.L.; Acree, T.E.; Lavin, E.H. Characterization of Cachaça and Rum Aroma. J. Agric. Food Chem. 2006, 54, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.D.G. Produção de Aguardente de Cana, 4th ed.; UFLA: Lavras, Brazil, 2020. [Google Scholar]
- Waldemar, G.V. Bebidas Alcoólicas: Ciência e Tecnologia; Blutcher: Lavras, Brazil, 2010; Volume 1, Available online: https://pt.slideshare.net/carlomitro/191207859-bebidasalcoolicas (accessed on 1 July 2023).
- Alvarez, F.; da Mata Correa, L.F.; Araújo, T.M.; Mota, B.E.F.; da Conceição, L.E.F.R.; de Miranda Castro, I.; Brandão, R.L. Variable flocculation profiles of yeast strains isolated from cachaça distilleries. Int. J. Food Microbiol. 2014, 190, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.; Silva, C.; Dias, D.; Basso, L.; Amorim, H.; Schwan, R. Features of Saccharomyces cerevisiaeas a culture starter for the production of the distilled sugar cane beverage, cachaça in Brazil. J. Appl. Microbiol. 2010, 108, 1871–1879. [Google Scholar] [CrossRef]
- Duarte, W.F.; de Sousa, M.V.F.; Dias, D.R.; Schwan, R.F. Effect of Co-Inoculation of Saccharomyces cerevisiae and Lactobacillus fermentum on the Quality of the Distilled Sugar Cane Beverage Cachaça. J. Food Sci. 2011, 76, C1307–C1318. [Google Scholar] [CrossRef]
- Gomes, F.C.; Pataro, C.; Guerra, J.B.; Neves, M.J.; Corrêa, S.R.; Moreira, E.S.; Rosa, A.C. Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaça. Can. J. Microbiol. 2002, 48, 399–406. [Google Scholar] [CrossRef]
- Machado, A.M.d.R.; Cardoso, M.d.G.; Saczk, A.A.; dos Anjos, J.P.; Zacaroni, L.M.; Dórea, H.S.; Nelson, D.L. Determination of ethyl carbamate in cachaça produced from copper stills by HPLC. Food Chem. 2013, 138, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C.B.; de Silva, A.P.; Bortoletto, A.M.; Alcarde, A.R. How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Res. Int. 2017, 91, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Riachi, L.G.; Santos, Â.; Moreira, R.F.A.; De Maria, C.A.B. A review of ethyl carbamate and polycyclic aromatic hydrocarbon contamination risk in cachaça and other Brazilian sugarcane spirits. Food Chem. 2014, 149, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.M.G.; Benoso, P.; Pierezan, M.d.O.; Santana, R.F.; Hassemer, G.d.S.; da Rocha, R.A.; Nora, F.M.D.; Verruck, S.; Caetano, D.; Simal-Gandara, J. A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J. Food Compos. Anal. 2022, 106, 104338. [Google Scholar] [CrossRef]
- Galinaro, C.A.; Cardoso, D.R.; Franco, D.W. Profiles of Polycyclic Aromatic Hydrocarbons in Brazilian Sugar Cane Spirits: Discrimination between Cachaças Produced from Nonburned and Burned Sugar Cane Crops. J. Agric. Food Chem. 2007, 55, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.; Cardoso, M.d.G.; Zacaroni, L.M.; dos Anjos, J.P.; Sackz, A.A.; Machado, A.M.d.R.; Nelson, D.L. Determination of acrolein, ethanol, volatile acidity, and copper in different samples of sugarcane spirits. Food Sci. Technol. 2012, 32, 568–572. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Assessment of chemical quality of Brazilian sugar cane spirits and cachaças. Food Control 2015, 54, 1–6. [Google Scholar] [CrossRef]
- E Silva, J.H.D.N.; Verruma-Bernardi, M.R.; de Medeiros, S.D.S.; de Oliveira, A.L. Monitoring the content of ethyl carbamate and copper in organic and conventional cachaça. Sci. Agric. 2020, 77. [Google Scholar] [CrossRef]
- Labanca, R.A.; Glória, M.B.; Afonso, R.J. Determinação De carbamato De etila em aguarDentes De cana por cg-em. Quim. Nova 2008, 31, 1860–1864. [Google Scholar] [CrossRef]
- Menezes, E.G.T.; Alves, J.G.L.F.; Valeriano, C.; Guimarães, I.C. Physico-chemical and sensorial evaluation of sugarcane spirits produced using distillation residue. Braz. Arch. Biol. Technol. 2013, 56, 121–126. [Google Scholar] [CrossRef]
- Guerreiro, T.M.; Ozawa, K.S.; Lima, E.d.O.; Melo, C.F.O.R.; de Oliveira, D.N.; Triano, S.P.D.N.; Catharino, R.R. New Approach of QuEChERS and GC-MS Triple-Quadrupole for the Determination of Ethyl Carbamate Content in Brazilian cachaças. Front. Nutr. 2018, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.; Araujo, R.; Pataro, C.; Franco, G.; Moreira, E.; Mendonca-Hagler, L.; Rosa, C. Genetic diversity of Saccharomyces cerevisiae strains during the 24 h fermentative cycle for the production of the artisanal Brazilian cachaca. Lett. Appl. Microbiol. 2001, 33, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.S.; Rosa, C.A.; Morgano, M.A.; Serra, G.E. Fermentation characteristics as criteria for selection of cachaça yeast. World J. Microbiol. Biotechnol. 2004, 20, 19–24. [Google Scholar] [CrossRef]
- Oliveira, E.S.; Cardello, H.M.A.B.; Jeronimo, E.M.; Souza, E.L.R.; Serra, G.E. The influence of different yeasts on the fermentation, composition and sensory quality of cachaça. World J. Microbiol. Biotechnol. 2005, 21, 707–715. [Google Scholar] [CrossRef]
- Silva, C.L.C.; Rosa, C.A.; Oliveira, E.S. Studies on the kinetic parameters for alcoholic fermentation by flocculent Saccharomyces cerevisiae strains and non-hydrogen sulfide-producing strains. World J. Microbiol. Biotechnol. 2006, 22, 857–863. [Google Scholar] [CrossRef]
- Morais, P.; Rosa, C.; Linardi, V.; Pataro, C.; Maia, A. Short Communication: Characterization and succession of yeast populations associated with spontaneous fermentations during the production of Brazilian sugar-cane aguardente. World J. Microbiol. Biotechnol. 1997, 13, 241–243. [Google Scholar] [CrossRef]
- Pataro, C.; Guerra, J.; Petrillo-Peixoto, M.; Mendonca-Hagler, L.; Linardi, V.; Rosa, C. Yeast communities and genetic polymorphism of Saccharomyces cerevisiae strains associated with artisanal fermentation in Brazil. J. Appl. Microbiol. 2000, 89, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Badotti, F.; Gomes, F.C.; Teodoro, M.M.; Silva, A.L.D.; Rosa, C.A.; Machado, A.M.d.R. Electrospray Ionization Mass Spectrometry Characterization of Musts and Alembic Brazilian Cachaças Using Selected Yeast Strains. J. Food Sci. 2014, 79, C476–C483. [Google Scholar] [CrossRef]
- Vicente, M.d.A.; Fietto, L.G.; Castro, I.d.M.; dos Santos, A.N.G.; Coutrim, M.X.; Brandão, R.L. Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of “cachaça” the Brazilian sugarcane spirit. Int. J. Food Microbiol. 2006, 108, 51–59. [Google Scholar] [CrossRef]
- Oliveira, V.A.; Vicente, M.A.; Fietto, L.G.; Castro, I.d.M.; Coutrim, M.X.; Schuller, D.; Alves, H.; Casal, M.; Santos, J.d.O.; Araújo, L.D.; et al. Biochemical and Molecular Characterization of Saccharomyces cerevisiae Strains Obtained from Sugar-Cane Juice Fermentations and Their Impact in Cachaça Production. Appl. Environ. Microbiol. 2008, 74, 693–701. [Google Scholar] [CrossRef]
- Ramos, C.L.; Duarte, W.F.; Freire, A.L.; Dias, D.R.; Eleutherio, E.C.A.; Schwan, R.F. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae. Braz. J. Microbiol. 2013, 44, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Duarte, W.F.; Amorim, J.C.; Schwan, R.F. The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaça) fermentation process. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2013, 103, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Basso, L.C.; de Amorim, H.V.; de Oliveira, A.J.; Lopes, M.L. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008, 8, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Soares, E. Flocculation in Saccharomyces cerevisiae: A review. J. Appl. Microbiol. 2011, 110, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Da Conceição, L.E.F.R.; Saraiva, M.A.F.; Diniz, R.H.S.; Oliveira, J.; Barbosa, G.D.; Alvarez, F.; Correa, L.F.d.M.; Mezadri, H.; Coutrim, M.X.; Afonso, R.J.d.C.F.; et al. Biotechnological potential of yeast isolates from cachaça: The Brazilian spirit. J. Ind. Microbiol. Biotechnol. 2015, 42, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Serafim, F.; Franco, D. Chemical traceability of industrial and natural yeasts used in the production of Brazilian sugarcane spirits. J. Food Compos. Anal. 2015, 38, 98–105. [Google Scholar] [CrossRef]
- Parente, D.C.; Vidal, E.E.; Leite, F.C.B.; Pita, W.d.B.; de Morais, M.A. Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça. Yeast 2015, 32, 77–87. [Google Scholar] [CrossRef]
- Araújo, T.M.; Souza, M.T.; Diniz, R.H.S.; Yamakawa, C.K.; Soares, L.B.; Lenczak, J.L.; Oliveira, J.V.d.C.; Goldman, G.H.; Barbosa, E.A.; Campos, A.C.S.; et al. Cachaça yeast strains: Alternative starters to produce beer and bioethanol. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2018, 111, 1749–1766. [Google Scholar] [CrossRef]
- Costa, A.C.T.; Hornick, J.; Antunes, T.F.S.; Santos, A.M.C.; Fernandes, A.A.R.; Broach, J.R.; Fernandes, P.M.B. Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production. Braz. J. Microbiol. 2021, 52, 1087–1095. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Duarte, W.F.; Dias, D.R.; Piccoli, R.H.; Schwan, R.F. Interaction of Saccharomyces cerevisiae and Lactococcus lactis in the fermentation and quality of artisanal cachaça. Acta Sci. Agron. 2014, 37, 51. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiae in the Production of Fermented Beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Amorim, J.C.; Schwan, R.F.; Duarte, W.F. Sugar cane spirit (cachaça): Effects of mixed inoculum of yeasts on the sensory and chemical characteristics. Food Res. Int. 2016, 85, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, T.L.; Pereira, G.V.d.M.; Cardoso, P.G.; Dias, E.S.; Schwan, R.F. Saccharomyces cerevisiae strains associated with the production of cachaça: Identification and characterization by traditional and molecular methods (PCR, PFGE and mtDNA-RFLP). World J. Microbiol. Biotechnol. 2008, 24, 2705–2712. [Google Scholar] [CrossRef]
- Pereira, L.F.; Costa, C.R.L.; Brasileiro, B.T.R.V.; de Morais, M.A. Lachancea mirantina sp. nov., an ascomycetous yeast isolated from the cachaça fermentation process. Int. J. Syst. Evol. Microbiol. 2011, 61, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.L.; Silva, C.F.; Schwan, R.F. Monitoring the fermentation process for cachaça production using microbiological and physico-chemical methods with different Saccharomyces cerevisiae isolates. Food Sci. Technol. 2011, 31, 184–187. [Google Scholar] [CrossRef]
- Pereira, G.D.M.; Ramos, C.; Galvão, C.; Dias, E.S.; Schwan, R. Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. Lett. Appl. Microbiol. 2010, 51, 131–137. [Google Scholar] [CrossRef]
- Dato, M.C.F.; Pizauro, J.M.; Mutton, M.J.R. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of ‘cachaca. Braz. J. Microbiol. 2005, 36, 70–74. [Google Scholar] [CrossRef]
- Barbosa, E.; Souza, M.; Diniz, R.; Godoy-Santos, F.; Faria-Oliveira, F.; Correa, L.; Alvarez, F.; Coutrim, M.; Afonso, R.; Castro, I.; et al. Quality improvement and geographical indication of cachaça (Brazilian spirit) by using locally selected yeast strains. J. Appl. Microbiol. 2016, 121, 1038–1051. [Google Scholar] [CrossRef]
- Jeronimo, E.M.; Oliveira, E.d.S.; Souza, E.L.R.; Silva, M.d.A.; Serra, G.E. Addition of proteic nitrogen during alcoholic fermentation for the production of cachaça. Sci. Agric. 2008, 65, 161–168. [Google Scholar] [CrossRef]
- Jeronimo, E.M.; Souza, E.L.R.; Silva, M.D.; Cruz, J.C.S.; Gava, G.J.D.; Serra, G.E. Soya protein isolated in alcoholic fermentation for the production of cachaça. Bol. Do Cent. Pesqui. Process. Aliment. 2008, 26, 21–28. [Google Scholar]
- Mutton, M.J.R.; Garcia, G.; Teixeira, V.; Silva, A.F.; Costa, G.G.; Ferreira, O.E. The clarification of sugarcane juice and the use of CA-11 yeast produces better quality cachaca. Rev. Ciência Agronômica 2020, 51. [Google Scholar] [CrossRef]
- Brexó, R.P.; Andrietta, M.d.G.S.; Sant’Ana, A.S. Artisanal cachaça and brewer’s spent grain as sources of yeasts with promising biotechnological properties. J. Appl. Microbiol. 2018, 125, 409–421. [Google Scholar] [CrossRef]
- Ribeiro, M.L.D.; Ferreira, O.E.; Teixeira, V.; Mutton, M.A.; Mutton, M.J.R. Physico-chemical treatment of sugarcane juice produces quality cachaça. Rev. Ciência Agronômica 2017, 48, 458–463. [Google Scholar] [CrossRef]
- Gonçalves, R.C.F.; Teodoro, M.M.G.; de Resende Machado, A.M.; Gomes, F.D.C.O.; Badotti, F.; das Graças Cardoso, M. Compostos voláteis em cachaças de alambique produzidas por leveduras selecionadas e por fermentação espontânea. Magistra 2016, 28, 285–293. [Google Scholar]
- Silva, C.L.; Vianna, C.R.; Cadete, R.M.; Santos, R.O.; Gomes, F.C.; Oliveira, E.S.; Rosa, C.A. Selection, growth, and chemo-sensory evaluation of flocculent starter culture strains of Saccharomyces cerevisiae in the large-scale production of traditional Brazilian cachaça. Int. J. Food Microbiol. 2009, 131, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.A.; Gomes, F.C.; Moreira, E.S.; Cisalpino, P.S.; Rosa, C.A. Monitoring Saccharomyces cerevisiae populations by mtDNA restriction analysis and other molecular typing methods during spontaneous fermentation for production of the artisanal cachaça. Braz. J. Microbiol. 2007, 38, 217–223. [Google Scholar] [CrossRef]
- Gomes, F.; Silva, C.; Marini, M.; Oliveira, E.; Rosa, C. Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil. J. Appl. Microbiol. 2007, 103, 2438–2447. [Google Scholar] [CrossRef]
- De Carvalho-Netto, O.V.; Rosa, D.D.; Camargo, L.E.A. Identificarion of contaminant bacteria in cachaça yeast by 16s rDNA gene sequencing. Sci. Agric. 2008, 65, 508–515. [Google Scholar] [CrossRef]
- Silva, P.H.A.D.; Santos, J.D.O.; Araújo, L.D.; Faria, F.C.; Pereira, A.F.; Oliveira, V.A.D.; Vicente, M.D.A.; Brandão, R.L. Chromatographic evaluation of volatile compounds in brazilian sugar cane spirits produced with yeasts from different locations. Ciência Tecnol. Aliment. 2009, 29, 100–106. [Google Scholar] [CrossRef]
- Nova, M.X.V.; Schuler, A.R.P.; Brasileiro, B.T.R.V.; Morais, M.A. Yeast species involved in artisanal cachaça fermentation in three stills with different technological levels in Pernambuco, Brazil. Food Microbiol. 2009, 26, 460–466. [Google Scholar] [CrossRef]
- De Aquino, F.W.B.; Franco, D.W. Formation of Dextran Deposits in Brazilian Sugar Cane Spirits. J. Agric. Food Chem. 2011, 59, 8249–8255. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Verruma-Bernardi, M.R.; Borges, M.; Margarido, L.A.C.; Ceccato-Antonini, S.R. Yeast composition of sugar cane juice in relation to plant varieties and seasonality. Biosci. J. 2011, 27, 710–717. [Google Scholar]
- Gomes, F.d.C.O.; Araújo, R.A.d.C.; Cisalpino, P.S.; Moreira, E.S.A.; Zani, C.L.; Rosa, C.A. Comparison between two selected Saccharomyces cerevisiae strains as fermentation starters in the production of traditional cachaça. Braz. Arch. Biol. Technol. 2009, 52, 449–455. [Google Scholar] [CrossRef]
- De Souza, A.P.G.; Vicente, M.d.A.; Klein, R.C.; Fietto, L.G.; Coutrim, M.X.; Afonso, R.J.d.C.F.; Araújo, L.D.; da Silva, P.H.A.; Bouillet, L.M.; Castro, I.M.; et al. Strategies to select yeast starters cultures for production of flavor compounds in cachaça fermentations. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2011, 101, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.C.O.; Silva, C.L.C.; Vianna, C.R.; Lacerda, I.C.A.; Borelli, B.M.; Nunes, Á.C.; Franco, G.R.; Mourão, M.M.; Rosa, C.A. Identification of lactic acid bacteria associated with traditional cachaça fermentations. Braz. J. Microbiol. 2010, 41, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, I.C.A.; Gomes, F.C.O.; Borelli, B.M.; Faria, C.L.L., Jr.; Franco, G.R.; Mourão, M.M.; Morais, P.B.; Rosa, C.A. Identification of the bacterial community responsible for traditional fermentation during sour cassava starch, cachaça and minas cheese production using culture-independent 16s rRNA gene sequence analysis. Braz. J. Microbiol. 2011, 42, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Portugal, C.B.; Alcarde, A.R.; Bortoletto, A.M.; de Silva, A.P. The role of spontaneous fermentation for the production of cachaça: A study of case. Eur. Food Res. Technol. 2016, 242, 1587–1597. [Google Scholar] [CrossRef]
- Stroppa, C.T.; Alves, J.G.L.F.; de Figueiredo, A.L.F.; Castro, C.C. Kinetic parameters of yeasts strains isolated from cachaça distilleries in Minas Gerais/Brazil. Cienc. Agrotecnologia 2009, 33, 1978–1983. [Google Scholar] [CrossRef]
- Badotti, F.; Vilaça, S.T.; Arias, A.; Rosa, C.A.; Barrio, E. Two interbreeding populations of Saccharomyces cerevisiae strains coexist in cachaça fermentations from Brazil. FEMS Yeast Res. 2014, 14, 289–301. [Google Scholar] [CrossRef]
- Brexó, R.P.; Brandão, L.R.; Chaves, R.D.; Castro, R.J.; Câmara, A.A.; Rosa, C.A.; Sant’ana, A.S. Yeasts from indigenous culture for cachaça production and brewer’s spent grain: Biodiversity and phenotypic characterization for biotechnological purposes. Food Bioprod. Process. 2020, 124, 107–120. [Google Scholar] [CrossRef]
- Nascimento, R.F.; Cardoso, D.R.; Dos, B.; Neto, S.L.; Franco, D.W.; Farias, J.B. Influência do material do alambique na composição química das aguardentes de cana-de-açúcar. Quim. Nova 1998, 21, 735–739. [Google Scholar] [CrossRef]
- Nonato, E.A.; Carazza, F.; Silva, F.C.; Carvalho, C.R.; Cardeal, Z.d.L. A Headspace Solid-Phase Microextraction Method for the Determination of Some Secondary Compounds of Brazilian Sugar Cane Spirits by Gas Chromatography. J. Agric. Food Chem. 2001, 49, 3533–3539. [Google Scholar] [CrossRef] [PubMed]
- Vilela, F.J.; Cardoso, M.D.G.; Masson, J.; Anjos, J.P.D. Determinação das composições físico-químicas de cachaças do sul de minas gerais e de suas misturas. Ciência Agrotecnologia 2007, 31, 1089–1094. [Google Scholar] [CrossRef]
- Nascimento, E.S.P.; Cardoso, D.R.; Franco, D.W. Quantitative Ester Analysis in Cachaça and Distilled Spirits by Gas Chromatography−Mass Spectrometry (GC−MS). J. Agric. Food Chem. 2008, 56, 5488–5493. [Google Scholar] [CrossRef] [PubMed]
- Tábua, M.C.M.; Santiago, W.D.; Magalhães, M.L.; Ferreira, V.R.F.; Brandão, R.M.; Teixeira, M.L.; Pedroso, M.P.; Machado, A.M.d.R.; Nelson, D.L.; Cardoso, M.d.G. Identification of volatile compounds, quantification of glycerol and trace elements in distilled spirits produced in Mozambique. J. Food Sci. Technol. 2020, 57, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Labanca, R.A.; Glória, M.B.A.; Gouveia, V.J.P.; Afonso, R.J.D.C.F. Determinação dos teores de cobre e grau alcoólico em aguardentes de cana produzidas no estado de Minas Gerais. Quim. Nova 2006, 29, 1110–1113. [Google Scholar] [CrossRef]
- Neves, E.A.; Oliveira, A.; Fernandes, A.P.; Nóbrega, J.A. Simple and efficient elimination of copper(II) in sugar-cane spirits. Food Chem. 2007, 101, 33–36. [Google Scholar] [CrossRef]
- Reche, R.V.; Franco, D.W. Distinction between cachaças distilled in pot stills and in columns using chemometrics. Quim. Nova 2009, 32, 332–336. [Google Scholar] [CrossRef]
- Fernandes, W.J.; Cardoso, M.d.G.; Vilela, F.J.; de Morais, A.R.; Silva, V.d.F.; Nelson, D.L. Physicochemical quality of a blend of domestic cachaças from the south of Minas Gerais. J. Food Compos. Anal. 2007, 20, 257–261. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso, M.d.G.; Zacaroni, L.M.; Rodrigues, L.M.A.; Duarte, F.C.; Ribeiro, C.d.F.e.S.; Nelson, D.L. Multivariate analysis for the characterization of physico-chemical profiles of cachaça produced in copper stills over a period of six years in Minas Gerais state. J. Inst. Brew. 2015, 121, 244–250. [Google Scholar] [CrossRef]
- Alcarde, A.R.; de Souza, P.A.; Belluco, A.E.d.S. Volatilization kinetics of secondary compounds from sugarcane spirits during double distillation in rectifying still. Sci. Agric. 2010, 67, 280–286. [Google Scholar] [CrossRef]
- Silva, F.A.; Vendruscolo, F.; Carvalho, W.R.; Júnior, M.S.S.; Pinheiro, M.V.M.; Caliari, M. Influence of the number of distillations on the composition of organic sugarcane spirit. J. Inst. Brew. 2013, 119, 133–138. [Google Scholar] [CrossRef]
- Franitza, L.; Nicolotti, L.; Granvogl, M.; Schieberle, P. Differentiation of Rums Produced from Sugar Cane Juice (Rhum Agricole) from Rums Manufactured from Sugar Cane Molasses by a Metabolomics Approach. J. Agric. Food Chem. 2018, 66, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.A.R.; Costa, S.S.L.; Araujo, O.R.G.; Teixeira, L.S.G.; Dantas, A.F. Comparison of Spectrophotometric Methods for the Determination of Copper in Sugar Cane Spirit. J. AOAC Int. 2018, 101, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.R.; Lima-Neto, B.S.; Franco, D.W. Influência do material do destilador na composição química das aguardentes de cana. Parte II. Quim. Nova 2003, 26, 165–169. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Sobrinho, L.G.A.; Lima-Neto, B.S.; Franco, D.W. A rapid and sensitive method for dimethylsulphide analysis in Brazilian sugar cane sugar spirits and other distilled beverages. J. Braz. Chem. Soc. 2004, 15, 277–281. [Google Scholar] [CrossRef]
- Reche, R.V.; Neto, A.F.L.; Da Silva, A.A.; Galinaro, C.A.; De Osti, R.Z.; Franco, D.W. Influence of Type of Distillation Apparatus on Chemical Profiles of Brazilian Cachaças. J. Agric. Food Chem. 2007, 55, 6603–6608. [Google Scholar] [CrossRef]
- Cardeal, Z.; de Souza, P.; da Silva, M.G.; Marriott, P. Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta 2008, 74, 793–799. [Google Scholar] [CrossRef]
- De Souza, P.P.; Cardeal, Z.d.L.; Augusti, R.; Morrison, P.; Marriott, P.J. Determination of volatile compounds in Brazilian distilled cachaça by using comprehensive two-dimensional gas chromatography and effects of production pathways. J. Chromatogr. A 2009, 1216, 2881–2890. [Google Scholar] [CrossRef]
- Carlos, J.; Penteado, P.; Masini, J.C. Heterogeneidade de álcoois secundários em aguardentes brasileiras de diversas origens e processos de fabricação. Quim. Nova 2009, 32, 1212–1215. [Google Scholar]
- Negri, G.; Neto, J.A.R.S.; Carlini, E.L.d.A. Chemical Analysis of Suspected Unrecorded Alcoholic Beverages from the States of São Paulo and Minas Gerais, Brazil. J. Anal. Methods Chem. 2015, 2015, 230170. [Google Scholar] [CrossRef] [PubMed]
- Zacaroni, L.M.; de Sales, P.F.; Cardoso, M.d.G.; Santiago, W.D.; Nelson, D.L. Response surface optimization of SPME extraction conditions for the analysis of volatile compounds in Brazilian sugar cane spirits by HS-SPME-GC-MS. J. Inst. Brew. 2017, 123, 226–231. [Google Scholar] [CrossRef]
- Duarte, F.C.; Cardoso, M.D.G.; Pinheiro, A.C.M.; Santiago, W.D.; de Carvalho, L.L. Alterações físico-químicas e sensoriais de cachaças envelhecidas submetidas à filtragem com carvão ativado. Cienc. Tecnol. Aliment. 2012, 32, 471–477. [Google Scholar] [CrossRef]
- Ferreira, V.H.; Hantao, L.W.; Poppi, R.J. Use of color based chromatographic images obtained from comprehensive two-dimensional gas chromatography in authentication analyses. Talanta 2021, 234, 122616. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, H.O.D.; da Silva, M.Z.F.; Alexandre, J.B.; Vidal, C.B.; Carvalho, T.V.; Nascimento, R.F.D. New HS-SPME-GC-BID method for the determination of volatile constituents in distilled beverages. Microchem. J. 2022, 181, 107669. [Google Scholar] [CrossRef]
- Oliveira, R.E.d.S.; Cardoso, M.d.G.; Santiago, W.D.; Barbosa, R.B.; Alvarenga, G.F.; Nelson, D.L. Physicochemical parameters and volatile composition of cachaça produced in the state of Paraíba, Brasil. Res. Soc. Dev. 2020, 9, e504974409. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Good Manufacturing Practices, Hazard Analysis and Critical Control Point plan proposal for distilleries of cachaça. Sci. Agric. 2018, 75, 432–443. [Google Scholar] [CrossRef]
- Santiago, W.D.; Borges, C.N.; Barbosa, R.B.; Mendonça, H.A.; Nelson, D.L.; Cardoso, M.d.G. Investigação sobre cachaças brasileiras quanto a sua padronização e qualidade. Res. Soc. Dev. 2020, 9, e387974117. [Google Scholar] [CrossRef]
- Lima, A.D.J.B.; Cardoso, M.D.G.; Guerreiro, M.C.; Pimentel, F.A. Emprego do carvão ativado para remoção de cobre em cachaça. Quim. Nova 2006, 29, 247–250. [Google Scholar] [CrossRef]
- Duarte, F.C.; Cardoso, M.D.G.; Magriotis, Z.M.; Santiago, W.D.; Mendonça, J.G.P.; Rodrigues, L.M.A. Removal of copper in cachaças using clays. Cienc. Agrotecnologia 2014, 38, 382–389. [Google Scholar] [CrossRef]
- Zacaroni, L.M.; Magriotis, Z.M.; Cardoso, M.d.G.; Santiago, W.D.; Mendonça, J.G.; Vieira, S.S.; Nelson, D.L. Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food Control 2015, 47, 536–544. [Google Scholar] [CrossRef]
- Barbosa, R.B.; Magriotis, Z.M.; Gândara, A.P.A.; Santiago, W.D.; Alvarenga, G.F.; Brandão, R.M.; Oliveira, R.E.d.S.; Caetano, A.R.S.; Nelson, D.L.; Cardoso, M.d.G. Kinetic, thermodynamic and physical-chemical study of the removal of copper from cachaça using coconut fibers. Food Addit. Contam. Part A 2022, 39, 1544. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, M.B.; Martins, N.G.S.; Belluco, A.E.D.S.; Horii, J.; Alcarde, A.R. Perfil físico-químico de aguardente durante envelhecimento em tonéis de carvalho Chemical profile of aguardente. Ciênc. Tecnol. Aliment. 2008, 84. Available online: https://www.scielo.br/j/cta/a/dpyLrRDcdph9N3pYMdcDYxt/?format=pdf&lang=pt (accessed on 1 July 2023). [CrossRef]
- Caetano, D.; Lima, C.M.G.; Sanson, A.L.; Silva, D.F.; Hassemer, G.d.S.; Verruck, S.; Silva, G.A.; Afonso, R.J.d.C.F.; Coutrim, M.X.; Gregório, S.R. Descriptive screening and lexicon development of non-aged artisanal cachaça sensorial profile using principal component analysis and Kohonen artificial neural networks. J. Sens. Stud. 2021, 36, e12645. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso, M.d.G.; Lunguinho, A.d.S.; Barbosa, R.B.; Cravo, F.D.; Gonçalves, G.d.S.; Nelson, D.L. Determination of ethyl carbamate in cachaça stored in newly made oak, amburana, jatobá, balsa and peroba vats and in glass containers. J. Inst. Brew. 2017, 123, 572–578. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso, M.d.G.; Nelson, D.L. Cachaça stored in casks newly constructed of oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba): Alcohol content, phenol composition, colour intensity and dry extrac. J. Inst. Brew. 2017, 123, 232–241. [Google Scholar] [CrossRef]
- Teixeira, V.; Silva, A.F.; de Freita, C.M.; de Freita, L.A.; Mendes, F.Q.; Tralli, L.F.; Mutton, M.J.R. Using Moringa oleifera Lamarck seed extract for controlling microbial contamination when producing organic cachaça. Int. J. Food Microbiol. 2019, 308, 108287. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto, A.M.; Alcarde, A.R. Congeners in sugar cane spirits aged in casks of different woods. Food Chem. 2013, 139, 695–701. [Google Scholar] [CrossRef]
- Cardeal, Z.L.; Marriott, P.J. Comprehensive two-dimensional gas chromatography–mass spectrometry analysis and comparison of volatile organic compounds in Brazilian cachaça and selected spirits. Food Chem. 2009, 112, 747–755. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso, M.d.G.; Santiago, J.A.; Teixeira, M.L.; Barbosa, R.B.; Zacaroni, L.M.; Sales, P.F.; Nelson, D.L. Physicochemical profile and determination of volatile compounds in cachaça stored in new oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba) casks by SPME-GC–MS. J. Inst. Brew. 2016, 122, 624–634. [Google Scholar] [CrossRef]
- Buglass, A. Handbook of Alcoholic Beverages; John Wiley & Sons, Ltd.: West Sussex, UK, 2010. [Google Scholar] [CrossRef]
- Mosedale, J.; Puech, J.-L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Parazzi, C.; Arthur, C.M.; Lopes, J.J.C.; Borges, M.T.M.R. Avaliação e caracterização dos principais compostos químicos da aguardente de cana-de-açúcar envelhecida em tonéis de carvalho (Quercus sp.). Cienc. Tecnol. Aliment. 2008, 28, 193–199. [Google Scholar] [CrossRef]
- de Aquino, F.W.B.; Rodrigues, S.; Nascimento, R.F.D.; Casimiro, A.R.S. Simultaneous determination of aging markers in sugar cane spirits. Food Chem. 2006, 98, 569–574. [Google Scholar] [CrossRef]
- Alcarde, A.R.; de Souza, P.A.; Belluco, A.E.d.S. Aspectos da composição química e aceitação sensorial da aguardente de cana-de-açúcar envelhecida em tonéis de diferentes madeiras. Cienc. E Tecnol. Aliment. 2010, 30, 226–232. [Google Scholar] [CrossRef]
- Alcarde, A.R.; Souza, L.M.; Bortoletto, A.M. Formation of volatile and maturation-related congeners during the aging of sugarcane spirit in oak barrels. J. Inst. Brew. 2014, 120, 529–536. [Google Scholar] [CrossRef]
- Santiago, W.; Cardoso, M.D.G.; Zacaroni, L.; Anjos, J.D.; de Resende Machado, A.; Mendonça, J. Perfil físico-químico e quantificação de compostos fenólicos e acroleína em aguardentes de cana-de-açúcar armazenadas em tonéis de diferentes madeiras. Científica 2012, 40, 189–197. [Google Scholar]
- Carvalho, D.G.; Ranzan, L.; Trierweiler, L.F.; Trierweiler, J.O. Determination of the concentration of total phenolic compounds in aged cachaça using two-dimensional fluorescence and mid-infrared spectroscopy. Food Chem. 2020, 329, 127142. [Google Scholar] [CrossRef]
- Castro, M.C.; Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Lignin-derived phenolic compounds in cachaça aged in new barrels made from two oak species. Heliyon 2020, 6, e05586. [Google Scholar] [CrossRef]
- Silvello, G.C.; Bortoletto, A.M.; de Castro, M.C.; Alcarde, A.R. New approach for barrel-aged distillates classification based on maturation level and machine learning: A study of cachaça. LWT 2021, 140, 110836. [Google Scholar] [CrossRef]
- Castro, M.C.; Silvello, G.C.; Corniani, L.S.; Acevedo, M.S.M.S.F.; Pereira, A.d.A.M.; Alcarde, A.R. Maturation-related phenolic compounds in cachaça aged in oak barrels: Influence of reuses. Wood Sci. Technol. 2023, 57, 781–795. [Google Scholar] [CrossRef]
- Cardello, H.M.A.B.; Boscolo, M.; Isique, W.D.; Odello, L.; Franco, D.W.; Faria, J.B. Evaluation of Brazilian woods as an alternative to oak for cachaças aging. Eur. Food Res. Technol. 2003, 218, 83–87. [Google Scholar] [CrossRef]
- De Souza, P.P.; Augusti, D.V.; Catharino, R.R.; Siebald, H.G.L.; Eberlin, M.N.; Augusti, R. Differentiation of rum and Brazilian artisan cachaça via electrospray ionization mass spectrometry fingerprinting. J. Mass Spectrom. 2007, 42, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- De Souza, P.P.; de Oliveira, L.C.; Catharino, R.R.; Eberlin, M.N.; Augusti, D.V.; Siebald, H.G.; Augusti, R. Brazilian cachaça: “Single shot” typification of fresh alembic and industrial samples via electrospray ionization mass spectrometry fingerprinting. Food Chem. 2009, 115, 1064–1068. [Google Scholar] [CrossRef]
- Da Silva, A.A.; Nascimento, E.S.P.D.; Cardoso, D.R.; Franco, D.W. Coumarins and phenolic fingerprints of oak and Brazilian woods extracted by sugarcane spirit. J. Sep. Sci. 2009, 32, 3681–3691. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.B.; Piggott, J.R.; Faria, J.B. Sensory profile and acceptability of traditional and double-distilled cachaça aged in oak casks. J. Inst. Brew. 2013, 119, 251–257. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Corrêa, A.C.; Alcarde, A.R. Fatty acid profile and glycerol concentration in cachaças aged in different wood barrels. J. Inst. Brew. 2016, 122, 293–298. [Google Scholar] [CrossRef]
- Caetano, D.; Lima, C.M.G.; Sanson, A.L.; Silva, D.F.; Hassemer, G.d.S.; Verruck, S.; Gregorio, S.R.; da Silva, G.A.; Afonso, R.J.d.C.F.; Coutrim, M.X.; et al. Chemical Fingerprint of Non-aged Artisanal Sugarcane Spirits Using Kohonen Artificial Neural Network. Food Anal. Methods 2022, 15, 890–907. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Frederiksen, A.M.; da Silva, A.A.; Franco, D.W.; Skibsted, L.H. Sugarcane spirit extracts of oak and Brazilian woods: Antioxidant capacity and activity. Eur. Food Res. Technol. 2008, 227, 1109–1116. [Google Scholar] [CrossRef]
- Bernardes, C.D.; de Figueiredo, M.C.; Barbeira, P.J. Developing a PLS model for determination of total phenolic content in aged cachaças. Microchem. J. 2014, 116, 173–177. [Google Scholar] [CrossRef]
- Bernardes, C.D.; Barbeira, P.J.S. Different Chemometric Methods for the Discrimination of Commercial Aged Cachaças. Food Anal. Methods 2016, 9, 1053–1059. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Rufián-Henares, J.; de la Cueva, S.P. Characterization of rums sold in Spain through their absorption spectra, furans, phenolic compounds and total antioxidant capacity. Food Chem. 2020, 323, 126829. [Google Scholar] [CrossRef] [PubMed]
- De Castro, M.C.; Bortoletto, A.M.; Silvello, G.C.; Alcarde, A.R. Maturation related phenolic compounds in cachaça aged in new oak barrels. J. Inst. Brew. 2021, 127, 70–77. [Google Scholar] [CrossRef]
- Campos, J.O.S.; de Aquino, F.W.B.; Nascimento, R.F.D.; da Costa, J.G.M.; De Keukeleire, D.; de Casimiro, A.R.S. Influence and effect of thermal treatment in elaboration of regional wood extracts for cachaça. J. Food Compos. Anal. 2004, 17, 179–185. [Google Scholar] [CrossRef]
- Magnani, B. Estudo Comparativo das Caracteristicas Sensoriais do Rum e Da Cachaça. Sao Paulo, Brazil. 2009. Available online: https://www2.fcfar.unesp.br/Home/Pos-graduacao/AlimentoseNutricao/bruna_magnani-ME_completo.pdf (accessed on 10 July 2023).
- Da Silva, A.A.; De Keukeleire, D.; Cardoso, D.R.; Franco, D.W. Multivariate analyses of UV-Vis absorption spectral data from cachaça wood extracts: A model to classify aged Brazilian cachaças according to the wood species used. Anal. Methods 2012, 4, 642–646. [Google Scholar] [CrossRef]
- Catão, C.G.; Paes, J.B.; Gomes, J.P.; Araújo, G.T. Qualidade da madeira de cinco espécies florestais para o envelhecimento da cachaça 1 Quality of wood of five forestal species for aging of ‘ cachaça. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 741–774. [Google Scholar] [CrossRef]
- Ghanem, E.; Afsah, S.; Fallah, P.N.; Lawrence, A.; LeBovidge, E.; Raghunathan, S.; Rago, D.; Ramirez, M.A.; Telles, M.; Winkler, M.; et al. Differentiation and Identification of Cachaça Wood Extracts Using Peptide-Based Receptors and Multivariate Data Analysis. ACS Sens. 2017, 2, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Simioni, S.C.C.; Tovar, D.M.; Rodrigues, J.F.; de Souza, V.R.; Nunes, C.A.; Vietoris, V.; Pinheiro, A.C.M. Temporal dominance of sensations and preferences of Brazilians and Slovakians: A cross-cultural study of cachaças stored with woods from the Amazon rainforest. J. Sci. Food Agric. 2018, 98, 4058–4064. [Google Scholar] [CrossRef] [PubMed]
- Silvello, G.C.; Alcarde, A.R. Experimental design and chemometric techniques applied in electronic nose analysis of wood-aged sugar cane spirit (cachaça). J. Agric. Food Res. 2020, 2, 100037. [Google Scholar] [CrossRef]
- Barbosa, R.B.; Santiago, W.D.; Alvarenga, G.F.; Oliveira, R.E.d.S.; Ferreira, V.R.F.; Nelson, D.L.; Cardoso, M.d.G. Physical–Chemical Profile and Quantification of Phenolic Compounds and Polycyclic Aromatic Hydrocarbons in Cachaça Samples Aged in Oak (Quercus sp.) Barrels with Different Heat Treatments. Food Bioprocess Technol. 2022, 15, 1977–1987. [Google Scholar] [CrossRef]
- Karp, J.R.; Hamerski, F.; da Silva, V.R.; Medeiros, A.B. Membrane processing of the Brazilian spirit Cachaça. J. Inst. Brew. 2019, 125, 383–388. [Google Scholar] [CrossRef]
- De Almeida, J.S.; Meira, L.A.; Dias, F.D.S.; Teixeira, L.S.G. Magnetic solid phase microextraction using CoFe2O4 nanoparticles for determination of Cu, Cd, Pb and V in sugar cane spirit samples by energy dispersive X-ray fluorescence spectrometry. Braz. J. Anal. Chem. 2019, 6, 60–66. [Google Scholar] [CrossRef]
- Boscolo, M.; Bezerra, C.W.B.; Cardoso, D.R.; Neto, B.S.L.; Franco, D.W. Identification and dosage by HRGC of minor alcohols and esters in Brazilian sugar-cane spirit. J. Braz. Chem. Soc. 2000, 11, 86–90. [Google Scholar] [CrossRef]
- Suomalainen, H.; Lehtonen, M. The Production of Aroma Compounds by Yeast. J. Inst. Brew. 1979, 85, 149–156. [Google Scholar] [CrossRef]
- Pino, J.A.; Tolle, S.; Gök, R.; Winterhalter, P. Characterisation of odour-active compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef]
- Odello, L.; Braceschi, G.P.; Seixas, F.R.F.; Silva, A.A.D.; Galinaro, C.A.; Franco, D.W. Avaliação sensorial de cachaça. Quim. Nova 2009, 32, 1839–1844. [Google Scholar] [CrossRef]
- Silveira, A.L.; Barbeira, P.J.S. A fast and low-cost approach for the discrimination of commercial aged cachaças using synchronous fluorescence spectroscopy and multivariate classification. J. Sci. Food Agric. 2022, 102, 4918–4926. [Google Scholar] [CrossRef] [PubMed]
- Serafim, F.A.T.; da Silva, A.A.; Galinaro, C.A.; Franco, D.W. Chemical profile comparison of sugarcane spirits from the same wine distilled in alembics and columns. Quim. Nova 2012, 35, 1412–1416. [Google Scholar] [CrossRef]
- Yang, H.-F.; Wang, S.-L.; Yu, S.-J.; Zeng, X.-A.; Sun, D.W. Characterization and Semiquantitative Analysis of Volatile Compounds in Six Varieties of Sugarcane Juice. Int. J. Food Eng. 2014, 10, 821–828. [Google Scholar] [CrossRef]
- Belmonte-Sánchez, J.R.; Gherghel, S.; Arrebola-Liébanas, J.; González, R.R.; Vidal, J.L.M.; Parkin, I.; Frenich, A.G. Rum classification using fingerprinting analysis of volatile fraction by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Talanta 2018, 187, 348–356. [Google Scholar] [CrossRef]
- Oliveira, S.; Fernandes, D.D.d.S.; Véras, G. Overview of Analytical Techniques Associated with Pattern Recognition Methods in Sugarcane Spirits Samples. Crit. Rev. Anal. Chem. 2019, 49, 477–487. [Google Scholar] [CrossRef]
- Pino, J.A.; Winterhalter, P.; Gök, R.; González, J. Characterisation of aroma-active compounds in commercial aged rums. Acta Aliment. 2017, 46, 69–75. [Google Scholar] [CrossRef]
- Medeiros, A.; de Matos, M.; Monteiro, A.d.P.; de Carvalho, J.; Soccol, C. Cachaça and Rum. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 451–468. [Google Scholar] [CrossRef]
- Faria, J.B. Sugar cane spirits: Cachaça and rum production and sensory properties. In Alcoholic Beverages; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar] [CrossRef]
- Dos Reis, K.C.; Arrizon, J.; Amaya-Delgado, L.; Gschaedler, A.; Schwan, R.F.; Silva, C.F. Volatile compounds flavoring obtained from Brazilian and Mexican spirit wastes by yeasts. World J. Microbiol. Biotechnol. 2018, 34, 152. [Google Scholar] [CrossRef]
- Mattos, D.S.; Margarido, L.A.C.; Ceccato-Antonini, S.R. Influence of sugarcane variety and management on the mineral composition of vinasse from alembic cachaça. Acta Sci. Technol. 2018, 40, 36581. [Google Scholar] [CrossRef]
- Dos Santos, J.F.; Canettieri, E.V.; Souza, S.A.; Rodrigues, R.; Martínez, E.A. Treatment of sugarcane vinasse from cachaça production for the obtainment of Candida utilis CCT 3469 biomass. Biochem. Eng. J. 2019, 148, 131–137. [Google Scholar] [CrossRef]
- Masson, J.D.; Graças, M.C.; Vilela, F.J.; Pimentel, F.A.; De Morais, A.R.; Anjos, J.P.D. Parâmetros físico-químicos e cromatográficos em aguardentes de cana queimada e não queimada. Ciência E Agrotecnologia 2007, 31, 1805–1810. [Google Scholar] [CrossRef]
- Machado, A.M.d.R.; Cardoso, M.d.G.; Emídio, E.S.; Prata, V.d.M.; Dórea, H.S.; dos Anjos, J.P.; Magriotis, Z.M.; Nelson, D.L. Experimental Design Methodology to Optimize the Solid Phase Microextraction Procedure Prior to GC/MS Determination of Ethyl Carbamate in Samples of Homemade Cachaça. Anal. Lett. 2012, 45, 1143–1155. [Google Scholar] [CrossRef]
- Júnior, J.C.B.; Mendonça, R.C.S.; Pereira, J.M.d.A.T.K.; Pereira, J.A.M.; Soares, N.d.F.F. Ethyl-carbamate determination by gas chromatography–mass spectrometry at different stages of production of a traditional Brazilian spirit. Food Chem. 2011, 129, 1383–1387. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Ethyl carbamate and hydrocyanic acid in food and beverages—Scientific Opinion of the Panel on Contaminants. EFSA J. 2007, 5, 551. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Lima, M.C.; Nóbrega, I.C.; AP Pereira, J.; Kerr-Corrêa, F.; Kanteres, F.; Rehm, J. Cancer risk assessment of ethyl carbamate in alcoholic beverages from Brazil with special consideration to the spirits cachaça and tiquira. BMC Cancer 2010, 10, 266. [Google Scholar] [CrossRef]
- Menezes, H.C.; Paulo, B.P.; Paiva, M.J.N.; de Barcelos, S.M.R.; Macedo, D.F.D.; Cardeal, Z.L. Determination of polycyclic aromatic hydrocarbons in artisanal cachaça by DI-CF-SPME–GC/MS. Microchem. J. 2015, 118, 272–277. [Google Scholar] [CrossRef]
- Bueno, R.; Tonin, A.; Poliseli, C.; Sinosaki, N.; Oliveira, C.; Visentainer, J.; Ribeiro, M.; Silva, V.; Meurer, E. Two Years Monitoring of Ethyl Carbamate in Sugar Cane Spirit from Brazilian Distilleries. J. Braz. Chem. Soc. 2020, 31, 1461–1466. [Google Scholar] [CrossRef]
- Souza, R.H.Z.; Cardoso, M.d.G.; Machado, A.M.R.; Santiago, W.D.; Pedroso, M.P.; Brandão, R.M.; Oliveira, R.E.S.; Barbosa, R.B.; Alvarenga, G.F.; Caetano, A.R.S.; et al. Polycyclic aromatic hydrocarbons in cachaças packed in bottles of polyethylene terephthalate. J. Food Sci. 2022, 87, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.B.; Alvarenga, G.F.; Ferreira, V.R.F.; Santiago, W.D.; Nelson, D.L.; Cardoso, M.D.G. Cachaça sold in polyethylene terephthalate packaging: Determination of the physical-chemical profile, polycyclic aromatic hydrocarbons and ethyl carbamate. Ciênc. Agrotecnol. 2023, 47, e007522. [Google Scholar] [CrossRef]
- Zimmerli, B.; Schlatter, J. Ethyl carbamate: Analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat. Res. /Genet. Toxicol. 1991, 259, 325–350. [Google Scholar] [CrossRef]
- Aresta, M.; Boscolo, M.; Franco, D.W. Copper(II) Catalysis in Cyanide Conversion into Ethyl Carbamate in Spirits and Relevant Reactions. J. Agric. Food Chem. 2001, 49, 2819–2824. [Google Scholar] [CrossRef]
- Galinaro, C.A.; Franco, D.W. Formação de carbamato de etila em aguardentes recém-destiladas: Proposta para seu controle. Quim. Nova 2011, 34, 996–1000. [Google Scholar] [CrossRef]
- Alcarde, A.R.; de Souza, L.M.; Bortoletto, A.M. Ethyl carbamate kinetics in double distillation of sugar cane spirit. J. Inst. Brew. 2012, 118, 27–31. [Google Scholar] [CrossRef]
- Borges, G.B.V.; Gomes, F.d.C.O.; Badotti, F.; Silva, A.L.D.; Machado, A.M.d.R. Selected Saccharomyces cerevisiae yeast strains and accurate separation of distillate fractions reduce the ethyl carbamate levels in alembic cachaças. Food Control 2014, 37, 380–384. [Google Scholar] [CrossRef]
- Masson, J.; Cardoso, M.d.G.; Zacaroni, L.M.; dos Anjos, J.P.; Santiago, W.D.; Machado, A.M.d.R.; Saczk, A.A.; Nelson, D.L. GC-MS analysis of ethyl carbamate in distilled sugar cane spirits from the northern and southern regions of Minas Gerais. J. Inst. Brew. 2014, 120, 516–520. [Google Scholar] [CrossRef]
- Alvarenga, G.F.; Machado, A.M.d.R.; Barbosa, R.B.; Ferreira, V.R.F.; Santiago, W.D.; Teixeira, M.L.; Nelson, D.L.; Cardoso, M.d.G. Correlation of the presence of acrolein with higher alcohols, glycerol, and acidity in cachaças. J. Food Sci. 2023, 88, 1753–1768. [Google Scholar] [CrossRef]
- Cravo, F.D.; Santiago, W.D.; Lunguinho, A.d.S.; Barbosa, R.B.; Oliveira, R.E.d.S.; Alvarenga, G.F.; Santos, S.D.; Souza, R.H.Z.; de Souza, E.C.; de Almeida, K.J.; et al. Composition of Cachaças Produced from Five Varieties of Sugarcane and the Correlation of the Presence of Dhurrin in the Cane with That of Ethyl Carbamate in the Product. Am. J. Plant Sci. 2019, 10, 339–350. [Google Scholar] [CrossRef]
- D’Avila, G.B.; Cardoso, M.d.G.; Santiago, W.D.; Rodrigues, L.M.A.; da Silva, B.L.; Cardoso, R.R.; Caetano, A.R.S.; Ribeiro, C.d.F.e.S.; Nelson, D.L. Quantification of ethyl carbamate in cachaça produced in different agro-industrial production systems. J. Inst. Brew. 2016, 122, 299–303. [Google Scholar] [CrossRef]
- De Andrade-Sobrinho, L.G.; Boscolo, M.; Dos, B.; Lima-Neto, S.; Franco, D.W. Carbamato de etila em bebidas alcoólicas (cachaça, tiquira, uísque e grapa). Quim. Nova 2002, 25, 1074–1077. [Google Scholar] [CrossRef]
- Sobrinho, L.G.d.A.; Cappelini, L.T.D.; da Silva, A.A.; Galinaro, C.A.; Buchviser, S.F.; Cardoso, D.R.; Franco, D.W. Teores de carbamato de etila em aguardentes de cana e mandioca. Parte II. Quim. Nova 2008, 32, 116–119. [Google Scholar] [CrossRef]
- Barcelos, L.V.F.; Cardoso, M.D.G.; Vilela, F.J.; Anjos, J.P.D. Teores de Carbamato de Etila e Outros Componentes Secundários em Diferentes Cachaças Produzidas em Três Regiões do Estado de Minas Gerais: Zona da Mata, sul de Minas e Vale do Jequitinhonha. 2009. Available online: http://mct.gov.br (accessed on 1 July 2023).
- Nóbrega, I.C.; Pereira, J.A.; Paiva, J.E.; Lachenmeier, D.W. Ethyl carbamate in pot still cachaças (Brazilian sugar cane spirits): Influence of distillation and storage conditions. Food Chem. 2009, 117, 693–697. [Google Scholar] [CrossRef]
- Caruso, M.S.F.; Nagato, L.A.F.; Alaburda, J. Benzo(a)pireno, carbamato de etila e metanol em cachaças. Quim. Nova 2010, 33, 1973–1976. [Google Scholar] [CrossRef]
- Zacaroni, L.M.; Cardoso, M.d.G.; Saczk, A.A.; Santiago, W.D.; dos Anjos, J.P.; Masson, J.; Duarte, F.C.; Nelson, D.L. Caracterização e quantificação de contaminantes em aguardentes de cana. Quim. Nova 2011, 34, 320–324. [Google Scholar] [CrossRef]
- Anjos, J.P.D.; Cardoso, M.D.G.; Saczk, A.A.; Zacaroni, L.M.; Santiago, W.D.; Dórea, H.S.; Machado, A.M.D.R. Identificação do carbamato de etila durante o armazenamento da cachaça em tonel de carvalho (Quercus sp.) e recipiente de vidro. Quim. Nova 2011, 34, 874–878. [Google Scholar] [CrossRef]
- Chreem, D.R.; Riachi, L.G.; Moreira, R.F.A.; de Maria, C.A.B. A study of the ethyl carbamate level in cachaça samples. Int. Food Res. J. 2015, 22, 351–355. [Google Scholar]
- Zacaroni, L.M.; Cardoso, M.d.G.; Santiago, W.D.; Gomes, M.d.S.; Duarte, F.C.; Nelson, D.L. Effect of light on the concentration of ethyl carbamate in cachaça stored in glass bottles. J. Inst. Brew. 2015, 121, 238–243. [Google Scholar] [CrossRef]
- Mendonça, J.G.P.; Cardoso, M.D.G.; Santiago, W.D.; Rodrigues, L.M.A.; Nelson, D.L.; Brandão, R.M.; da Silva, B.L. Determination of ethyl carbamate in cachaças produced by selected yeast and spontaneous fermentation. J. Inst. Brew. 2016, 122, 63–68. [Google Scholar] [CrossRef]
- Riffkin, H.L.; Wilson, R.; Howie, D.; Muller, S.B. Ethyl carbamate formation in the production of pot still whisky. J. Inst. Brew. 1989, 95, 115–119. [Google Scholar] [CrossRef]
- Battaglia, R.; Conacher, H.B.S.; Page, B.D. Ethyl carbamate (urethane) in alcoholic beverages and foods: A review. Food Addit. Contam. 1990, 7, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Aylott, R.I.; Cochrane, G.C.; Leonard, M.J.; MacDonald, L.S.; MacKenzie, W.M.; McNeish, A.S.; Walker, D.A. Ethyl carbamate formation in grain based spirits: Part I: Post-distillation ethyl carbamate formation in maturing grain whisky. J. Inst. Brew. 1990, 96, 213–221. [Google Scholar] [CrossRef]
- Bruno, S.; Vaitsman, D.; Kunigami, C.; Brasil, M. Influence of the distillation processes from Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar cane spirits. Food Chem. 2007, 104, 1345–1352. [Google Scholar] [CrossRef]
- Santiago, W.D.; Cardoso, M.D.G.; Duarte, F.C.; Saczk, A.A.; Nelson, D.L. Ethyl carbamate in the production and aging of cachaça in oak (Quercus sp.) and amburana (Amburana cearensis) barrels. J. Inst. Brew. 2014, 120, 507–511. [Google Scholar] [CrossRef]
- Galinaro, C.A.; Ohe, T.H.K.; da Silva, A.C.H.; da Silva, S.C.; Franco, D.W. Cyanate as an Active Precursor of Ethyl Carbamate Formation in Sugar Cane Spirit. J. Agric. Food Chem. 2015, 63, 7415–7420. [Google Scholar] [CrossRef]
- Rodrigues, L.M.A.; Cardoso, M.d.G.; Santiago, W.D.; Barbosa, R.B.; Santiago, J.d.A.; Lima, L.M.Z.; Nelson, D.L. Organic contaminants in distilled sugar cane spirits produced by column and copper alembic distillation. Res. Soc. Dev. 2020, 9, e930974879. [Google Scholar] [CrossRef]
- The Good Scents Company. Available online: http://www.thegoodscentscompany.com/ (accessed on 7 August 2023).
Classification | Name | Description | Labelling |
---|---|---|---|
Distillation process | Cachaça de alambique | when it is exclusively and entirely produced in a copper still and obtained by distilling fermented sugarcane juice. | Optional |
Cachaça | when it is produced by a different distillation method or a mixture of cachaças from other methods. | ||
Ageing process | Cachaça envelhecida | which is aged in a wooden container with a maximum capacity of 700 L for at least one year and contains at least 50% of its volume aged in the wood. | Required |
Cachaça armazenada | which is stored in a wooden container but does not meet the criteria for ageing as defined in the current Standards of Identity and Quality and other relevant administrative acts. | ||
Cachaça | which is packaged in a suitable container and does not meet the criteria for ageing or storage in wood as defined in the current Standards of Identity and Quality and other relevant administrative acts. | ||
Sugar content | Cachaça adoçada | which is a beverage with added sugars in quantity greater than 6 g/L and less than 30 g/L. | Required |
Cachaça | which may contain added sugars in quantity equal to or less than 6 g/L |
Parameter | Unit | Min | Max |
---|---|---|---|
Components | |||
Alcoholic graduation | % ABV at 20 °C | 38 | 48 |
Volatile acidity, as acetic acid | mg/100 mL of anhydrous alcohol | 150 | |
Total esters, as ethyl acetate | mg/100 mL of anhydrous alcohol | 200 | |
Total aldehydes, in acetaldehyde | mg/100 mL of anhydrous alcohol | 30 | |
Sum of Furfural and Hydroxymethylfurfural | mg/100 mL of anhydrous alcohol | 5 | |
Higher alcohols * | mg/100 mL of anhydrous alcohol | 360 | |
Congeners | mg/100 mL of anhydrous alcohol | 650 | |
Total phenolic compounds (for aged cachaça) | |||
Total sugars (for cachaça) | g/L (as glucose) | ≤6 | |
Total sugars (for sweetened cachaça) | g/L (as glucose) | >6 | <30 |
Contaminants | |||
Methanol | mg/100 mL of anhydrous alcohol | 20 | |
Ethyl carbamate (EC) | μg/L | 210 | |
Acrolein (2-propenal) | mg/100 mL of anhydrous alcohol | 5 | |
sec-Butyl alcohol (2-butanol) | mg/100 mL of anhydrous alcohol | 10 | |
n-Butyl alcohol (1-butanol) | mg/100 mL of anhydrous alcohol | 3 | |
Copper | mg/L | 5 |
Strain | Quality Parameters | Effects |
---|---|---|
Bacillus amaracrylus | Fusel alcohols, aroma, flavour development | Increased production of fusel alcohols contributes to aroma and flavour development. Increases acidity. Contributes to flavour development. |
Candida apicola | Ester production, aroma | An increase in ester production contributes to the fruity aroma. Increases acidity. Contributes to flavour development. Instrumental in the production of esters and higher alcohols contributing to the aroma of cachaça. |
C. famata | Higher alcohols, flavour complexity | Enhanced production of higher alcohols contributes to flavour complexity. Increases acidity. Contributes to flavour development. |
C. guilliermondii | Glycerol production, mouthfeel, body | Improved glycerol production enhancing mouthfeel and body. Increases acidity. Contributes to flavour development. |
D. bruxellensis | Phenolic compounds, flavour complexity | Increased production of phenolic compounds contributes to flavour complexity. Increases acidity. Contributes to flavour development. |
Hanseniaspora guillierdii | Acidity, flavour development | Increases acidity. Contributes to flavour development. Responsible for creating fruity and floral aromas due to increased production of higher alcohols. |
Lachancea mirantina | Acidity, flavour development | Increases acidity. Contributes to flavour development—aids in producing esters and higher alcohols, adding to the aroma of cachaça. |
Lactobacillus colinoides | Lactic acid, acidity, flavour development | The production of lactic acid and other organic acids contributes to acidity. Increases acidity. Contributes to flavour development. |
Lactobacillus hilgardii | Acidity, volatile acidity, flavour development | It increased acidity and volatile acidity. Increases acidity. Contributes to flavour development. Produces lactic acid, adding to the acidity and flavour profile of cachaça. |
Lactobacillus spp. | Acidity, volatile Acidity, flavour, aroma, fermentation behaviour | Increase in acidity and volatile acidity due to the production of lactic acid and other organic acids. Increases acidity. Contributes to flavour development. Crucial role in preventing bacterial contamination in the fermentation process. Contributes to unique smell, taste, and flavour development due to metabolite and volatile substance production. Impacts the overall fermentation behaviour of the mixture. |
Lactococcus lactis | Acidity, volatile acidity, aroma | Enhanced production of diacetyl contributing to buttery aroma. Increase in acidity and volatile acidity. Increases acidity. Contributes to flavour development. Contributes to acidity and flavour development through the production of lactic acid. |
M. caribbica | Higher alcohols, flavour complexity, alcohol content | Improved production of higher alcohols contributes to flavour complexity. Increases alcohol content. Decreases acidity. Contributes to flavour development. |
Meyerozyma guilliermondii | Fruity esters, aroma profile, flavour development | Improved production of fruity esters enhancing aroma profile. Increases acidity. Contributes to flavour development. It is known for its role in producing esters that enhance the aroma of cachaça. |
Pichia caribbica | Volatile compounds, aroma complexity | Enhanced production of volatile compounds contributing to aroma complexity. Increases acidity. Contributes to flavour development. |
Pichia fermentans | Esters, fruity aroma, flavour development | Enhanced production of esters contributing to the fruity aroma. Increases acidity. Contributes to flavour development. It helps produce esters that contribute to the aroma of cachaça. |
S. cerevisiae | Ethanol production, aroma and flavour profile, fermentation efficiency, alcohol content, fermentation kinetics, residual sugar levels | Increase in ethanol production. Improvement in aroma and flavour. Enhanced fermentation efficiency. Increases alcohol content. Decreases acidity. Contributes to flavour development. Known for its high ethanol production, which forms the basis of cachaça’s alcohol content. Increases alcohol content and enhances aroma profile due to increased ethanol production and improved fermentation kinetics. Reduces residual sugar levels by minimizing the risk of stuck fermentation. |
Schizosaccharomyces pombe | Fusel alcohols, aroma, flavour development | Increased production of fusel alcohols contributes to aroma and flavour development. Increases acidity. Contributes to flavour development—aids in producing higher alcohols and esters that add to the aroma of cachaça. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratkovich, N.; Esser, C.; de Resende Machado, A.M.; Mendes, B.d.A.; Cardoso, M.d.G. The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement. Foods 2023, 12, 3325. https://doi.org/10.3390/foods12173325
Ratkovich N, Esser C, de Resende Machado AM, Mendes BdA, Cardoso MdG. The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement. Foods. 2023; 12(17):3325. https://doi.org/10.3390/foods12173325
Chicago/Turabian StyleRatkovich, Nicolas, Christian Esser, Ana Maria de Resende Machado, Benjamim de Almeida Mendes, and Maria das Graças Cardoso. 2023. "The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement" Foods 12, no. 17: 3325. https://doi.org/10.3390/foods12173325
APA StyleRatkovich, N., Esser, C., de Resende Machado, A. M., Mendes, B. d. A., & Cardoso, M. d. G. (2023). The Spirit of Cachaça Production: An Umbrella Review of Processes, Flavour, Contaminants and Quality Improvement. Foods, 12(17), 3325. https://doi.org/10.3390/foods12173325